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Synchronous dynamics in the presence of short-term plasticity
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We investigate the occurrence of quasisynchronous events in a random network of excitatory leaky integrate-
and-fire neurons equipped with short-term plasticity. The dynamics is analyzed by monitoring both the evolution
of global synaptic variables and, on a microscopic ground, the interspike intervals of the individual neurons.
We find that quasisynchronous events are the result of a mixture of synchronized and unsynchronized motion,
analogously to the emergence of synchronization in the Kuramoto model. In the present context, disorder is
due to the random structure of the network and thereby vanishes for a diverging network size N (i.e., in the
thermodynamic limit), when statistical fluctuations become negligible. Remarkably, the fraction of asynchronous
neurons remains strictly larger than zero for arbitrarily large N . This is due to the presence of a robust homoclinic
cycle in the self-generated synchronous dynamics. The nontrivial large-N behavior is confirmed by the anomalous
scaling of the maximum Lyapunov exponent, which is strictly positive in a finite network and decreases as N−0.27.
Finally, we have checked the robustness of this dynamical phase with respect to the addition of noise, applied to
either the reset potential or the leaky current.
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I. INTRODUCTION

The spontaneous emergence of synchronization phenomena
in neural dynamics is a widely investigated and debated issue.
Many experimental studies have pointed out the importance
of such dynamical regimes both in vitro and in vivo (see, e.g.,
Ref. [1]). They have also triggered the introduction of several
mathematical models to understand the basic mechanisms.
Many different ingredients have been invoked to obtain a
reasonable correspondence with the experimental observa-
tions. Tsodyks, Uziel, and Markram [2] invoke short-term
plasticity as a possible source of quasisynchronous events in
the form of population bursts (PBs) in a neural network of leaky
integrate-and-fire (LIF) neurons with inhibitory and excitatory
couplings. The system studied by these authors, besides
accounting for short-term plasticity (as in the seminal works
in Refs. [3,4]), includes various forms of quenched disorder:
(i) random dilution with a given ratio of excitatory and
inhibitory neurons, (ii) a Gaussian distribution of the coupling
strengths and of the synaptic time scales, and (iii) random leaky
currents (uniformly distributed). Still, the predictions have
remained quantitatively far from the experimental findings.
A step forward was made by Volman et al. [1], who studied
a modified version of the previous model: LIF neurons were
replaced by Morris-Lecar ones [5], global coupling was as-
sumed (maintaining the same ratio of inhibitory and excitatory
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neurons), and a noise term was added to the leaky current. In
fact, these modifications proved successful in reproducing the
long tail distribution of the time intervals between successive
PBs, observed in the experiments. Later, PBs were consistently
found in a similar model for different network topologies (i.e,,
random, nearest neighbors, and modular) [6]. More recently,
Chen and Jasnow [7] reconsidered the model of Ref. [2] in a
fully coupled network of excitatory neurons in the presence of
additive noise. By transforming the continuous-time dynamics
into an event-driven map [8], they observed a dynamical
regime where high- and low-activity regimes alternate in time:
The sporadic asynchronous neural activity is mainly due to
the stochastic component of the dynamics. Finally, in Ref. [9],
partially synchronized states were investigated in a balanced
neural network by invoking a different plasticity mechanism.

Since it is desirable to understand the role played by each
ingredient, here we investigate the occurrence of quasisyn-
chronized events (QSEs) in a minimal model of excitatory
LIF neurons with short-term plasticity (as defined in Ref.
[3]). We start by studying the dynamics of fully coupled
networks, finding that the evolution converges to a completely
synchronized dynamics, and then move on to randomly diluted
networks, in which context QSEs emerge as a result of
a mixed behavior: Neurons split into locked and unlocked
neurons. Since this scenario is reminiscent of the emergence
of synchronization in ensembles of phase oscillators, we have
explored possible relationships with standard models. For
various reasons, the analogy with the Kuramoto model cannot
be pushed too far [in particular since the fully synchronized
regime should emerge already for a finite N (see below)]. The
neural network with exponentially shaped postsynaptic pulses
studied by Tsodyks Mitkov, and Sompolinsky [10] turns out
to be a much more appropriate reference model since there
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(like in the present setup) the synchronous solution belongs
to a homoclinic cycle, so that an arbitrarily small amount
of noise can drive the solution away from the synchronized
state. It is interesting to note that such a type of marginally
stable solution is spontaneously generated by the dynamical
system rather than being the result of some ad hoc parameter
adjustment.

In Sec. II we introduce the model and its reduction to
an event-driven map. Section III is devoted to a general
discussion of the dynamical properties. In particular we
estimate the Lyapunov exponents, finding evidence of a
chaotic dynamics, and that chaos tends to disappear when the
number N of neurons diverges. More precisely, the maximum
exponent decreases as N−0.27. Section IV is devoted to a
detailed analysis of QSEs that are characterized with the
help of suitable collective variables that measure the synaptic
activity. We study also the dependence of the fraction fu of
unlocked neurons on the network size, finding that it decreases
quite slowly, namely, fu ≈ N−0.1. In Sec. V we discuss the
robustness of the QSE phase with respect to the addition of
noise. In particular we consider a noise acting on (i) the reset
potential and (ii) the leaky current. In both cases, QSEs survive
the addition of relatively large noise amplitudes, confirming
that random dilution of the network and short-term plasticity
provide a robust setup for the sustainment of the QSE phase
in a network of excitatory LIF neurons. Conclusions and open
problems are presented in Sec. VI. Finally, the Appendix is
devoted to the stability analysis of the synchronous solution.

