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We present a novel method based on wavelet packet transformation for detection of gravitational wave
(gw) bursts embedded in additive Gaussian noise. The method exploits a wavelet packet decomposition of
observed data and performs detection of bursts at multiple time-frequency resolutions by the extreme
value statistics. We discuss the performances of detection algorithms (efficiency and robustness) in the
general framework of hypothesis testing. In particular, we compare the performances of wavelet packet
(WP), matched filter (MF), and power filter (PF) algorithms by means of a complete Monte Carlo
simulation of the output of a gw detector, with the detection efficiencies of MF and PF playing the role of
upper and lower bounds, respectively. Moreover, the performances of impulsive filter (IF) algorithm,
widely used in the data analysis of resonant gw detectors, have been investigated. Results we get by
injecting chirplet signals confirm the expected performances in terms of efficiency and robustness. To
illustrate the application of the new method to real data, we analyzed a few data sets of the resonant gw
detector AURIGA.
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I. INTRODUCTION

Detectable gravitational wave (gw) bursts are expected
to be produced by compact astrophysical sources, such as
core bounce in SN collapses, merging of neutron stars and/
or black holes [1], and by other high-energy cosmic phe-
nomena, for instance the inner engines that power gamma-
ray bursts [2]. Up to now, due to the absence of gw
detection, the characteristics of burst signals are largely
unknown, apart from some theoretical and numerical cal-
culations of black hole ring-downs [3] or cusps and kinks
in a primordial network of cosmic strings [4]. In general,
the understanding of impulsive gw sources is poor; in
particular (i) the calculations and numerical simulations
of core collapse agree on the gw weakness, but the ex-
pected energetics spans many orders of magnitude (from
10�8 to 10�2M�c

2) [5]; (ii) the gw burst rate is highly
uncertain e.g., from optical observation of SN explosions
in the nearby galaxies [6], we can estimate 1 SN event
every 30–50 yr per galaxy; however, the electromagnetic
radiation may not trace the gw luminosity; (iii) gw wave-
forms are not yet accurately modeled as core collapse and/
or black hole formation are complex physical phenomena,
that require the theory of general relativity in its most
fundamental (i.e. nonlinear and singular) structure.

Moreover, on the experimental side, we must face tech-
nological limits of operating gw detectors, either resonant
or interferometric, that constrain their actual sensitivity to
10�21 � hmin � 10�19, where hmin is the minimum gw
burst amplitude detectable at unitary signal-to-noise ratio

(SNR) [7]. The wide excluded region in the rate vs gw burst
amplitude plane, already set by the IGEC collaboration [8]
and the LIGO observatory [9], confirms the challenging
task of the present generation of detectors. Hence, in the
hope of detecting gw bursts, we must fully exploit the
detector sensitivity by means of suitable digital signal
processing techniques. From this point of view, the tran-
sient gw signals have peculiar characteristics, namely:
(i) sources and waveforms are unverifiable as gws are
irreproducible in an Earth laboratory; (ii) astrophysical
events capable of producing measurable gw could be
very rare; (iii) the arrival time of gw signals is unknown;
vi) SNRs could be (very) low. Presumably, gw transient
signals have a short duration ( � 1 s), but there is no
specific model (or template) to fit the experimental data.

By detection of a transient signal we mean the identi-
fication of its presence in additive Gaussian noise. A
detection algorithm, also known as ‘‘event trigger genera-
tor’’ (ETG), consists in the selection of candidate events or
‘‘triggers’’ in the continuous data stream of a detector
output. The general approach for the gw detection is based
on the thresholding of a suitable statistics. The statistics of
the detection algorithm can be computed from the output
of a filter matched to the template of the incoming signal
(MF) [10] or to the impulsive response of a resonant
detector [impulsive filter (IF)] [11]. For the detection of
signals of known duration and frequency band, the output
of power filters, designed to localize the signal power in the
time-frequency plane, can be used as a detection statistics
[12]. The power filter (PF) algorithm is based on the power
filter for all frequencies within the detector bandwidth. The
application of time-frequency decompositions of detector*Corresponding author: ortolan@lnl.infn.it
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data to gw searches is relatively recent [13]. In particular,
the WaveBurst method [14,15] is based on a nonparametric
statistic obtained through a bank of wavelet packet filters
and a clustering of higher coefficients. For an exploration
of a variety of other statistics, see Ref. [16]. Here we
present a detection algorithm for gw bursts with a different
statistics, which is based on the maximum coefficient of
wavelet packet decomposition of the observed data. The
statistics make no a priori assumptions about waveforms,
time of arrival, duration, or spectral contents. The algo-
rithm involves the separation of the detection problem
from the estimate of the signal characteristics, e.g. ampli-
tude, time of arrival, duration, spectral contents, etc. For
instance, in wavelet analysis, the separation of detection—
from estimate—phases can be achieved by introducing
two independent thresholds: one for the detection algo-
rithms, in order to control the false alarm rate, and the other
for denoising (or better estimating) the signal waveform
[17]. With the separation of the detection and estimate
phases we have, on one hand, that data that are classified
as signals (because the null hypothesis is false) are further
processed in order to estimate the waveform characteristics
in the presence of noise. On the other hand, with a given
level of probability, the remaining data are correctly inter-
preted as pure detector noise. In this paper we focus on the
detection algorithm whereas the signal estimate is ad-
dressed to a forthcoming paper [18]. The theoretical frame-
work of the detection problem is the classical Neyman-
Pearson theory of hypothesis testing [19].

The plan of the paper is as follows. In Sec. II we give a
brief introduction to the wavelet theory and its connections
with multiresolution analysis. Section III is devoted to the
illustration of some detection algorithms. In Sec. IV we
describe the wavelet packet algorithm and its potentialities
for the gw bursts detection. In Sec. V the performances of
four detection algorithms, based on matched filter (MF),
impulsive filter (IF), wavelet packet transform (WP), and
power filter (PF), have been evaluated by means of a
complete Monte Carlo simulation of signals and noise of
a resonant gw detector. A few data sets of the AURIGA
detector have been analyzed to show how the method
works with real data. In Sec. VI a conclusion is drawn
and the future research potentials of WP algorithm (in
particular its extension to a network of gw detectors) are
given.

