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Current statistics of an antidot in the fractional quantum Hall regime is studied for Laughlin’s series. The
chiral Luttinger liquid picture of edge states with a renormalized interaction exponent g is adopted. Several
peculiar features are found in the sequential tunneling regime. On one side, current displays negative differ-
ential conductance and double-peak structures when g�1. On the other side, universal sub-Poissonian trans-
port regimes are identified through an analysis of higher current moments. A comparison between the Fano
factor and skewness is proposed in order to clearly distinguish the charge of the carriers, regardless of possible
nonuniversal interaction renormalizations. Super-Poissonian statistics is obtained in the shot limit for g�1,
and plasmonic effects due to the finite-size antidot are tracked.
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I. INTRODUCTION

The peculiar properties of quasiparticles �qp’s� in the frac-
tional quantum Hall effect have received great attention es-
pecially for the states at filling factor �=1/ p �p an odd inte-
ger�, in which gapped bulk excitations were predicted to
exist and to possess fractional charge1 e*=�e �e�0 electron
charge� and statistics.2

A boundary restriction of this theory was subsequently put
forward in terms of edge states by Wen.3 This theory recov-
ered the fractional numbers of quasiparticles in the frame-
work of chiral Luttinger liquids ��LL’s� and indicated tun-
neling as an accessible tool to probe them.4 Accordingly,
quasiparticles with charge e / p were measured in shot-noise
experiments with point-contact geometries and edge-edge
backscattering.5

A key prediction of �LL theories is that the interaction
parameter should be universal and equal to �. As a conse-
quence, the quasiparticle �electron� local tunneling density of
states obeys a power law in energy of D�E�−1 �D�E1/�−1�.
Several geometries have been set up in experiments to test
this nonlinearity through measurements of tunneling current
I versus bias voltage V. For instance, in the case of electron
tunneling between a metal and an edge at filling �, one
should have I�V� in the limit eV�kBT with �=1/�.4

Experiments6 at filling factor of 1 /3 indeed proved a power-
law behavior but with ��3. Deviations were observed also
with quasiparticle tunneling in an almost open point-contact
geometry at �=1/3;7 here, the predicted backscattering lin-
ear conductance is GB�T2�−2 while the measured quantity
obeys a power law with positive exponent. Analogous dis-
crepancies were observed in a similar geometry, with the
quasiparticle tunneling differential conductance developing a
minimum around zero bias instead of a maximum for de-
creasing temperature.8 Moreover, several numerical calcula-
tions and simulations also disagree with the conventional
chiral Luttinger theories. We mention, for instance, finite-
size exact-diagonalization calculations with short-range9 or
Coulomb electron-electron interactions10–12 and Monte Carlo
simulations with interacting composite fermions on a ring.13

The disagreements of �LL predictions with observed ex-
ponents are still not completely understood, although several

theoretical mechanisms have been put forward to reproduce a
renormalized Luttinger parameter, including coupling to
phonons or dissipative environments,14–17 effects of interac-
tion range,18,19 and edge reconstruction with smooth confin-
ing potentials.20–23

Our purpose is to discuss fractional Hall edges in an en-
riched �LL theory where the possibility of a renormalized
interaction parameter g�� is assumed, analyzing different
transport regimes and clearly distinguishing signatures of
charge �e qp from effects due to the quasiparticle propaga-
tors governed by g. To do so, we choose a geometry where
two fractional quantum Hall edges are connected via weak
tunneling through an edge state encircling an antidot, as in
Fig. 1.24,25 Such a setup has proven to be extremely versatile
and controllable. It has been, for instance, employed in a
series of experiments where fractional charge and statistics
of quasiparticles were addressed.26 The same geometry has
also been used to detect blockade effects and Kondo physics
with spinful edges in the integer regime.27

As mentioned before, a series of experimental observa-
tions of fractional charge has been based on noise