II. MODEL

In this paper we consider a network of N excitatory
LIF neurons interacting via a synaptic current and regulated
by short-term plasticity according to a model introduced in
Ref. [3]. The membrane potential Vj of each neuron evolves
in time according to the differential equation

τmV̇j = Ec − Vj + RinIsyn(j ), (1)

where τm is the membrane time constant, Rin is the membrane
resistance, Isyn(j ) is the synaptic current received by neuron j

from all its presynaptic neurons (see below for its mathematical
definition), and Ec is the contribution of a constant external
current (properly multiplied by the resistance Rin).

Whenever the potential Vj (t) reaches the threshold value
Vth, it is reset to Vr and a spike is sent towards the postsynaptic
neurons. For the sake of simplicity the spike is assumed to be
a δ-like function of time. Accordingly, the spike train Sj (t)
produced by neuron j is defined as

Sj (t) =
∑
m

δ(t − tj (m)), (2)

where tj (m) is the time when neuron j fires its mth spike.
The transmission of the field Sj is mediated by the synapse

dynamics. For the sake of simplicity we assume that all efferent
synapses of a given neuron follow the same evolution (this is
justified insofar as we assume that no inhibitory coupling is
present). Moreover, by following Ref. [2], the state of the ith
synapse is assumed to be characterized by three variables xi , yi ,
and zi , which represent the fractions of synaptic transmitters

in the recovered, active, and inactive states, respectively (xi +
yi + zi = 1). The evolution equations are

ẏi = − yi

τin
+ uxiSi, (3)

żi = yi

τin
− zi

τr

. (4)

Only the active transmitters react to the incoming spikes Si :
The parameter u tunes their effectiveness. Moreover, τin is the
characteristic decay time of the postsynaptic current, while
τr is the recovery time from synaptic depression. For the
sake of simplicity, we assume that all parameters appearing
in the above equations are independent of the neuron indices.
The model equations are finally closed, by representing the
synaptic current as the sum of all the active transmitters
delivered to neuron j ,

Isyn(j ) = G

N

∑
i �=j

εij yi, (5)

where G is the strength of the synaptic coupling (which
we assume independently of both i and j ) and εij is the
connectivity matrix whose entries are set equal to 1 or 0
if the presynaptic neuron i is connected to or disconnected
from the postsynaptic neuron j , respectively. Since we assume
that the input resistance Rin is independent of j , it can be
included in G. In this paper we study the case of excitatory
coupling between neurons, i.e., G > 0. Moreover, we assume
that each neuron is connected to a macroscopic number O(N )
of presynaptic neurons: This is the reason why the sum
is divided by the factor N . This makes transparent that a
nontrivial dynamics can be observed for a coupling constant
of order 1/N . Typical values of the parameters contained
in the model have a phenomenological origin [2,6]. In the
following, unless otherwise stated, we use the following set of
values: τin = 6 ms, τm = 30 ms, τr = 798 ms, Vr = 13.5 mV,
Vth = 15 mV, Ec = 15.45 mV, G = 45 mV, and u = 0.5.
Numerical simulations of the model can be worked out much
more effectively by introducing the dimensionless quantities

a = Ec − Vr

Vth − Vr

, (6)

g = G

Vth − Vr

, (7)

v = V − Vr

Vth − Vr

(8)

and rescaling time and all the other temporal parameters with
the membrane time constant τm (for simplicity we keep the
notation unchanged also after rescaling). The values of the
rescaled parameters are τin = 0.2, τr = 133τin, vr = 0, vth =
1, a = 1.3, g = 30, and u = 0.5. While the rescaled Eqs. (3)
and (4) keep the same form, Eq. (1) changes to

v̇j = a − vj + g

N

∑
i �=j

εij yi . (9)

A major advantage for numerical simulations comes from
the possibility of transforming the set of differential
equations (3), (4), and (9) into an event-driven map [8,11].
In fact, these differential equations can be formally integrated
from time tn to time tn+1, where tn is the instant of time
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immediately after the nth spike in the network.1 The resulting
map for neuron i reads

zi(n + 1) = zi(n)e−τ (n)/τr

+ τr

τr − τin
yi(n)(e−τ (n)/τr − e−τ (n)/τin ), (10)

vi(n + 1) = vi(n)e−τ (n) + a(1 − e−τ (n)) + gFi(n), (11)

yi(n + 1) = yi(n)e−τ (n)/τin

+u

[
1 − τr

τr − τin
yi(n)

(
e−τ (n)/τr − τine

−τ (n)/τin

τr

)

− zi(n)e−τ (n)/τr

]
δi,s , (12)

where the index s refers to the neuron spiking at time tn+1,
τ (n) = tn+1 − tn is the nth interspike interval (ISI) in the
network, and Fi(n) has the expression

Fi(n) = τin

τin − 1
(e−τ (n)/τin − e−τ (n))

1

N

∑
j �=i

εjiyj (n), (13)

with the sum running over the index j of all presynaptic
neurons of neuron i. Notice that τ (n) can be determined by
computing the time

τi(n) = ln

[
a − vi(n)

a + gFi(n) − 1

]
, i = 1, . . . ,N (14)

needed by the ith neuron to reach the threshold value and
thereby selecting the shortest one

τ (n) = inf
i

{τi(n)|i = 1,2, . . . ,N}.

III. DYNAMICS

The deterministic model with short-term plasticity de-
scribed in the preceding section contains minimal ingredients
with respect to the models mentioned in the Introduction. In
fact, the event-driven dynamics described by Eqs. (10)–(12)
is governed by four parameters, namely, τin, τr , a, and g. In
what follows we mostly explore the role of τin while keeping
constant the phenomenological ratio τr/τin = 133.