II. WAVELET AND WAVELET PACKET ANALYSIS

In digital data processing, mathematical transformations
(either linear or nonlinear) are applied to the sampled
output of a detector to obtain further information that is
not readily available in the raw samples. The wavelet
transform is a suitable mathematical tool that allows the
enhancement and recovery of time-frequency structures
that would otherwise remain hidden in the noise.

The continuous wavelet transform decomposes the sig-
nal on basis functions, obtained by translating and scaling a
unique prototype  �t�, called mother wavelet. The basis
functions are waveforms of limited duration (the opposite
of the sinusoidal basis of the Fourier analysis) which allow
both time and frequency localization of the signal spectral
components. This leads to their key feature: wavelets give
efficient representations of signals which exhibit transient
behavior [20]. The basis functions

  s;��t� �
1������
jsj

p  
�
t� �
s

�
s; � 2 R; s � 0 (1)

can be obtained by varying the translation and scale pa-
rameters � and s which, in turn, change the temporal and
spectral extension of the wavelet. Therefore, scaling of
 �t� allows the partition of the time-frequency plane at
different resolutions. Moreover, if the mother wavelet  �t�
satisfies the admissibility condition

R
1
0 j��!�j

2=! d!<
1, we are able to reconstruct exactly the original signal
x�t� from its continuous wavelet transform [21].

The discrete wavelet transform (DWT) is defined, with-
out loss of information, by the discretization of s and � on a
dyadic grid, s � 2�j, � � n2�j with i, j 2 Z. Mallat and
Meyer [22] discovered a fundamental relation between the
discrete wavelet analysis and the multiresolution analysis
(MRA) i.e. the construction of function approximations in
various closed subspaces Vj � L2�R� associated to the
scale s � 2�j. In the framework of MRA, one also defines
the scaling function ��t�, orthogonal to its discrete trans-
lations ��t� n�, which produces an orthogonal basis in
each subspace Vj:

 f�j;n�t�gj;n2Z � f2j=2��2jt� n�gj;n2Z: (2)

The approximation aj of a signal x at the level j is defined
by the orthogonal projection of x on Vj with respect to the
basis f�j;n�t�gj;n2Z.

The scaling function��t� can be built on a low-pass FIR
filter h0�n	 called conjugate mirror filter (CMF) [20]. By
construction, the CMF h0 and the corresponding high-pass
FIR filter h1 [constructed by reversing and multiplying by
��1�k the coefficients of h0: h1�n	 � ��1�nh0���n
 1�	]
are half-band filters that satisfy the power complementarity
condition jH0�!�j

2 
 jH1�!�j
2 � 1. The mother wavelet

 �t� can be obtained from the scaling function��t� and the
high-pass filter h1. One can demonstrate, with minor con-
ditions on h0�n	 [23], that the wavelet  �t�, scaled and
translated, gives rise to an orthogonal basis of the orthogo-
nal complement of Vj in Vj
1 that we call Wj:

 f j;n�t�gj;n2Z � f2j=2 �2jt� n�gj;n2Z: (3)

Let faj0;ngn2Z � fhx;�j0;nign2Z (i.e. the orthogonal projec-
tion of x over the basis functions �j0;n) and fdj;ngn2Z �
fhx;  j;nign2Z (j0 � j < 0) (i.e. the orthogonal projections
of x over the basis functions  j;n) the approximation and
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detail coefficients, respectively. We can decompose any
signal x�t� 2 V0 in a unique linear combination of scaling
functions and wavelets by means of its approximation
coefficients faj0;ngn2Z at the level j0 and detail coefficients
fdj0;ngn2Z; . . . ; fd�1;ngn2Z from level j0 to �1. The com-
plete set of approximation and detail coefficients repre-
sents the DWT.

The multiresolution theory plays a crucial role in the
implementation of the DWT as it provides a fast algorithm
(analogous to fast Fourier transform) that avoids unneces-
sary calculations of mother wavelets and scaling functions.
Such a decomposition algorithm—known as the Mallat
algorithm—is based on a classical two channel subband
coder implemented by the CMF bank. The DWT is ob-
tained by iterating the CMF and the decimation by a factor
2 on approximation coefficients of the previous level. The
resulting computational complexity depends linearly on
the number of coefficients of the starting level.

However, wavelet analysis is not appropriate for all
signals. In fact, the characteristic logarithmic frequency
resolution is no more efficient when signals have high
frequency spectral contents (e.g. bandpass signals). wave-
let packet [20] analysis provides instead a ‘‘fine’’ fre-
quency resolution also in high frequency bands. The idea
of Coifmann, Meyer, and Wickerhauser [24] was to extend
the iteration of CMF bank not only the approximation
coefficients but also on the detail coefficients.

Wavelet packet transforms can be univocally repre-
sented by an admissible binary tree, where open nodes
(the leaves) identify the associated partition of the time-
frequency plane. Nodes of an admissible binary tree have
either 0 or 2 branches.

The vectorial subspaces represented by open nodes of an
admissible binary tree are mutually orthogonal and their
union is equal to the original space, identified by the root of
the tree. It can be shown [20] that any admissible binary
tree identifies an orthogonal wavelet packet basis in the
space V0 and a different partition of the time-frequency
plane.

III. DATA ANALYSIS

A. The search for gw bursts

The sparsity of signals (and their relative weakness)
entail that the output of a gw detector is normally domi-
nated by its intrinsic noise sources, as prescribed by the
fluctuation-dissipation theorem [25]. The superposition of
main intrinsic noise sources, e.g. thermal, backaction, and
wideband noise due to Brownian motion and amplifiers,
respectively, forms the detector sensitivity curve and the
bandwidth available for gw searches. In addition to the
intrinsic noises there are spurious disturbances, originated
by many environmental noises (e.g. seismic noise, electro-
magnetic interferences, cosmic rays, etc.), with amplitudes
incompatible with spontaneous fluctuations of the system.