FIG. 1. Geometry of the system. In white, the Hall fluid; in
black, the depleted areas defining the two quasiparticle tunneling
points between the left �L� or right �R� edge and the antidot �A�. In
this setting, the magnetic field points out of the plane.
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measurements.5 The possibility to extract a significant e* /e
from such measurements is given by the fact that the geom-
etry of the setup and the tunneling regime ensure a Poisso-
nian process. Smooth evolution in the charge carrier at �
=1/3 from e*=�e to e was observed in point contacts,
changing the backscattering amplitude via gates from 0 to
1.28 This appears consistent with evolution from fractional qp
to electron tunneling.29 Anyway, this conclusion can only be
obtained under the additional hypothesis of independent par-
ticle tunneling.30 Only the observation of higher moments,
as, e.g., the normalized skewness, could cross-check this
hypothesis.31 Therefore, to fully explain the charge measure-
ments, one has to observe higher moments beyond the Fano
factor. Recent advances in measurement techniques could
open this intriguing possibility, especially in view of the un-
expected results recently reported.7,8

In this paper, we propose to compare the Fano factor and
skewness in transport regimes where the statistics of the
charge transfer is not Poissonian. We focus our attention on
transport through an antidot in weak backscattering and se-
quential tunneling limits, at fractional filling factor �=1/ p
�p an odd integer�. Our task is twofold: On one side, we
analyze the tunneling current. It presents remarkable features
driven by g, e.g., negative differential conductance and
double-peak structures. Power-law behaviors exist and can
be used to determine the renormalized interaction parameter.
On the other side, we derive a method to assess fractional
charge independently of possibly renormalized g��. We
analyze noise and skewness in processes with different trans-
port statistics both in the shot and in the thermal limit. We
find universal points that unambiguously define the fractional
charge. In addition, we describe transport regions where the
Fano factor is sensitive to the power laws of the quasiparticle
propagators and presents super-Poissonian correlations.

The paper is organized as follows. In Sec. II the model is
introduced and bosonization procedures are briefly reviewed.
Sections III and IV contain the description of methods and
results. Finally, in Sec. V, we discuss our findings and com-
ment on existing experimental applications.

II. MODEL

In our model, edge states form at the boundaries of the
sample and around the antidot �Fig. 1�; mesoscopic effects
are associated with the finite size of the antidot through an
Aharonov-Bohm �AB� coupling, and tunneling barriers
couple the circular antidot with both edges. The complete
Hamiltonian reads

H = HL
0 + HR

0 + HA
0 + HAB + HR

T + HL
T, �1�

and the individual pieces will be described in detail in what
follows.

A. Bosonization of free Hamiltonians

In Eq. �1�, Hl
0 are standard Wen’s hydrodynamical Hamil-

tonians for the left, right, and antidot edges �l=L ,R ,A�. In
terms of the electron excess density 	l�x� �
=1�, one
has24,25,32

Hl
0 =

�v
�
�

−Ll/2

Ll/2

dx	l
2�x� , �2�

where v is the edge magnetoplasmon velocity and Ll is the
edge length. The theory is bosonized with the prescription
	l�x�=�x�l�x� /2�, where �l�x� are scalar fields comprising
both a charged and a neutral sector:

�l�x� = �l
0�x� + �l

p�x� . �3�

The direction of motion of the fields is fixed by the external
magnetic field. Here, we chose for convenience to set curvi-
linear abscissas in such a way that all fields have the same
chirality �right movers�. The periodic neutral plasmonic
mode for the edge l is

�l
p�x� = �

kl0
�2��

klLl
�al,kl

eiklx + al,kl

† e−iklx�e−kla/2, �4�

where a is an ultraviolet cutoff and bosonic creation and
annihilation operators obey �ai,k ,aj,k�

† �=�ij�kk� with a quan-

tized wave vector kl=m 2�
Ll

, m�N. The charged zero mode
reads

�l
0�x� =

2�

Ll
�nlx − �l, �5�

with nl the excess number of quasiparticles and �l a Hermit-
ian operator conjugate to nl. The canonical commutation re-
lation �� j ,nl�= i� jl, together with �� j