Numerical simulations show that in the fully coupled
case (εij = 1 ∀i,j ), generic initial conditions always converge
towards a synchronized regime with all neurons firing simul-
taneously. This is a standard scenario that can be observed
in many networks of identical fully coupled phase oscillators.
In particular, the same behavior is found in networks without
plasticity when the transmitted pulse has an infinitely fast rise

1In the time interval immediately after the last spike of the network,
at time tn, and before the emission of the next one, at time tn+1, all the
variables yi evolve as y−

i (n + 1) = yi(n)exp[−τ (n)/τin] [according to
Eq. (3), without the source term uxiSi]. Then, at time tn+1, the variable
ys corresponding to the neuron s, the one reaching the threshold at that
time, is subject to a kick u(1 − y − z). The complete updating rule for
the variables yi reads yi(n + 1) = y−

i (n + 1) + u[1 − y−
i (n + 1) −

zi(n + 1)]δi,s , where zi(n + 1) is obtained by integrating Eq. (4) with
yi = yi(n)exp(−t/τin). Finally, the updating rule for the variables vi

is obtained by integrating Eq. (9) with yi = yi(n)exp(−t/τin).

time, e.g., exponential or δ pulses [12,13]. Notice that the
event-driven algorithm in Eqs. (10)–(12) has to be suitably
modified in order to remove the ambiguities that emerge
when the synchronous state is approached: Because of the
finite computer precision, the identification of the firing
neuron may not yield a unique index. This problem can be
straightforwardly overcome by reducing the dynamics of the
synchronized neurons to that of a single one.

The stability of this regime can be assessed by determining
the evaporation exponent � [14], i.e., the convergence rate
of a hypothetical single neuron that is subject to the mean
field generated by the network. The analysis carried out in the
Appendix reveals a rather awkward property, namely, that the
solution is stable against negative perturbations and unstable
otherwise (see the left and right exponents in Fig. 12). This is
because the periodic solution selected by the network belongs
to a homoclinic cycle that is obtained from the collapse of
a stable solution with an unstable one. This property was
already proved in Ref. [10] with reference to the Tsodyks-
Mitkov-Sompolinsky (TMS) model in the absence of synaptic
plasticity. In our model, one can apply the same mathematical
formalism since the synchronized regime is characterized by a
sequence of exponential pulses. In the case of a fully coupled
network, the asymmetric stability of the synchronous regime
has no relevant consequences since the neurons that possibly
escape while being ahead of the cluster are eventually attracted
when they approach the cluster from the opposite side. We will
see that this property has instead relevant consequences as soon
as disorder is added to the network.

A second remarkable property is that the synchronized state
is stable for all parameter values and � remains finite even in
the limit τin → 0, when the coupling vanishes. In fact, when the
synaptic time scales τin and τr are significantly smaller than the
typical ISI, the active transmitter variable yi(t) exhibits a short
pulse (of finite height and duration τin) so that the membrane
potential of all connected neurons increases by an amount

�vi(n) = gτine
−τ (n) u

N
,

which evidently vanishes for τin → 0. As shown technically
in the Appendix, the synchronized state is nevertheless
characterized by a finite stability because it is surrounded by
a tiny basin of attraction (of size τin). As a result, this model
does not reduce for τin → 0 to a standard LIF network with δ

pulses [11] and the stability of the synchronized state differs
by a finite amount.

After having discussed the dynamics of the fully coupled
network, we now study the effect of quenched disorder. We
consider a diluted network made of N neurons with a finite
fraction of broken directed links. In practice, we design
such a diluted network by connecting each directed pair of
neurons with probability p (notice that if the presynaptic
neuron i is connected to the postsynaptic neuron j , this does
not imply that j is also a presynaptic neuron of i). This
corresponds to a directed Erdős-Renyi (ER) network where the
average connectivity 〈c〉 = pN is an extensive quantity (in this
article we have always considered p = 0.7). This is consistent
with the normalization of the coupling term in Eq. (9). The
indicators used to characterize the resulting dynamics have
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been averaged over different realizations of the quenched
disorder.

It is instructive to characterize the network dynamics by
monitoring the Kuramoto parameter [15]

R =
〈∣∣∣∣ 1

N

∑
i

eiθi

∣∣∣∣
〉
, (15)

θi(t,m) = 2π
t − ti(m)

ti(m + 1) − ti(m)
, (16)

where 〈 〉 denotes a time average and θi(t,m) is the phase of
neuron i at time t ∈ [ti(m),ti(m + 1)].

In Fig. 1(a) we plot the Kuramoto parameter R versus the
decay time τin for a network with 500 neurons (see the bottom
curve). For τin → 0, the evolution is perfectly synchronous
(R = 1), but upon increasing τin, the degree of synchrony
is progressively lost until an almost asynchronous regime
sets in (for τin >≈ 1). The raster plots obtained for different
parameter values see Figs. 1(b)–1(d)] help to visualize the
underlying dynamics. In particular, we see that synchrony
manifests itself as sharp QSEs for τin = 0.2, which spread
in time when τin is increased and eventually disappear for
τin = 1.2. In the last regime, the average value of the ISI of
each neuron i, 〈ISIi〉, is distributed according to a Gaussian
with a small variance (see Fig. 2).

The overall scenario is reminiscent of the Kuramoto
synchronization transition in an ensemble of globally coupled
oscillators when either the disorder is progressively increased
or the coupling constant is decreased [16]. In fact, in the
N → ∞ limit, massively coupled Erdős-Renyi networks such
as those we have studied here are indistinguishable from
globally coupled oscillators [the only difference being a
reduced coupling strength, by a factor p (see Ref. [17])].
For finite N , the diversity in the connectivities of the single
neurons represents a source of disorder that may be strong
enough to destroy the synchronized state. What is to be
understood is the reason why the coherence is lost upon
increasing τin, as the disorder does not change. The evaporation
exponent � determined in the Appendix tells us that the
progressive loss of coherence is to be attributed to the weaker
stability of the synchronized state when τin is progressively
increased. Moreover, the top curve in Fig. 1(a), obtained for
N = 5000, confirms that in a larger network, a higher degree
of synchronization is observed as a consequence of the smaller
effective disorder.