Clearly, such ‘‘excess noise sources’’ (or more correctly
spurious signals) may jeopardize the true gw signals.
Unfortunately, predictions on gw burst rates and ampli-
tudes are widely spread [26]: they are typically large
enough to have a reasonable hope of observing something
during the next years, but small enough that the probability
of missing a signal when it occurs must be reduced as much
as possible. In order to attain a robust and confident detec-
tion of gw bursts with an arbitrarily low false alarm rate
(e.g. 1 event per hundred years as required by Supernova
Early Warning System [27]), we have to take into consid-
eration four steps of paramount importance:

(a) Data conditioning algorithms that identify the time
intervals and the frequency bands available for the
gw search. The aim of these algorithms is a careful
removal of the instrumental effects either by dis-
carding the maintenance periods, hardware mal-
functioning, seismic or acoustic excitations, etc.,
or by identifying the frequency bands contaminated
by environmental disturbances. Data conditioning
may also include a whitening filter designed to
remove the correlations among the output samples.

(b) Detection algorithms that assess the probability of a
data set to contain spontaneous fluctuations or sig-
nals (gw bursts and/or local spurious disturbances);
of course, the detection is performed during the on-
times and within the detection band. At this stage of
analysis, signals due to genuine gw bursts or envi-
ronmental transients are indistinguishable.

(c) Discrimination algorithms that separate gw-like
from spurious events by fitting the detector outputs
to a plane wave with the distinctive properties of the
phase and amplitude of the Riemann tensor in vac-
uum, i.e. (i) the wavefront travels at the speed of
light [28]; (ii) the independent components are
transverse and traceless (TT). An effective discrimi-
nation can be achieved in a worldwide network of
non-co-located and nonparallel detectors by exploit-
ing both the phase (i) and amplitude
(ii) informations [29,30]. As a by-product of the fit
of gw-like events, we will get the spectral content of
the gw burst and, eventually, other plane wave pa-
rameters such as direction, polarization, and speed
of propagation [31].

(d) Background estimate algorithms that evaluate the
rate of gw-like signals. The standard approach con-
sists in the same algorithms of item (c) applied to the
detector outputs shifted by an unphysical time delay
(e.g.� 42 ms for ground based detectors). Such an
algorithm establishes if ‘‘anything,’’ by chance, is
causing a gw-like signal in the detectors and it gives
also an estimate of their rate.

Without the additional confidence from discrimination
algorithm (c) and background estimate algorithm (d), it
would be impossible to assess the false alarm probability of
gw-like events. To maximize the detection probability in a
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network of gw detectors, the tuning of the complete data
analysis pipeline should be made at the step (d), where we
can estimate the ‘‘true’’ background, while tuning at the
step (b) would be misled, due to the presence of local
disturbances.

In what follows we do not enter into details of discrimi-
nation algorithms but we will focus on detection algo-
rithms of step (b) that should be able to identify, in the
most efficient and thorough way, ‘‘pieces’’ of the observed
data with a statistics that differs from the noise statistics. In
a ‘‘coherent’’ analysis of a network of detectors, detection
(b) and discrimination (c) algorithms can be implemented
at the same time with the aim of maximizing the detection
efficiency. For instance, an ‘‘aperture synthesis’’ can be
formed by a linear combination of detector outputs, shifted
in time and weighted in amplitude [32], to create a virtual
channel where the detection algorithm is applied. To this
purpose, we are developing a ‘‘coherent network analysis,’’
based on the wavelet packet transform of the detector
outputs that have been previously combined in a multi-
dimensional channel [18].

B. Detection algorithms for gw burst searches

In the field of gw searches, many detection algorithms
have been proposed during the past decades. Detection
algorithms can be discussed in the framework of classical
‘‘hypothesis testing’’ [19,33]: on the basis of the observed
data, we have to take our decision whether to reject or fail
to reject the null hypothesis (the signal is absent) against
the alternative hypothesis (the signal is present) by means
of a detection threshold. The alternative hypothesis for the
detection of gw bursts is composite, and so is difficult to
propose a unique criterion of ‘‘optimality.’’ Here we exam-
ine some reference detection algorithms (matched filter
and power filter) and we devote Sec. IV to the wavelet
packet detection algorithm. Throughout the following, the
input data of a detection algorithm consists of the samples
xk � sk 
 nk (k � 1 . . .Ns), where the signal sk is the
argument of the hypothesis test and the noise nk is a
realization of a white, stationary, and Gaussian stochastic
process with zero mean and variance �2. However, the
requirement of a white noise can be easily fulfilled if the
detector output can be modeled as a regular process [34]; in
this case, we can assume that the samples xk have been first
whitened by a suitable linear filter.

1. Matched filter detection algorithm (MF)

Suppose that the signal s�t� is sampled at discrete time
instants tk � kts and that it can be written as sk � Af�tk�,
where f�tk� � fk is a known waveform and A> 0 its
unknown amplitude. The matched filter (also known as
Wiener-Kolmogorov filter) is a linear estimator designed
to minimize the mean-square error between the detector
samples xk and the estimation Âfk of the signal. The well-
known solution for white noise is Â�x� �

P
kxkfk=�

P
kf

2
k�,

where Â is a Gaussian random variable with mean A and
standard deviation �Â � �=�

P
kf

2
k�

1=2; �Â also represents
the Cramèr-Rao lower bound [35] of any linear estimator
of A. The decision rule of the MF detection algorithm puts
a threshold T on Â, andRT � fx: Â�x�  Tg is the resulting
rejection region [33]. On the other hand, the likelihood
ratio can be written as ��A� � exp�Â2=�2�2

Â
�	 and there-

fore we have the equivalence between the decision rule of
the MF algorithm and the rejection of the null hypothesis
by a threshold crossing of �. As the alternative hypothesis
is an one-sided composite hypothesis, the Neyman-
Pearson lemma holds, and we can conclude that the MF
efficiency � is greater than any other test with the same
false alarm probability PFA. As Â is Gaussian distributed,
we get

 

8<
:
PFA�T� � erfc�T=

���������
2�2

Â

q
�

��T� � 1=2 erfc��T � A�=
���������
2�2

Â

q
�;

(4)

where erfc�x� is the complementary error function. The
receiver operation characteristic (ROC) curve [36] can be
expressed in a closed form by eliminating the variable T
from Eq. (4). The MF algorithm clearly implements an
‘‘ideal’’ receiver of poor practical utility in the field of gw
detection as it depends crucially on a priori knowledge of
the waveform to be detected. Nonetheless, the MF method
is interesting as each point of the corresponding ROC curve
can be interpreted as an upper bound of the efficiency
achievable by any other detection algorithm at a given PFA.