0�x� ,�l
p�x���=0, ensures

that the field on each edge satisfies

��l�x�,�l�x��� = i�� sgn�x − x�� . �6�

Charge � quasiparticle fields are now defined through expo-
nentiation,

�l�x� =
1

�2�a
ei�l�x�ei��x/Ll, �7�

where the extra phase has been added to preserve the correct
twisted boundary conditions33 for the qp field, �l�x+Ll�
=�l�x�ei2�nl�. Equation �6� guarantees that the fields �l create
fractional charge excitations. The same commutation relation
also ensures that quasiparticles have fractional statistics

�l�x��l
†�x�� = �l

†�x���l�x�ei�� sgn�x−x��. �8�

For quasiparticles of different edges, fractional statistics is
introduced with suitable commutation relations �� j ,�l�
= i�� sgn�wj −wl� with wR=−wL=1 and wA=0.

With prescriptions �4� and �5�, Eq. �2� becomes

Hl
0 = Ec

l nl
2 + �

s=1

�

s�lal,s
† al,s, �9�

where Ec
l =��v /Ll is the topological charge excitation en-

ergy; for the neutral sector, �l=2�v /Ll is the plasmonic ex-
citation energy.

The total excess charge on an edge is given by
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Ql = e�
−Ll/2

Ll/2

dx
�x�l�x�

2�
= nle

* �10�

and is conserved in the absence of tunneling.
Finally, the limit LL ,LR→� is taken. In the following,

for brevity’s sake, we relabel the antidot variables as L
=LA, �=�A, Ec=Ec

A, and n=nA.

B. Aharonov-Bohm coupling

The Hamiltonians �Eq. �2�� are expected to describe the
system anywhere on a �=1/ p plateau since they are based on
incompressibility. Nevertheless, the antidot edge, encircling
a finite area, is sensitive to the actual position in the plateau
through a coupling to the AB flux.26,34 We model this effect
with an extra magnetic field pointing in the opposite direc-
tion with respect to the background magnetic field.35 The AB

vector potential along the antidot edge reads �A� � = �
L , where

� is the AB flux of the additional magnetic field. The

Aharonov-Bohm coupling is HAB� j� ·A� and describes the

coupling of the antidot current density with A� . By a gauge
transformation, it is easy to see24 that this amounts simply to
a shift in the energies in HA

0 in Eq. �9� according to Ecn
2

→Ec�n−� /�0�2, where �0=hc / �e� is the flux quantum.

C. Tunnel coupling

Each �LL supports several excitations other than the
single quasiparticle �Eq. �7��, given, in general, by �l

m�x�
�exp�im�l�x�� ,m�N. The electron corresponds to m=1/�,
while the single-quasiparticle fields � j�x� are obtained by
setting m=1. One should therefore consider all possibilities
for tunneling, i.e., all terms such as t�m��A

m†�x�� j
m�x�, j=L ,R.

Renormalization group flow equations have been set up
for the antidot geometry in Ref. 34. Here, we remind that the
renormalized m-quasiparticle tunneling amplitude tren

�m� scales
as a power law

tren
�m� = 	aren

a

1−m2g

t�m� �11�

when the unit-cell size increases a→aren. Considering, e.g.,
g=1/3, the single-qp tunneling amplitude tqp= tren

�1� diverges
when scaling to lower energies, while the electron amplitude
te= tren

�3� scales to zero. The largest aren attainable is the mini-
mum between the thermal length �v /T and the antidot
length L. A crossover temperature kBT0�Ec=��v /L exists
such that for TT0, one has tren

�m� / t�m��Tm2g−1, while for T
�T0 the flow is cut off by the energy associated with the

finite size of the antidot tren
�m� / t�m��Ec

m2g−1. In the following,
we will assume kBT�Ec and bare tunneling amplitudes such
that electron tunneling can be neglected. Indeed, this appears
to be the case in most experimental observations where
single-quasiparticle tunneling is clearly observed.26 We
therefore only retain the dominant term

HT = �
j=L,R

Hj
T = v �

j=L,R
�tj�A

†�xj�� j�0� + H.c.� , �12�

which represents the single-quasiparticle tunneling between
the infinite edges and the antidot. Here, velocity v is intro-
duced to have dimensionless tunneling amplitudes tj.