We have completed the numerical study of the stability
properties by computing the Lyapunov exponents of the
network in the presence of QSEs. In Fig. 3(a) we show the
spectrum of the Lyapunov exponents in a network of N = 50
neurons for the phenomenological value τin = 0.2. There
exists a small positive component, as can be appreciated from
the inset, which reveals the chaotic nature of the dynamics.
More precisely, the Kaplan-Yorke dimension is approximately
equal to 12, i.e., we are facing a very thin attractor embedded
in a configuration space of much higher dimension. The
chaotic nature of the evolution is not at all surprising given
the nonlinear (or, better, the piecewise linear) character
of the model. In contrast, in the thermodynamic limit, since
the dynamics reduces to a strictly periodic evolution, one
expect chaos to disappear. In fact, as shown in Fig. 3(b),
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FIG. 1. (Color online) (a) Kuramoto order parameter R as a
function of τin for a diluted network with N = 500 (black circles)
and N = 5000 (red squares). The values of R have been obtained by
averaging over a temporal length of 40 000 after discarding a transient
of 1000N iterations of the map. In (b)–(d) we report the firing patterns
for τin = 0.2,0.5, and 1.2, respectively; s is the index of the neuron
firing at time t.
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0.001
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P〈ISI〉

FIG. 2. (Color online) Probability distribution of 〈ISI〉 for a
diluted network with N = 500 in the asynchronous dynamical phase
(τin = 1.2). Data have been obtained after discarding a transient of
1000N iterations of the map and by sampling 1000 ISI values for each
neuron. The dashed line is a Gaussian fit with average 〈ISI〉 � 1.16
and standard deviation σ ∼ O(10−2).

the maximum Lyapunov exponent λ1 vanishes in the limit
N → ∞. This is consistent with previous studies in the
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FIG. 3. (a) Spectrum of Lyapunov exponents, labeled according
to the natural ordering, for a diluted network of size N = 50. The inset
shows a close-up of the spectrum to show the presence of six positive
exponents. (b) Maximum Lyapunov exponent λ1 as a function of the
number of neurons N : The measures of λ1 have been averaged over
ten different realizations of the network (the error bars refer to the
maximum deviation from the average). A power-law fit is reported
(dashed line) with decay exponent δ = 0.27 ± 0.01. In both cases we
have considered τin = 0.2.

absence of synaptic plasticity (see, e.g., Ref. [17]), although
the convergence here is significantly slower, λ1 ∝ N−δ with
δ = 0.27 ± 0.01 instead of δ = 1/2, as expected on the basis
of simple statistical arguments. A similar slow convergence
was observed in Ref. [18], where it can be traced back to the
network structure that is not so massively connected. The slow
rate observed herein is presumably related to the anomalous
number of nonsynchronized neurons (see the following section
and Sec. VI).

IV. QUASISYNCHRONIZED EVENTS

In this section we closely investigate the QSE phase for the
phenomenological value τin = 0.2. From the raster plot shown
in Fig. 1(b), we can see that QSEs alternate almost regularly
with time spans characterized by a highly reduced neural
activity. A closer look shows that the neuron spikes are not
exactly synchronized within the QSEs; this is consistent with
the evidence given in the preceding section of a microscopic
chaotic dynamics. In order to characterize the collective
evolution of the QSEs, it is convenient to represent the average
synaptic fields in terms of suitable global observables

Y (t) = 1

N

N∑
i=1

yi(t), Z(t) = 1

N

N∑
i=1

zi(t). (17)

The resulting phase portrait is plotted in Fig. 4: The almost
perfect closed curve confirms the periodic character of the
collective motion. The evidence of the microscopic chaos
manifests itself as a finite tiny width of the line. A quantitative
analysis can be performed by looking at the distribution
P (Tq) of the time intervals Tq between two consecutive QSEs
(defined as the separation between two maxima of the global
activity Y ). In Fig. 5 we can see that P (Tq ) has a clean Gaussian
shape.

At the microscopic level, QSEs are generated by essentially
the same macroscopic number of neurons that are locked to the
QSEs, while the remaining unlocked neurons contribute, most
of the time, to the sporadic neural activity and occasionally to
QSEs. In Fig. 6(a) we plot the microscopic phase portrait
of a locked and an unlocked neuron by reporting one ISI
versus the previous one. The return map of the locked neuron
consists of small fluctuations around a single point, while that
of the unlocked neuron reveals an essentially quasiperiodic
dynamics.

One could argue that the major reason for the different
behavior exhibited by the single neurons is their connectivity
since a larger connectivity increases the spiking frequency.
In Fig. 6(b) we show the average interspike interval 〈ISIi〉
of each neuron as a function of its excess connectivity
c̃i = (ci − 〈c〉)/σ , where σ =

√
〈c2〉 − 〈c〉2 = √

Np(1 − p)
and 〈c〉 = pN locked neurons are recognized as such since
the corresponding 〈ISIi〉 is independent of i. They are typically
characterized by a negative excess connectivity c̃. Conversely,
the average ISI of the unlocked neurons covers a range of
different values. Moreover, there exists a borderline interval
of positive c̃ values (close to c̃ = 0), where both groups
are simultaneously present. Altogether, this scenario is quite
similar to the one arising in the usual Kuramoto model,
when the coupling is strong enough to synchronize the
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Z(t)

FIG. 4. Global attractor of the QSE dynamical phase represented
by the average synaptic fields Y (t) and Z(t) for N = 10 000 and
τin = 0.2. Data are reported after discarding a transient of 1000N

iterations of the map.

sufficiently resonant oscillators, while all the others remain
unsynchronized. There are, however, differences: Here (i)
the coupling affects the spiking frequency, so it is less
straightforward to determine those neurons that are involved
in the synchronized motion and (ii) the disorder is not in the
single-neuron dynamics (all neurons are identical) but follows
from the diversity of the connections.