2. Impulsive filter detection algorithm (IF)

The whitened impulsive response of a narrow band
detector, roughly a superposition of high-Q dumped sinu-
soids, can be used as a signal template [11]. The resulting
filter, that we call in brief the impulsive filter (IF), depends
on detector rather than signal characteristics. The IF de-
tection algorithm, which is based on a threshold on the
output of the impulsive filter, is particularly interesting for
resonant detectors. The motivations for using IF as an ETG
are a simple implementation and an overall good detection
efficiency for �-like gw bursts. Up to now, the IF detection
algorithm is used for the search of coincidences among the
gw detectors of the IGEC collaboration [8].

3. Power filter detection algorithm (PF)

The power of the data set xk can be used to form a locally
optimal statistics for the detection of transient signals [19].
In fact, by means of power filters we are able to perform a
uniformly most powerful test on the localized power de-
fined as

 E q �
XNs
k�1

�q � x�2k; (5)
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where � is the convolution operator and q is a suitable
linear phase FIR filter that selects the box of the time-
frequency plane containing (most of) the signal power. The
test clearly requires the prior knowledge of time of arrival
t0, the duration ��, central frequency �0, and frequency
band �� of the signal.

As shown in Ref. [12], the statistics Eq is optimal in the
sense that it gives the highest probability of correctly
detecting a transient signal for given false alarm probabil-
ity. In the limit of weak signals, the likelihood ratio � can
be expanded in a Taylor series about Es � 0, where Es �P
s2
k is the signal energy. The first nonzero term of this

expansion reads �0�q� � exp�Eq� plus other terms inde-
pendent of xk. Of course, this expansion must be restricted
to the box of the time-frequency plane where the power is
localized. When the signal bandwidth is greater than the
detector band (as typical for narrow band detectors), we
have to substitute the signal band with the few Hz of the
detection band. In the opposite case of wideband detectors,
we can form a bank of filters q�t0;��; �0;�s� to find the
best localization of the power in the time-frequency plane
[12]. Notice that the input data must have different proba-
bility distributions (composite alternative hypothesis) but
the hypothesis on the local power Eq is composite unilat-
eral and therefore the Neyman-Pearson lemma still holds.
Thus, the ‘‘optimal statistics’’ to detect a signal with
known location in the time-frequency plane is simply the
local power. In each window the local power Eq obeys the
noncentral �2 distribution with noncentral parameter equal
to Es=�

2 > 0,

 p��Eq; Es� �
1

2�2 exp
�
�

Eq 
 Es
2�2

�

�

�
Eq
Es

�
�Ns�2�=4

INs=2�1�
������������������
EqEs=�

2
q

�; (6)

where Ik�x� are the modified Bessel functions of the first
kind of order k. However, to relax the requirement of the a
priori knowledge of q, we can form a nonoptimal statistics
by choosing the domain of q as large as possible, both in
time and frequency, i.e. E �

PNs
k x

2
k. The statistics E is no

longer optimal but it depends only on the detector charac-
teristics; in fact, the detection efficiency is independent of
signal waveform as long as the signal duration is limited to
the data set xk. We refer to the detection algorithm based on
a detection threshold on the total power E, as the power
filter (PF) algorithm. For the PF algorithm, the false alarm
probability and detection efficiency as a function of the
detection threshold T reads

 

�PFA�T� � ��Ns=2; T�=��Ns=2�

��T� �
R
1
T p��E; Es�dE;

(7)

where ��x; y� and ��x� are the incomplete and complete
Euler gamma functions, respectively. The ROC curves of
the PF detection algorithms play the role of a lower bound.

4. Other detection algorithms

The whitened noise should have a correlation function
that vanishes away from zero and so the autocorrelation of
these data can be used to form some statistics to detect the
presence of signals (which changes locally the autocorre-
lation function). A family of filters, based on the autocor-
relation or linear interpolation of data, have been
intensively studied in Refs. [16,37,38]. The family includes
the norm filter, mean, and norm of autocorrelation [37].
The alternative linear fit (ALF), slope (SF), and offset (OF)
(intensively studied by the VIRGO collaboration) are
based upon fitting a straight line to the data [38].

The BlockNormal detection algorithm [39] is an ETG
that identifies moments in time where the data statistics
changes. In particular, BlockNormal characterizes the time
series between change points by the mean and variance of
the samples. The data set (block) identified by the
BlockNormal algorithm is characterized by a mean, a
variance, a frequency band, a start time, and a duration.
Triggers from different bands are merged if they overlap in
time into a single trigger [39].

The burst analysis method [14] is based on wavelet
packet transform and differs from the WP algorithm in
the detection statistics. In fact, the definition of the burst
analysis statistic entails 4 steps: (i) decompose the ob-
served data on wavelet packet bases at different levels;
(ii) fix the fraction of coefficients that makes the cluster
core(s) at any decomposition level; (iii) aggregate the
cluster cores in larger clusters; (iv) form a supercluster
by looking for clusters that overlap both in time and
frequency in adjacent levels. Finally, the detection statis-
tics is the energy content (sum of squared coefficients) of a
supercluster. Each step of the burst analysis detection
algorithm is controlled by parameters that affect both the
false alarm rate and the detection efficiency.

The WaveBurst ETG [15] is an implementation of the
burst analysis method: WaveBurst is applied simulta-
neously for two or more gw detectors looking for coinci-
dent coefficient clusters and attains the simultaneous
implementation of a detection and discrimination algo-
rithm in a network of gw detectors.