A finite source-drain voltage V is applied between the left
and right edges, producing a backscattered tunneling current
I�t� of quasiparticles through the antidot,

I�t� = �Q̇L�t� − Q̇R�t��/2, �13�

with Q̇j�t�= i�Qj ,H�=−ie*v�tj�A
†�xj , t�� j�0, t�−H.c.� and

j=L ,R. We will consider asymmetric voltage drop with �V
and �1−��V the voltage drops across the left and right bar-
riers and 0���1 �see Fig. 2�a��.

III. METHOD

A. Sequential tunneling rates

For small tunneling as compared with temperature, trans-
port can be safely described within the sequential tunneling
regime.36 Here, the main ingredients are the incoherent tun-
neling rates �L,R�E�. They are obtained from the transition
probability between the antidot state with n qp’s at time 0
and the state with n� qp’s at time t, at second order in the
tunneling Hamiltonian,37

� j�E� = 	 v
2�a


2

�tj�2�
−�

+�

d�e−WA���e−Wj���ei�E, �14�

where

FIG. 2. �a� Double-barrier system, with the voltage drop �V
��1−��V� on the left �right� barrier. The forward transitions, corre-
sponding to qp transfers contributing positively to the current, are
indicated. �b� Plot of � j�x� in Eq. �19� as a function of �x for g
=1/3 ,0.8,1, in units of �tj�2��c /4�2����c /2��1−g /��g� and nor-
malized to its maximum value. �c� Scheme of transport regions in
the �V ,�� plane. Roman numbers indicate the number of charge
states involved in the transport. Thin lines signal the onset of tran-
sitions, where energies E±

n =0 �see Eq. �24��.
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Wl�t� = − ��l
p�x,t��l

p�x,0� + ��l
p�x,0��l

p�x,0� �15�

are the thermal correlation functions for the edge �L ,R� and
antidot �A� plasmonic excitations. They can be cast in the
standard dissipative form37

Wl�t� = �
0

�

d�
Jl���

�2 	�cos �t − 1�coth
��

2
− i sin �t
 ,

�16�

with the antidot and lead spectral densities

JA��� = g̃���
s=1

�

��� − s��e−�/�c, �17a�

JL,R��� = g�e−�/�c, �17b�

where �c=v /a is a high-energy cut off and �=1/kBT. It is
important to observe that this expression holds with the as-
sumption that the plasmonic fields �l

p are fully relaxed to
thermal equilibrium. Mechanisms that could guarantee this
assumption include, for instance, thermalizing interactions
with external degrees of freedom. In the standard �LL
theory, g= g̃=� for all edge fields. Here we consider the pos-
sibility that g , g̃�� to describe renormalization effects.

In the present paper, we do not enter into a microscopical
derivation of exponents and only assume phenomenologi-
cally that renormalization of exponents takes place. The
functional form of the quasiparticle correlators is thus pre-
served but is governed by a parameter g=�F. The explicit
value of F will depend on the details of interaction, and we
will consider it as a parameter.

Several mechanisms have been proposed to account for
renormalization. A striped phase is analyzed in Ref. 14,
where interaction is assumed between a �=1/ p �LL and
phononlike excitations carrying no net electric current. No
tunneling of charge takes place between the �LL and the
extra phonon modes, nor between the latter and the contacts.
These assumptions are relevant in the case of tunneling be-
tween two edge states across a Hall liquid, as in the weak
backscattering limit of the point-contact geometry or of our
edge-antidot-edge setup. The only role of the additional
modes is a modification of the backscattering dynamics be-
tween two chiral edges, leading to a renormalized exponent
g=�F, where F1 is a function of the coupling strength and
of the phonon sound velocity.