On a quantitative level, numerical simulations indicate
that the number Nu of unlocked neurons grows as Nη with
η = 0.90 ± 0.01 [see Fig. 7(a)], so the fraction fu of unlocked
neurons decreases as N−0.1. It is remarkable to see that fu does
not drop to zero for a finite N . In fact, statistical arguments
tell us that the amount of disorder (which manifests itself as a
variable connectivity) is expected to vanish as 1

√
N and should

1.2 1.21 1.22 1.23 1.24 1.25
Tq

0.001

0.01

0.1

PTq

FIG. 5. (Color online) Probability distribution of Tq for the
deterministic dynamics (black circles), the stochastic dynamics with
noise on the leaky current (blue squares), and the stochastic dynamics
with noise on the reset potential (red triangles). Distributions have
been obtained for a diluted network with N = 500 and τin = 0.2 by
discarding a transient of 1000N iterations of the map and sampling
10 000 Tq values. The distributions have been fitted with Gaussian
curves (see the dashed lines) with averages 〈Tq〉 = 1.246, 1.239,
and 1.226, respectively, and standard deviations σ = 1.7 × 10−3,
4.0 × 10−3, and 7.0 × 10−3, respectively. For both cases of stochastic
dynamics � = 0.1 (see Sec. V).
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FIG. 6. (Color online) (a) The ISI return map for a locked neuron
with c − 〈c〉 = −2 (red open circles) and an unlocked neuron with
c − 〈c〉 = 117 (black dots) (data have been collected in the same
simulation of Fig. 4). (b) The 〈ISIk〉 for all k = 1, . . . ,N neurons
as a function of their normalized connectivity c̃k for two different
topologies of diluted networks with the same size N = 10 000 and the
same 〈c〉 = pN . The top curve (black dots) refers to an ER network
with σ = √

Np(1 − p) = 45.8. The bottom curve (red dots) refers to
a different network with a much higher standard deviation σ = 770
(see the text for details). Averages have been obtained by sampling
10 000 firing events for each neuron after discarding a transient of
10 000N iterations of the map. The parameter τin = 0.2 is the same
for both networks.

therefore become, at some point, smaller than the barrier height
of the valley that contains the synchronous solution. This
is not the case since the synchronous solution is marginally
stable. This can be shown by reasoning as for the evaporation
exponent. Let us imagine feeding a neuron characterized
by a leaky current ã with the train of spikes emitted by a
network of identical synchronous neurons (characterized by
the current a). Such a train is nothing but a series of truncated
exponentials that repeat themselves after a self-determined
period. Accordingly, one can apply the same arguments
developed in Ref. [10] for the TMS model: While for ã < a

the single neuron locks to the periodic forcing, for ã > a

there is no locking since there is no longer any fixed point
(which disappears exactly for ã = a, which is the reason for
the asymmetric stability of the synchronous solution). Strictly
speaking, in the present context all neurons are identical and
thereby affected by the same leaky current; however, the
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FIG. 7. (Color online) (a) Diluted networks: number of unlocked
neurons Nu as a function of the size N for a network with short-
term plasticity (black circles) and for a network with exponential
pulse interactions (red open squares). The black dashed line is a
power-law fit with exponent η = 0.90 ± 0.01. (b) Inhomogeneous
globally coupled network with exponential pulse interactions: fu as a
function of the width of the inhomogeneity in the leaky currents α for
N = 5000 for the TMS model [10] (log-log scale). The red dashed
line is a power-law fit with exponent ζ = 0.2 ± 0.02. To determine
the number of unlocked neurons we have considered those neurons
that do not belong to the plateau [see Fig. 6(b) for diluted network
with short-term plasticity]. Finally, in both panels the measures have
been averaged over five different realizations of the disorder (the
corresponding error bars are smaller than the symbols).

disorder in the connections implies that the coupling term
is, on average, different for the different neurons, which can
be interpreted as an effective contribution to the leaky current.
In fact, we have already seen in Fig. 6(b) that the effective
connectivity is a meaningful parameter for the classification
of the neuron behavior. It is interesting to note that for a
much larger disorder [see the bottom curve in Fig. 6(b)], there
exists a second unlocking transition. This is quite a standard
phenomenon: The critical connectivity lies at a finite distance
from the self-selected value that generates the frequency of the
QSE and can be reached only for a large enough disorder.

More than just observing fu �= 0 for any amount of disorder,
in Ref. [10] it was found that fu remains finite even when the
disorder vanishes (although the average frequency separation
vanishes as well). Given the difference between the TMS
model and the setup studied in this paper, we have further
explored both models. We started determining fu in the TMS

model for a flat distribution of leaky currents (which covers
the interval [a − α; a + α], as in Ref. [10]). The results plotted
in Fig. 7(b) show that fu indeed saturates (see, however, the
horizontal logarithmic scale). In contrast, if one restricts the
analysis to α values between 10−2 and 10−3 one finds an
effective power-law decay with an exponent ζ = 0.2 ± 0.02
[see Fig. 7(b)]. Notice that this result is consistent with the
scaling observed in our model, where the disorder amplitude
of the TMS model α has to be replaced by a function that scales
as N1/2. This suggests that the scaling behavior reported in
Fig. 7(a) could be a finite-size effect. However, it is important
to note that one should need unreasonably large network sizes
(≈1010) to observe a saturation effect that sets in at such
small noise amplitudes (around 10−5). Accordingly, even if
the power-law decay were to be restricted to a finite range of
connectivities, it would be a relevant effective phenomenon in
the context of realistic neural networks.