IV. WAVELET PACKET DETECTION ALGORITHM

First, the data set xk is decomposed over wavelet packet
bases associated to complete binary trees of depth j �
1; 2; 3 . . . jmax, where jmax is fixed by the maximum fre-
quency resolution t�1

s =2jmax
1 we are interested in.
Regularity conditions (e.g. band limited signals) lead us
to consider a decomposition based on a smooth mother
wavelet like the order 10 symlets (sym10). However,
higher and lower orders have been tested without signifi-
cative changes in the performances of the algorithm. The
coefficients of the WP transform d2p

j
1 and d2p
1
j
1 at the

level j
 1 are computed from the coefficients dpj of the
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previous level by the following recursive relations:

 d2p
j
1�k	 �

X
l

h0�l� 2k	dpj �l	

d2p
1
j
1 �k	 �

X
l

h1�l� 2k	dpj �l	;
(8)

where h0 and h1 are defined in Sec. II and d0
0�k	 � xk. As

high value coefficients reveal the presence of a signal in the
corresponding time-frequency tiles, the decision rule of
WP detection algorithm is: reject the null hypothesis if

 maxfjdpj �k	jg> T; (9)

where 0 � j � jmax, 0 � p � 2j � 1, 1 � k � Ns=2j,
and the maximum is calculated over all the p �
0; 1; 2 . . . 2j � 1 leaves and all the j � 0; 1; 2 . . . jmax bi-
nary trees. We note that the detection algorithm has the
computational complexity O�Ns logNs� of a wavelet
packet transform associated to a complete binary tree of
order jmax plus the computational complexity O�Ns� of the
sorting algorithm.

TheNs coefficients of the WP transform, associated with
a complete binary tree, ensure a uniform partition of the
time-frequency plane. On the other hand, taking into ac-
count trees of different depth � jmax give rise to multiple
resolutions in the time-frequency plane and so wider
classes of signals can be detected at the cost of a redun-
dancy in the signal representation. As the total number of
coefficients analyzed is Ns � �jmax 
 1�, our redundant
partition of time-frequency plane translates in a slight
increase of false alarms: this is the price to be paid to the
robustness of the algorithm.

Each coefficient dpj is Gaussian distributed and, in the
absence of signals, the mean is zero, but there is a small
correlation among coefficients at the same level [20].

The detection statistics of the WP algorithm focuses
attention on the extreme values of the data, i.e. the tails
of the probability distribution. The crucial theorem on
extreme value distributions states that, in the limit as the
number of samples tends to infinity, the induced distribu-
tion on the maxima of the samples can only take one of
three forms: Gumbel, Weibull, or Frechet [40]. The false
alarm probability distribution relative to the WP detection
statistics is bounded from above by the Gumbel distribu-
tion

 pG�x� �
1

	
e�x�
�=	 exp��e�x�
�=	�; (10)

which is appropriate for maxima of Ns � �jmax 
 1� � 1
normally distributed variates; here
 and 	 are the location
and scale parameters, respectively. One can easily show
that E � 

 �e	 and V � �2	2=6, where �e �
0:577 21 . . . is the Euler-Mascheroni constant, and E and
V are the mean and variance of the maximum of wavelet
packet coefficients, respectively; hence 
 and 	 can be
readily estimated by Monte Carlo simulations. As an ex-

ample, we report in Fig. 1 the histogram of maxfjdpj �k	jg
obtained with Ns � 384 samples, jmax � 6 and white
noise; the Gumbel cumulative distribution with 	 � 0:25
and 
 � 3:55 is clearly a limiting curve from above of the
false alarm probability of the WP method.

As discussed in the next section, the detection efficiency
of the WP method is a complicated function of waveforms,
amplitude, arrival time, decomposition levels, etc., and so
it must be evaluated using dedicated Monte Carlo simula-
tions. However, in the high SNR regime, we can argue that
the position in the time-frequency plane of maxfjdpj �k	jg
remains fixed. Thus, the statistical distribution of the maxi-
mum value tends to a Gaussian with mean M and variance
�2, where M is the maximum component of the projection
of the given signal on the wavelet packet bases. The
asymptotic behavior of the ROC curves of the WP method
is then determined by the equations

 

�
PFA�T� ’ exp��e�T�
�=	�

��T� ’ 1=2 erfc��T �M�=
���������
2�2
p

�:
(11)

Equations (11) make it clear why the variances of false
alarms and true alarms tend to be different as the SNR
increases.

V. DETECTION ALGORITHMS APPLIED TO
AURIGA DATA

In order to run the detection algorithms on the data
acquired by the AURIGA gw detector, we first consider
the data hk representing the equivalent gw signal at the
detector input. The hk are obtained by the deconvolution of
output data from the AURIGA transfer function H���,
which accounts for all filtering stages applied to the gw
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FIG. 1. Distribution of false alarms generated by the WP
detection algorithm applied to white noise with zero mean and
unit variance. The number of trials is 105. The sample mean and
variance are 3.689 and 0.101, respectively. The continuous line
shows a Gumbel distribution with 	 � 0:25 and 
 � 3:55.
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signal, including electronics and analog to digital convert-
ers [11]. The deconvolution is carried out in the discrete
time domain Z�ts�, where t�1

s � �s � 4882:8125 Hz is the
adopted sampling frequency. By definition, 1=H�z� con-
verts the detector output samples in the dimensionless
amplitudes hk of space-time strain; for the AURIGA de-
tector, the procedure to evaluate 1=H�z� (calibration) is
described in Ref. [41]. The AURIGA intrinsic noise at the
detector input is well described by a quasistationary pro-
cess; to be more precise, the time scales of noise changes
are much greater than the correlation times of the stochas-
tic process that are fixed by the fluctuation-dissipation
theorem. The noise power spectrum Sh��� in equivalent
gw strain, as it was normally measured during the second
scientific run of AURIGA [42], is shown in Fig. 2.

The AURIGA conditioning algorithms include a band
selection filter (an antialiasing bandpass Butterworth filter
of order 12, with cutoff frequencies �830 and �990 Hz),
followed by a decimation of a factor 12; the resulting
sampling frequency is �d � 406:901 Hz. After the deci-
mation process, we can analyze the decimated band
0–203:45 Hz without information losses because this
band largely includes the aliased detection band, say 850�
950 Hz.