Another possibility for tunneling renormalization relies on
density-density interactions between chiral edge states in a
split Hall bar geometry, with parameters g1 and g2 describ-
ing, respectively, coupling across the constriction and across
the Hall bar.18 Correlation functions for quasiparticles can be
calculated exactly in this model and give rise to an interedge
tunneling current governed by g=�F, where F now depends
on g1 and g2.

Other proposals have been put forward and point toward
more profound modifications of standard chiral Luttinger
liquids. Interactions with phonons have been considered,
causing the bosonic field � to split into several normal
modes.15,16 Edge reconstruction offers a further scenario,

with a nonmonotonic density profile of the two-dimensional
Hall droplet near the edge essentially induced by
electrostatics.10,11,19–22

We now return to the expression of the rates �Eq. �14��. It
is well known within the bosonized description of edge states
and reads34,37–39

� j�E� = �
s=−�

+�

ws� j�E − s�� , �18�

where

� j�x� = �tj�2
�c

�2��2	��c

2�

1−g ���g/2 + i�x/2���2

��g�
e�x/2,

�19�

with ��x� the Euler gamma function. The sum in Eq. �18�
represents the contribution of plasmons, with weight factors
ws.

37 At T=0, they are

ws =
��g̃ + s�
��g̃�s!

	 �

�c

g̃

e−s�/�c��s� , �20�

with ��s� the Heaviside step function.
It is apparent that the rates have contributions from both

the edge and the antidot correlators. Their functional behav-
ior is greatly influenced by the value of the lead Luttinger
parameter g. In particular, for g�1, they present a nonmono-
tonic behavior as a function of energy �Fig. 2�b��.

Note also that the fractional charge e* is solely determined
by � and is thus separated from the dynamical behavior gov-
erned by g: it is this separation that allows to find indepen-
dent signatures of � and g.

We now specify the temperature regime where our se-
quential tunneling picture holds.36 A higher limit is set by the
condition kBT�Ec, necessary to have a well-defined number
of qp in the antidot against thermal fluctuations. We then
observe that the rates scale at low temperatures as Tg−1 at
energy E=0. Hence, the linear conductance maximum is
Gmax=CG0���c�2−g, with G0=e2 /h and C a constant
parameter.37 For g�1, Gmax increases with decreasing tem-
perature, implying that for extremely low temperatures,
transport is better described in the opposite regime of weak
electron tunneling.29 Sequential tunneling approximation
holds if Gmax�G0. This implies T�Tmin, with Tmin that can
be extracted from a knowledge of typical measurements
of Gmax/G0 at fixed temperature. For instance, from
experiments26 performed at T�10 mK with Gmax/G0
�10−2 and �=1/3, assuming g= g̃=�, we estimate Tmin
�1 mK and Ec�120 mK, so that the range between lower
and higher limits Tmin�T�Ec /kB spans two full decades in
temperature. The validity range can be extended for systems
with smaller antidot size �increased Ec� and weaker edge-
antidot couplings �decreased C�.

B. Moments

Hereafter, we will introduce higher current moments as a
tool to determine the �LL exponent and the carrier charge. In
particular, we will consider the current and the pth normal-
ized current cumulant40 for p=2,3,
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kp =
�Ip

�ep−1�I�
. �21�

Here, �Ip is the pth irreducible current moment and �I is the
stationary current. They can be expressed40 in terms of the
irreducible moments of the number N of charges e* transmit-
ted in time � : �Ip=lim�→��e*�p�Np /�. Observing that �I
= �I1, one has

kp = 	 e*

e

p−1 �Np

�N1
. �22�

The Fano factor and normalized skewness correspond to k2,3,
respectively. They are expressed as a product of two contri-
butions: one coming from the charge of the carrier and the
other from the statistics of the transport process, given in
terms of particle number irreducible moments.