In order to shed further light on this delicate issue, we have
investigated yet another setup, namely, a diluted network of
identical LIF neurons with exponential postsynaptic potentials,
adjusted in such a way that their decay time coincides with
the time constant τin. In other words, this last model differs
from the one studied throughout this paper only for the
absence of the synaptic plasticity. The corresponding results,
reported in Fig. 7(a) (open squares), are quite close to those
obtained for the original model. The nice agreement has
a twofold consequence. First, it confirms that the scaling
behavior exhibited by fu is a sufficiently general and robust
phenomenon. More than that, the power-law decay is rather
clean (it covers two decades). In order to have some additional
hints as to whether the network disorder is fully captured by
the neuron connectivity, we performed yet other simulations
where each neuron has been forced to have the same number
of synaptic connections, so that the disorder is only hidden in
the topology of the network structure. Simulations performed
for different network sizes (not reported) have shown that the
splitting of neurons into two blocks of locked and unlocked
neurons is still present. This suggests that there is more to
be learned by investigating the topological structure of the
network. The second implication of the agreement between
the two data sets reported in Fig. 7(a) is that short-term
synaptic plasticity is equivalent (for these parameter values) to
assuming an exponential shape for the synaptic pulses. In fact,
the variable z, being characterized by a small decay rate τr ,
exhibits rather small oscillations (see, for instance, Fig. 4) and
thereby plays a limited role. Since the ratio between τin and τr

has been fixed to match the phenomenological observations,
one can conclude that a crucial condition for the short-term
plasticity to give rise to entirely new phenomena is that of
slowing down the spiking frequency. This could be obtained,
for instance, by assuming that the leaky current a is close to
the threshold value (a = 1).

V. EFFECT OF NOISE

In the preceding sections we have discussed the emergence
of QSEs in the deterministic evolution of a diluted network
of LIF neurons with excitatory coupling in the presence of
short-term plasticity. This dynamical regime is characterized
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FIG. 8. Firing patterns of the stochastic dynamics in the case of
noise on the reset potential for a diluted network with N = 500, τin =
0.2, and different noise amplitudes (a) � = 0.05 and (b) � = 0.15.
We indicate with s the index of the neuron firing at time t.

by a weak level of chaos, which is expected to vanish in the
thermodynamic limit, when the mean-field dynamics fully sets
in. This is quite an interesting result since QSEs appear without
the need of any stochastic components as in previous studies
[1,2,6,7,9]. It is nevertheless reasonable to expect that a neural
network should be affected by some level of noise as a product
of endogenous ionic- and synaptic-current fluctuations or of
external sources. For this reason, in this section we investigate
the effect of different forms of stochastic noise.

As a first case study we consider the action of noise on
the value of the membrane reset potential, which could be
attributed to uncorrelated fluctuations of extracellular and
intracellular ionic concentrations. This amounts to modifying
the event-driven algorithm described by Eqs. (10)–(12) by
randomly selecting the reset potential ξn within the interval
[−�,�] according to a uniform distribution. As a result,
the number of unlocked neurons increases with respect to
the deterministic evolution. The higher the noise amplitude, the
larger this group of neurons is. Nonetheless, QSEs are still
present, even for quite high noise amplitudes (see Fig. 8).

A quantitative analysis can be performed by studying
global variables. In Fig. 9 we compare the dependence of
the Kuramoto parameter on τin in the deterministic and the
noisy cases (� = 0.05). The two plots are quite close to
each other, except for the transition region (from the partially
synchronized phase to the asynchronous one). As expected,
noise is found to shift the transition point to a lower value

0 0.2 0.4 0.6 0.8 1 1.2 1.4
τin
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FIG. 9. (Color online) Kuramoto order parameter R as a function
of τin in a diluted network with N = 500 for deterministic dynamics
(red circles) and stochastic dynamics in the case of noise on the
reset potential with � = 0.05 (black squares). The values of R have
been obtained by averaging over a temporal length of 4 ,000 after
discarding a transient of 1000N iterations of the map.

of the control parameter τin. The evolution of the synaptic
fields Y (t) and Z(t) is also modified by noise (see Fig. 10),
although it remains close to the deterministic attractor. A major
change is the increase of the transversal width, which signals
larger amplitude fluctuations. In Fig. 5 we have plotted the
distribution of Tq ; the effect of the noise is to shift it to
smaller values and to increase the variance with respect to
the deterministic case.

Noise can be introduced into the event-driven map (11) also
by adding a stochastic contribution ξi(n) to the leaky current

ai(n) = ā + ξi(n), (18)

where ā is the average value and ξi are randomly and uniformly
distributed in the interval [−�,�]. In practice, after the last
firing event in the network, ai(n) changes according to the
stochastic rule (8) and then one can compute, as usual, the next-

0 0.01 0.02 0.03 0.04
Y(t)

0.92

0.93

Z(t)

FIG. 10. Comparison between the global attractors for the deter-
ministic dynamics (gray curve) and the stochastic dynamics in the
case of noise on the reset potential (black curve). Both attractors
have been obtained for the same diluted network with N = 500 and
τin = 0.2; data are reported after discarding a transient of 1000N

iterations of the map; the noise amplitude of the stochastic dynamics
has been set to � = 0.05.
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FIG. 11. (Color online) Kuramoto order parameter R as a func-
tion of the noise amplitude � in a diluted network for the two different
kinds of stochastic dynamics: black circles and red triangles refer to
noise on the reset potential and on the leaky current, respectively. The
values of R have been obtained by averaging over a temporal length
of 40 000 after discarding a transient of 1000N iterations of the map.
The parameters are τin = 0.2 and N = 500.

to-fire neuron as well as its firing time. Once again QSEs are
robust against the addition of this form of noise. The statistics
of Tq is still Gaussian and characterized by a smaller variance
(typically σ ∼ 4 × 10−3) with respect to the case of reset noise
for the same value of � (see Fig. 5).