The two minima at �865 Hz and �933 Hz correspond
to the AURIGA maximum sensitivity S1=2

h;max��� � 2�

10�21 �Hz��1=2. The full bandwidth at the half maximum
is�25 Hz around the two minima but the whole detection
band, say �100 Hz, can be used in practice for gw burst
searches, in fact, the sensitivity within the detection band is
in the range 2� 10�21 < S1=2

h ���< 5� 10�21 �Hz��1=2. It
can be shown that the process hk is regular and that its
spectrum can be factorized as Sh�z� � L�z�L�1=z�, where
L�z� is a minimum phase filter [11]. Then the whitening
digital filter ��z� � L�1�z� can be applied to the process hk

to calculate its ‘‘innovations,’’ i.e. the white process xk that
constitutes the input for the four detection algorithms.

A. Monte Carlo simulations

The difficulties in the comparison of different detection
algorithms reflect the composite nature of the alternative
hypothesis: the probability density function is not unique,
and often direct (analytic) integration over the rejection
region RT —that give PFA and �—is not accessible. An
alternative technique to estimate the probability density
functions and to perform their integration is the
Monte Carlo simulation: for additive, Gaussian, quasista-
tionary stochastic processes, the evaluation of PFA and �
can be substituted by their empirical observations. In our
specific problem, the Monte Carlo simulations of different
detection methods consist in the injection of a large num-
ber of waveforms in the simulated data of the AURIGA
detector with different SNR. To save computing time in
running Monte Carlo, we preferred to simulate directly the
white noise nk after the decimation process. The variance
of the simulated noise is assumed to be unitary. The
decimation factor from the original sampling frequency
�s is 15 and so the decimated band amounts to 0�
162:76 Hz. From here on, the variance of the simulated
noise is assumed to be unitary and the simulated gw signals
sk are assumed to be whitened, bandpassed, and decimated
before their addition to the noise.

The detection procedure is very simple: we consider
windows of finite length of Ns � 320 samples (i.e.
0:98 s) and apply to each window the binary classifier
associated to the decision rules of the MF, IF, PF, and
WP detection algorithms. We used the predictions of
Eqs. (4) and (7) to check the consistency of Monte Carlo
outcomes for the MF and PF methods. The good agreement
we found makes us confident about the Monte Carlo im-
plementation. The false alarms, being independent of sig-
nals, have been determined with a good accuracy at any
interesting rate. On the other hand, the detection efficiency
depends both on detection algorithms and on injected
waveforms. To test the efficiency of the 4 detection algo-
rithms we decided to inject maximum entropy chirplets,
which play the role of reference waveforms. Chirplets are a
class of nonstationary signals defined in a six-parameter
space,
 

C�t� � A exp
�
�
�t� t0�

2

4�2
�

�
cos

�
�
2
�t� t0�2


!0�t� t0� 
�0

�
; (12)

where � � ��!=���
���������������������������������
1� �2���!�

�2
p

is the chirp rate,�0

is the initial phase, and A, t0, ��,!0, and �! have the usual
meaning as in Sec. III B. Chirplets have quite a different
signature in the time-frequency plane and a maximum
entropy [43]. Other remarkable properties of the chirplet
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FIG. 2. Sensitivity curve of the AURIGA detectors during its
second scientific run obtained by a best fit of the typical noise
spectral density.
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waveforms are: (i) covariance to scale changes of �!,
chirp rate �, time of arrival t0, and central frequency !0

(very desirable property in the implementation of the
Monte Carlo); (ii) satisfy the uncertainty principle with
equality when �!�� � 1=2; (iii) attain a good resolution
in both time and frequency; (iv) ‘‘sin-Gaussian’’ wave-
forms (widely used in gw burst searches [9]) can be recov-
ered as the particular case � � 0. In our Monte Carlo
simulations, the injected chirplets have been chosen by
spanning the parameters space as follows: (1) central fre-
quency !0=�2�� � 815
 10j Hz, where j �
0; 1; 2; . . . 15 (linear spacing); (2) bandwidth �!=�2�� �
�1; 2; 5� � 10k Hz, and duration �� � �2; 5; 10� �
10��k
2� s, where k � 0, 1, 2 (quasilogarithmic spacing),
as shown is Fig. 3; (3) initial phase �0 uniformly distrib-
uted in �0; 2��, in order to avoid synchronization effects
between the sampling process and detection algorithms.

The different chirplets are injected at the same SNR �
�
P
ks

2
k�

1=2=�, i.e. at the same ratio of the ‘2 norm of the
whitened signal and the standard deviation of the white
noise, corresponding to the maximum SNR achievable by
the ideal matched filter. We generated 104 independent
noisy data sets for each chirplet and then we applied the
detection algorithms.

A few general considerations apply across the MF, IF,
EP, and WP detection algorithms and all the injected
chirplets: (i) the detection efficiencies improve as the

SNR increases, showing a unitary efficiency in the limit
of SNR� 1; (ii) as the PF algorithm is insensitive to the
injected waveforms, the corresponding ROC is almost the
same. (iii) The ROC curves of WP detection algorithm are
above the corresponding EP curves, except for long dura-
tion signals �� > 2� 10�2; (iv) the IF is below the EP
ROC curves when the whitened waveforms are quite differ-
ent from the whitened impulsive response (i.e. for signals
in the lower white triangle of Fig. 3).

As a representative example, we report in Fig. 4 some
ROC curves we have obtained by injecting SNR � 8
chirplets, with the intent of figuring out the relative per-
formances of the four algorithms.

A further look on the differences among MF, EP, and IF
methods can be obtained by the injection of 104, SNR � 8,
!0=�2�� � 900 Hz and � � 0 chirplets (sin-Gaussians),
with the aim of calculating the detection efficiencies at
10�2 s�1 false alarm rate, as a function of signal duration
�� [44]. In Fig. 5, we observe the sharp decrease of the IF
efficiency as soon as �� > 5� 10�3 s�1, i.e. when the
bandwidth of whitened signal becomes smaller than the
detector bandwidth (pale gray quadrilateral of Fig. 3). In
this range, due to the adopted maximum depth of the
wavelet packet trees (jmax � 6), also the WP efficiency
slightly changes. However, the small decrease observed in
Fig. 5 can be reduced by considering wavelet transforms
with jmax > 6.