Our task will be to find conditions where �Np / �N1 as-
sumes universal values, independently from, e.g., the tunnel-
ing amplitudes tj and the asymmetry �= �tR�2 / �tL�2. We put
particular emphasis on the fact that such universality must
hold independently of the Luttinger parameter g, since renor-
malization processes are almost invariably present and not
controllable. We denote therefore the conditions in the pa-
rameter space where �Np / �N1 take universal values as spe-
cial. Note that the statistics of a transport process is identi-
fied by all its cumulants, and therefore, all of them should be
required to be universal to identify special regimes. Here, we
will adopt only the minimal comparison of the second and
third moments that are more accessible in experiments.

C. Master equation

The detailed analysis of dc current and k2,3 is obtained
from the cumulant generating function calculated in the Mar-
kovian master equation framework41 in the sequential re-
gime. The occupation probability of a fixed number n of
antidot quasiparticles is34

dpn�t�
dt

= �
n�

�
j

�� j�Ej
n�→n�pn��t� − � j�Ej

n→n��pn�t�� .

�23�

The energies in the tunneling rates are the differences be-
tween the antidot and edge j energies before and after the
tunneling event,

EL
n→n+1 = e*V/2 + 2Ec�� − n − 1/2� � E+

n ,

ER
n+1→n = e*V/2 − 2Ec�� − n − 1/2� � E−

n , �24�

with �=� /�0+ ��−1/2�e*V /2Ec. These forward transitions,
n→n+1 and n+1→n, take place on the left and right bar-
riers, respectively �see Fig. 2�a��. The corresponding back-
ward energies obey

EL
n+1→n = − EL

n→n+1,

ER
n→n+1 = − ER

n+1→n. �25�

With ��E�=� j�E� / �tj�2, we define �±
n =��E±

n� and the corre-

sponding backward rate �̄±
n =��−E±

n�. Detailed balance states

that �̄±
n =e−�E±

n
�±

n.
The conditions E±

n =0 grid the �V ,�� plane into diamonds
according to the scheme in Fig. 2�c�. For the sake of clarity,
in the following, we consider a symmetric voltage drop �
=1/2 when � depends on the dimensionless magnetic flux
� /�0 only. However, all results are cast in generally valid
form.

IV. RESULTS

This section is organized as follows: we describe current,
the Fano factor, and skewness assuming g= g̃, and we discuss
various limits in the temperature, voltage, and flux range,
referring to the diamonds in Fig. 2�c�.

A. Current

A great deal of information on the interaction parameter
can be gathered from the analysis of the dc current, although
it is not possible to extract signatures of the fractional
charge. In this subsection, we consider g=�, despite the gen-
eralization g�� being straightforward.

1. Magnetic-flux dependence

In the low-voltage regime e*V�2Ec �diamonds I and II in
Fig. 2�c��, a simple analytical form for the current can be
found; here, only two adjacent antidot charge states are con-
nected through open rates and charge transport takes place in
a sequence of n→n+1→n processes.

In region I, transport is exponentially suppressed because
of the finite energy Ec; in regions I and II, current at fixed
source-drain voltage oscillates as a function of � with a pe-
riodicity of one flux quantum �0 for any � and g, in accor-
dance with gauge invariance.42 This is represented in Figs.
3�a� and 3�b�, obtained from a numerical solution of the mas-
ter equation.

Because of periodicity in �, we start at n=0. The current
is

�I = ��e*��tL�2
�+

0�−
0 f−�e*V�
�tot

, �26�

where

�tot = �+
0 f+�E+

0� + ��−
0 f+�E−

0� ,

f±�x� = 1 ± e−�x. �27�

If temperature is lowered until kBT�e*V, then a qualita-
tive difference appears in the shape of the resonance peaks as
a function of g. When g�1, due to the nonmonotonic rates,
the current develops two side peaks across the resonance and
develops a minimum on resonance �Fig. 3�d��. On the other
hand, for g=1, the rates �Eq. �19�� are Fermi functions and
the current peak displays no structure regardless of the ratio
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e*V /kBT. The only effect is that for lower T, plateaus appear
with increasing width �Fig. 3�c��.