Finally, in Fig. 11 we show the dependence of the Kuramoto
parameter R on the noise amplitude � for both noise forms.
In both cases R decreases when � increases; the phenomenon
is stronger in the case of the reset noise. However, Fig. 11
shows that even for high amplitudes of �, the dynamics is
characterized by a partially synchronized phase, as in the
deterministic case. From these analyses we can conclude
that the QSE phase observed in the deterministic model is
robust against the presence of even relatively strong stochastic
components.

Notice that the average value ā of the leaky current is an
important parameter, as it controls the average ISI as well
as 〈Tq〉. In this section we have assumed ā = 1.3 (as in the
deterministic case). A value of a < 1 means that the neuron
is below threshold and cannot fire by itself. However, in the
presence of a stochastic dynamics ā < 1 and yet fluctuations
may occasionally induce the firing of some neurons, which in
turn may trigger avalanches of many other neurons. Altogether,
QSEs may still occur, although with a much smaller frequency.
By choosing ā = 0.9 and � = 0.15, we have found that 〈Tq〉
is of the order of a few seconds in physical units, a value
that is very close to the one observed in Ref. [2], where
quenched disorder was attributed to the leaky current. In
practice, we have analyzed the annealed version of this model,
showing that quenched and annealed noise yield rather similar
results. An important consequence of our study is that the
PBs analyzed in Ref. [2] have the same dynamical origin as
the QSEs analyzed in this paper, although large values of Tq

can be observed only in the presence of a large fraction of
subthreshold neurons in a stochastic dynamics. In Ref. [2]
this was a direct consequence of the high level of dilution of

the network and the presence of a finite fraction of inhibitory
neurons. In our annealed formulation this dynamical regime
can be observed by selecting ā sufficiently below 1.

VI. CONCLUSIONS AND OPEN PROBLEMS

The search for synchronous or quasisynchronous states in
models of neural networks is a hot topic, mostly inspired
by experimental studies that revealed the emergence of such
behavior (see, e.g., Ref. [1]). In the past decade, several authors
tackled this problem by making use of models that contain
many different ingredients, such as LIF or Morris-Lecar neu-
rons, diluted or globally coupled networks, quenched disorder,
and stochastic components [1,2,6,7,9]. All of these models
contain short-term plasticity, as it was initially conjectured [2]
that it is a crucial ingredient for reproducing quasisynchronous
evolution in a neural network. It was nevertheless unclear
which minimal ingredients are really necessary to generate a
dynamical phase characterized by highly synchronous events
in the form of population bursts emitted by a large number of
neurons.

In this paper we have shown that a randomly diluted neural
network of LIF excitatory neurons equipped with short-term
plasticity can exhibit QSEs in the absence of any stochastic
component in the dynamics. Upon varying the decay time τin of
the synaptic active transmitters, we observe a crossover from a
QSE dynamical phase to an asynchronous regime. In the QSE
phase neurons self-organize into two main groups: locked and
unlocked neurons, primarily (but not exclusively) on the basis
of their synaptic connectivity. In contrast, we have found that
such QSEs can be reproduced by yet a simpler model, where
synaptic plasticity is replaced by the emission of standard
exponential pulses. Anyway, such events still differ from
the population bursts observed experimentally. For instance,
the statistics of the interburst events is purely Gaussian
without the long time tails observed in Ref. [1]. This obser-
vation opens the problem of understanding which additional
ingredient needs to be included to ensure better agreement.

On a theoretical ground, an important result of our study
is the observation of unlocked neurons for arbitrarily small
disorder (large networks). More precisely, the fraction of
unlocked neurons decays as N−0.1 and it is an open question
whether such a slow decay saturates in the thermodynamic
limit. Altogether, the scenario differs from the one observed
in the Kuramoto model since the spontaneously generated
synchronized component is marginally stable, i.e., it is unstable
against an arbitrarily small increase of the leaky current. This is
one of the many subtle phenomena that spontaneously emerge
in massively coupled oscillators, such as the appearance of
a robust quasiperiodic behavior in LIF neurons, where the
frequency of the periodic collective motion adjusts itself to
avoid any locking with the single-neuron dynamics [12].

Finally, we wish to comment on the scaling behavior of
the maximum Lyapunov exponent. Let us start by observing
that the locked neurons are expected to contribute only as
slaved variables, i.e., to the negative part of the Lyapunov
spectrum, and the same holds for the synaptic variables that
are characterized by a relaxation dynamics. As a result, the
variables that can actively contribute to the chaotic dynamics
are just the phases of the unlocked neurons, which are of
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the order of Nu. These arguments are confirmed by looking
at the spectrum displayed in Fig. 3(a), where the number of
nearly zero (both positive and negative) Lyapunov exponents
(12) equals that of the unlocked neurons. More than that, one
can see in the inset of the figure that the initial part of the
spectrum is symmetric with respect to the zero axis, as in
Hamiltonian systems. This is not a novelty in the context of
weakly coupled phase oscillators. It has been observed, for
instance, in Refs. [19,20] and traced back to the invariance of
the dynamical equations under time reversal. Here it is not easy
to prove time reversibility, as it seems to apply to a subset of
variables. Therefore, we limit ourselves to infer the presence
of a pseudo-Hamiltonian dynamics on the basis of a symmetric
Lyapunov spectrum. In weakly coupled Hamiltonian systems,
it is known that the maximal Lyapunov exponent λ1 scales
to zero as a power of the coupling strength ε (λ1 ≈ εβ). The
exponent β is equal to either 2/3 or 1/2, depending on whether
the coupling term has zero average or not [21]. In our model,
the coupling is induced by the statistical fluctuations of the
last term in Eq. (9), i.e., ε ≈