By spanning the whole chirplet manifold, we have been
able to evaluate the spread of detection efficiency of WP,
IF, and PF algorithms: in Fig. 6 we report the average �ave,
maximum �max, and minimum �min values of detection
efficiency at 10�2 s�1 false alarm rate, that we found by
running the complete Monte Carlo (104 trials per each
injected signal), as a function of SNR. As we are not
assuming a uniform distribution over the chirplet parame-
ters manifold, �ave cannot be interpreted, using Bayes’
formula, as the mean detection probability of chirplets.
The quasilogarithmic spacing of �� and �! favors indeed
the particular hypothesis of sin-Gaussian signals with du-
ration �� < 2� 10�3 s or bandwidth �!=�2��< 10 Hz.
It is worth noticing that the IF detection algorithm com-
pletely misses some signals, as clearly indicated by the
minimum detection efficiency equal to the false alarm
probability �min � 10�2. The PF efficiency is almost inde-
pendent of injected chirplets as shown by the narrow dark
gray region in Fig. 6.

In principle, the problem of the detection of ‘‘rare’’
gw bursts (low rate) buried in the detector noise (low
SNR) requires the minimization of the maximum proba-
bility of a loss, i.e. �min. The intermediate variability of WP
method is the result of a tradeoff between the high effi-
ciency and low variability requirements. In this respect, the
performances of the WP detection algorithm are
satisfactory.
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FIG. 3. The boundaries of the parameter space for the chirplets
used in the Monte Carlo simulations. The empty region under the
continuous line is forbidden by the Heisemberg uncertainty
principle. The allowed region can be roughly divided up into 3
parts: (i) the dark gray upper triangle, where the whitened
chirplet signals are completely indistinguishable from a ��t�
signal; (ii) the pale gray quadrilateral, where the chirplet band-
width is modified by the AURIGA bandwidth; and (iii) the lower
triangle, where the chirplets are left unchanged by the AURIGA
whitening filter. The open circles indicate the parameters used
for the calculation of detection efficiency in Fig. 4.
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FIG. 5. The dependence of the detection efficiency of IF (open
squares), WP (filled squares), and PF (dots) methods on signal
duration. The injected signals are SNR � 8 sin-Gaussians and
the false alarm rate has been fixed at the level of 10�2 s�1.
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FIG. 6. The detection efficiencies of the IF, WP, and PF
detection algorithms as a function of SNR. The pale gray,
gray, and dark gray regions indicate the maximum variability
of IF, WP, and PF detection algorithms. Squares, diamonds, and
triangles represent the average detection efficiency of IF, WP,
and PF methods, respectively.
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FIG. 4. ROC curves for the IF (open symbols), PF (dots), and WP (filled symbols) detection algorithms obtained by injecting
chirplets with SNR � 8 and central frequencies 865 Hz (lower triangle), 900 Hz (square), and 933 Hz (upper triangle). The continuous
and dashed lines represent the ROC curves of the ideal MF ‘‘receiver’’ and the random decision rule, respectively. The chirplet
duration and frequency band correspond to the four circled points of parameter space in Fig. 3, namely, (a) �� � 0:1 s and �! �
1:0 Hz; (b) �� � 0:1 s and �� � 50 Hz; (c) �� � 0:02 s and �! � 5 Hz; and (d) �� � 0:002 s and �! � 50 Hz.
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B. Application of the WP detection algorithm to
AURIGA data

As already stated, the output of any gw detector requires
a conditioning procedure in order to ensure noise
Gaussianity and signal sparsity. For instance, the
AURIGA output is sometimes contaminated by unmodeled
disturbances, related to the detector environment or main-
tenance operations, that affect the AURIGA capability in
gw searches. These disturbances last for long periods of
time in respect to the gw burst signals. Other disturbances
are well localized in the frequency domain as spurious
spectral lines within the detection band. The energy con-
tent of spurious lines is very high, not stationary and/or
does not agree with the predictions of the fluctuation/dis-
sipation theorem. This component of environmental dis-
turbances, that give rise to ‘‘large fluctuations’’ in the
whitened detector data xk, can be ruled out by notch filters
tuned to the spurious line frequencies [45]. The long last-
ing disturbances can be removed by applying the ‘‘epoch
vetoes,’’ which take care of the periods of time affected by
the appearance of a lot of unmodeled excitations. It should
be noted that the epoch vetoes reduce the live time of
AURIGA with no impact on the detection efficiency be-
cause their possible effects on the statistics of the WP
algorithm can be easily dealt with suitable boundary con-
ditions for the wavelet packet transform. On the contrary,
the application of the notch filters in the detection band
makes some differences between simulated noise and the
real data of the AURIGA detector. In fact, the coefficients
of the wavelet packet transform that represent frequency
bands overlapping the notch bands have a smaller variance
in respect to the other coefficients and so they do not
produce false alarms.

Nevertheless, the false alarm rate is only slightly
changed in respect to the simulated equivalent noise as
the decision rule of the WP algorithm depends on the
largest coefficients (i.e. the largest fluctuations in the
time-frequency plane). The main impact of the notch filters
is on the detection efficiency of those signals with signi-
ficative overlapping among their frequency band �� and
the notch frequencies. The loss in the detection efficiency
caused by conditioning procedures is unavoidable but it
can be minimized by identifying and defeating the envi-
ronmental noise sources.

Moreover, the output of the AURIGA detector is af-
fected by short-lived disturbances of electromagnetic ori-
gin with a rate of few hundred per hour. They are a sort of
glitch in the time domain with a duration of �40 ms and
they are correctly detected by the WP algorithm as isolated
events. The intense glitches can be easily identified by
means of a tagging algorithm [45] and therefore they can
be removed from subsequent analyses.