It is worth mentioning that the double-peak structure for
g�1 was already established in resonant qp tunneling
through localized impurities,43 although in our case, the pa-
rameter that tunes the resonance is the magnetic flux.

If bias voltage is increased, one enters regimes where
more charge states participate to transport. For voltages
2Ec�e*V�4Ec, one needs to consider two or three charge
states. As an example of region III, we discuss the diamond

where the rates �±
p and �̄±

p, p=n ,n+1, are open to transport
and the states with n ,n+1, and n+2 qp’s are involved.
Again, periodicity allows to choose the starting point n=0.
Furthermore, in our temperature regime, only two backward

rates can be retained, �̄−
0 and �̄+

1 �Fig. 4, left panel�. One finds

�I = ��e*��tL�2
�+

1�−
1�t

0 + �+
0�−

0�t
1

�t
0��+

1 + �t
1� + ��−

0�t
1 , �28�

where �t
0=�+

0 +��̄−
0 and �t

1=��−
1 + �̄+

1. Here, double-peak
structures also appear at fixed bias voltage as a function of �,
although they have a more complicated behavior. Indeed,
close to the diamond onset, e*V�2Ec, the current for g�1
develops a broad minimum around �=1 for large tempera-
ture, then a maximum in an intermediate range, and finally, a
minimum again with sharp side peaks at �Ec�1 �Fig. 4,
right panel �b��. No structure appears for g=1, where the
only effects of decreasing the temperature are shrinking of

the peak width and causing of a larger plateau �Fig. 4, right
panel �a��.

2. Bias voltage dependence

A plot of the current is presented in Fig. 5 as a function of
the source-drain voltage for symmetric barriers. Again, the
rate behavior for g=1 or g�1 changes qualitatively the cur-
rent. While for g=1 the current reflects the Fermi-liquid na-
ture of the leads and increases in steps, nonmonotonic fea-
tures appear for g=1/3 and lead to negative differential
conductance �Fig. 5�b��. Two features are most remarkable in
this sense: the on-resonance peak �curve at �=0.5� for small
voltage and the off-resonance peak �curve at �=0� at e*V
�6Ec, indicated with arrows in Fig. 5�b�. The first peak de-
velops in region II and can be described with Eq. �26�. Set-
ting �=1/2 and �=1, one finds

FIG. 3. Plot of the average current as a function of the magnetic
flux � for �a� g=�=1 and �b� g=�=1/3 at kBT=0.1Ec. A zoom on
the shape of the resonance peak is plotted for �c� g=�=1 and �d�
g=�=1/3 with different temperatures kBT=0.01,0.005,0.001Ec.
Other parameters: e*V=0.05Ec and �=1. Curves in panels �a� and
�b� are normalized to the on-resonance value, while curves in panels
�c� and �d� are normalized to the maximum value of the current at
kBT=0.01Ec �solid line�.

FIG. 4. Left panel: scheme of the retained rates in the approxi-
mation for the three-state region. Right panel: �a� current versus �
at g=�=1 for �Ec=10, 25, and 200, for the solid, dashed, and
dotted curves, respectively. The curves are at fixed e*V /Ec=2.2 and
�=1 and are normalized to the value of the lowest temperature
curve at �=1. �b� The same with g=�=1/3.

FIG. 5. Current as a function of voltage for g=�=1 �top� and
g=�=1/3 �bottom�. The lines correspond to �=0,0.2,0.5 and are
shifted by 0.0015I0 �0.15I0� with respect to the curve at �=0. Other
parameters are �=1 and kBT=0.1Ec. Current units are I0

= �e*��c�tL�2���c�1−g�2��g−3 /��g�.
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�I = �e*��tL�2
�+

0

2
f−	 e*V

2

 . �29�

This result allows for a determination of the Luttinger pa-
rameter g from the power-law behavior of the rate,
�+

0 � ��e*V /4��g−1, valid for �e*V�1.
The second feature finds a natural explanation in terms of

antidot plasmonic excitations. These, in fact, enter into play
for e*V�=2Ec /�. This new mode increases the tunneling
rate nonmonotonically, leading to peaks in current.