√
N0.9/N = N−0.55. Moreover,

since the coupling induced by the pulse emission modifies the
average frequency of the oscillators, it is natural to expect that
our model belongs to the latter universality class. Accordingly,
one finds that λ1 ∼ N−0.275, a behavior that is remarkably
close to the numerical observations. However, this relationship
deserves further theoretical investigation since it is based on
an unproven analogy between weakly coupled unlocked LIF
neurons and effective Hamiltonian systems.
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APPENDIX: STABILITY OF THE SYNCHRONOUS STATE

In this Appendix we perform the stability analysis of the
synchronous state in a globally coupled network of size N .
By integrating the dynamical equations over one period τ ,
one obtains implicit equations that allow determination of τ

and the synaptic variables ỹ and z̃ immediately after the firing
event,

ae−τ = a + g
τin

τin − 1
(e−τ/τin − e−τ )ỹ − 1, (A1)

ỹ = ỹe−τ/τin + u(1 − z̃ − ỹe−τ/τin ), (A2)

z̃ = z̃e−τ/τr + τr

τr − τin
ỹ(e−τ/τr − e−τ/τin ). (A3)

We now determine the evaporation exponent by estimating
how the potential of a probe neuron, forced by the mean field
generated by a network, converges towards the synchronized
state. The membrane potential of each neuron follows the

evolution equation

v̇(t) = a − v(t) + gY (t). (A4)

For the probe neuron, the synaptic activity Y (t) is to be
considered as a periodic nonautonomous forcing. The stability
analysis will be performed by following the evolution of
the distance between the probe neuron and the synchronized
cluster. Let us consider an initial condition where the potential
of the network neurons has just been reset (vj = 0), while the
probe neuron is lagging behind [v(0) = 1 − δ(0)]. The time s

needed by the probe neuron to reach the threshold (i.e., the
temporal distance from the synchronized cluster) is implicitly
given by the condition

[1 − δ(0)]e−s + a(1 − e−s) + gτin

τin − 1
(e−s/τin − e−s)ỹ = 1.

(A5)

Over the time s, the potential of the network neurons increases
from 0 to

δ(s) = a(1 − e−s) + g
τin

τin − 1
(e−s/τin − e−s)ỹ

= 1 − [1 − δ(0)]e−s , (A6)

which represents the distance when the probe-neuron potential
has been reset as well. From Eq. (A4) it then follows that

δ̇ = −δ, (A7)

so that

δ(τ ) = δ(s)es−τ (A8)

and the evaporation exponent is

� = lim
δ(0)→0

ln

[
δ(τ )

δ(0)

]
= ln

[
a + gỹ

a + gỹ − 1

]
− τ. (A9)

By obtaining τ and ỹ from Eqs. (A1), (A2), and (A3) one can
estimate �. The dependence of the evaporation exponent on
τin is plotted in Fig. 12 (see the bottom curve). If one started
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τin
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FIG. 12. (Color online) Evaporation exponents � as a function
of τin: The bottom (black) curve and the top (red) curve refer to the
left [see Eq. (A9)] and right exponents, respectively. We have used
the following rescaled parameters: g = 21, u = 0.5, a = 1.3, and
τr = 133τin.
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by assuming that the single neuron is ahead of the cluster, a
different exponent would be obtained (see the top curve in
Fig. 12, it corresponds to numerical evaluation of the right
exponent but it’s possible to obtain also an analytical formula
with calculations similar to those used for the left exponent):
The meaning of this phenomenon is discussed in the main text.

The behavior for small τin is somehow surprising since,
as shown in Sec. III, the effect of the coupling tends to
vanish for τin → 0. In order to clarify this point, we perform a
perturbative analysis. From Eqs. (A1), (A6), and (A8), under
the assumption of τin and δ(0) small, one finds

δ(τ ) = a − 1

a
[δ(0) + s]. (A10)

At the same time, Eq. (A5) reduces to

s(a − 1) + aỹτin(1 − e−s/τin ) = δ(0). (A11)

If s � τin, we are in the regime of infinitesimal perturbations;
the exponential in the above equation can be expanded, giving
rise to

s = δ(0)

a − 1 + gỹ
. (A12)

By replacing in Eq. (A10) one finally obtains

δ(τ )

δ(0)
= (a − 1)(a + gỹ)

a(a − 1 + gỹ)
. (A13)

The logarithm on the right-hand side is just the evaporation
exponent for τin = 0. If instead τin � s, the exponential in
Eq. (A11) can be neglected, giving rise to

s = δ(0) − gỹτin

a − 1
. (A14)

Again with the help of Eq. (A10) one obtains

δ(τ ) = δ(0) − g

a
ỹτin. (A15)

Equations (A13) and (A15) tell us that whenever the time
separation s between the probe neuron and the cluster is larger
than the decay time τin the physical distance decreases linearly
in time with a coefficient that becomes increasingly small
with τin. However, as soon as the distance becomes on the
order of τin, an exponential convergence sets in that is ruled
by an exponent that remains finite even for arbitrarily small τin

values.
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