In order to investigate the relevant effects of ‘‘ad hoc’’
preprocessing procedures on the AURIGA data, we report
in Fig. 7 the histograms of the maximum coefficients

produced by the WP algorithm. The AURIGA data has
been normalized to unitary variance before to feed them to
the WP detection algorithm. We note that the distribution
of the maximum WP coefficients (dark gray histogram),
after the application of epoch vetoes, notch filters, and the
removal of electromagnetic glitches, is very close to a
Gumbel distribution with 	 � 0:41 and 
 � 4:10; these
values does not differ very much from 	 � 0:25 and 
 �
3:55 of the Monte Carlo simulations (see Fig. 1); however,
the motivations behind this discrepancy are the cumulative
effects of the very low amplitude glitches, which show an
increasing rate as their amplitude decreases. In any case,
the signal sparsity, combined with the extreme distribution
theorem, allows the estimate of false alarm probability and
therefore we were able to discriminate signals from noise
at a given probability level. Indeed, the continuous curve in
Fig. 7 represents the superposition of maxima arising from
Gaussian fluctuations of AURIGA noise and the low am-
plitude contribution of glitches; moreover, we can argue
that the few transient signals exceeding the Gumbel distri-
bution in Fig. 7 are mainly due to glitches not identified
and removed by the AURIGA tagging algorithm.

A different approach to conditioning algorithms is the
study of the histograms of the wavelet coefficients of real
data sets. In fact, the bulk probability distribution of each
coefficient must be a Gaussian and we can use Gaussianity
tests, e.g. a threshold on skewness and kurtosis indexes
[11], to discard those wavelet packet coefficients which
refer to spurious frequency lines and/or epoch vetoes. For
instance, we find that some histograms of the wavelet
packet coefficients of the AURIGA data are clearly non-
Gaussian distributed with fluctuations that are orders of
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FIG. 7. Histograms of the maximum WP coefficients obtained
with a set of �3 h of AURIGA data. Light gray histogram:
original data with no conditioning algorithm; gray histogram:
after the application of epoch vetoes and frequency notches; dark
gray: as for the gray histogram after the removal of electromag-
netic glitches. The continuous line shows the Gumbel distribu-
tion with 	 � 0:41 and 
 � 4:10.
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magnitude greater than the other coefficients. Of course,
these coefficients, which correspond to spurious frequen-
cies, have to be removed from the detection procedure
otherwise they would dominate the detection statistics, as
clearly shown in Fig. 7. The outcome of the Gaussianity
criterion is a sort of ‘‘mask’’ to be applied to the wavelet
packet coefficients which discard the non-Gaussian coef-
ficients from the detection statistics. Here, the term non-
Gaussian refers to the presence of long lasting spurious
signals rather than non-Gaussian stochastic processes. The
Gaussianity of the coefficients can also be verified by a
Gaussian fit on the corresponding histograms. A drawback
of this approach is the coarse-grained resolution of wavelet
packet coefficients; in fact, the outer nodes of the wavelet
packet trees do not allow a better determination of the
time-frequency boxes containing spurious disturbances in
respect to the rectangles defined by the epoch vetoes and
notch filters. In our opinion, the vetoing procedures for gw
detectors using data relative to the detection bandwidth are
still an open problem, and it could only be solved in the
framework of a network analysis.

VI. CONCLUSIONS

We have implemented and thoroughly studied a novel
method for the detection of gw bursts of �1 s maximum
duration. The method is based on wavelet packet transform
of observed data sets and does not require a priori hy-
pothesis on waveform patterns, arrival time, or spectral
content. The WP detection algorithm is quite general and
can be applied to narrow or wideband detectors once the
requirements of noise Gaussianity and signal sparsity are
fulfilled. Both these conditions should be met by gw de-
tector outputs after the application of conditioning algo-
rithms. We made also clear the separation between
detection and estimate phases for burst signals: in our
approach the false alarm rate is controlled by a suitable
detection threshold on the maximum WP coefficient. In
general, the estimate of waveform characteristic is not
required and should be deferred to subsequent discrimina-
tion algorithms. To calculate the detection efficiency of the
MF, WP, IF, and PF algorithms, we have explored the 6-
dimensional chirplet parameter space.

The resulting performances of WP algorithm, measured
by the ROC curves, are quite satisfactory. The detection
efficiency is mainly affected by the maximum level of
wavelet decomposition, which fixes the smallest frequency
structure that the WP algorithm can recognize. In addition,
we observed a slight decrease of the detection efficiency
when the injected chirplets are completely spread over the
time-frequency plane, i.e. in the high �� and �! region.

The IF detection algorithm shows a large variability of
its efficiency across the chirplet parameter space, due to the
mismatches between the injected signals and the impulsive
filter template.

As the PF algorithm uses the energy in the whole band,
its detection efficiency becomes quite insensitive to wave-
forms. However, the achieved robustness with respect to
signal variability entails a lowering of detection efficiency.
In fact, the PF algorithm represents a sort of lower bound
for ROC curves of a detector.

An open problem for a fair comparison of the perfor-
mances of detection algorithms is, of course, a faithful
representation of the gw burst manifold. In this paper, to
run our Monte Carlo, we make use of a simple meshing of a
portion of the chirplet parameter space; however, astro-
physical sources could favor completely different and/or
unexplored regions.

The Achilles’ heel of any detection algorithm is the
inability to discriminate spurious from genuine gw signals
with the data of a single detector. In this respect, the
importance of the WP detection algorithm lies in the
prospects it opens for the near future, when different kinds
of detectors, with heterogeneous bandwidths and antenna
patterns, will be operating together in a worldwide net-
work. In fact, if gw signals have no characteristic wave-
forms, an ‘‘aperture synthesis’’ between different detectors
is the only way to reject spurious signals and, at the same
time, to gain information on gw sources. We think that the
absence of any a priori assumptions on waveform patterns
is the ‘‘conditio sine qua non’’ to set up network detection
algorithms for genuine gw bursts. Much work has still to be
devoted to extend detection algorithms to worldwide net-
works of gw detectors because of the partial overlapping of
both detection bandwidths and antenna patterns (e.g.
among resonant bars and interferometers). Anyway, we
think that only the projections of the TT Riemann tensor
on different detectors (amplitude informations), combined
with the timing of detectors located at different sites (phase
informations), have to be used as intrinsic signatures of a
gw burst. The problem of really taking advantage of these
intrinsic signatures, without significative losses of detec-
tion efficiency, would deserve further investigation and it
will be the topic of a forthcoming paper [18].
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