To ascribe the onset of the peak to plasmons, we focus on
the above example with g=�=1/3 and �=2Ec /�=6Ec. Here,
one has to consider five charge states, n , . . . ,n+4, and the
rates �±

p, p=n , . . . ,n+3. In this regime, it is possible to ob-
tain an approximate form of the current neglecting all back-
ward rates except those opening at the border of region V

��̄−
0 , �̄+

3, see Fig. 6, inset�. We work at �=2, choosing n=0 as
a reference. Observing that the large-energy behavior of the
forward rates is ���E�g−1, we can process the rates accord-
ing to the magnitude of their argument in region V. Further-
more, for �=1, �+

l =�−
3−l, with l=0,1 ,2 ,3. Thus, we set �±

1

=�±
2 � f , with f a temperature-dependent constant, since

these rates are in their slow-decaying regime. On the oppo-
site, the full energy dependence of �+

3 =�−
0 is taken into ac-

count. In terms of the “plus” rates only, the current is given
by

�I = 2�e*�
f�̄+

3 + �+
0��+

3 + f�

3�+
0 + 2�+

3 + 3�̄+
3

. �30�

Finally, we set �+
0 � f +��p, where ��p is the first plasmon

contribution to the rate that shows up as a secondary peak at
energy E=�. We now compare the current with no plasmons

���p=0� with ��p=g�+
3 obtained from Eqs. �18� and �20�

with relative weight w1 /w0=��g+1� /��g�=g. Figure 6
shows a comparison between the current with these approxi-
mations and the result obtained through a numerical solution
of the master equation. It is apparent that neglecting the plas-
mon completely misses the peak onset that is instead well
captured by our latter approximation. This testifies that plas-
monic excitations play indeed the crucial role in current en-
hancement.

B. Current moments

We will now discuss current moments.25 According to Eq.
�22�, these two quantities are the natural observables to look
at in order to measure the quasiparticle charge e*. In the
antidot geometry, different conditions can be found where
this measurement is special in the sense discussed above. We
remind that for a Poissonian process, as with weak back-
scattering current in a point contact, k2=e* /e=�, k3
= �e* /e�2.

1. Few-state regime: e*V›2Ec

For the sequential tunneling master equation �Eq. �23��
restricted to the two-state regime �two charge states�, an ex-
act analytical treatment is possible.

A known formula38,44 for the Fano factor is obtained,

k2 = 	 e*

e

	coth	�e*V

2

 − 2�

�+
0�−

0 f−�e*V�
�tot

2 
 , �31�

while for the skewness, we find

k3 = 	 e*

e

2	1 − 6�

�+
0�−

0 f+�e*V�
�tot

2 + 12�2�+
02�−

02f−
2�e*V�

�tot
4 
 ,

�32�

with the functions �tot and f± defined in Eq. �27�. The previ-
ous equations are an example of the intertwining between
charge and process statistics that does not allow, in general,
for unequivocal conclusions on e*. We will now analyze the
behavior varying the ratio e*V /kBT to look for special con-
ditions.

Thermal limit: e*V�kBT. The Fano factor is independent
of the charge fractionalization,

k2 = 2
kBT

eV
, �33�

reflecting the fluctuation-dissipation theorem. On the con-
trary, the normalized skewness that measures the fluctuation
asymmetry induced by the current depends on the carrier
charge e*=�e. Indeed, for low voltages V→0+, one has

k3 = 	 e*

e

2�1 − 3

�

�1 + ��2

1

cosh2��Ec�� − 1/2��� . �34�

Note that the � dependence can be used to extract � and e* /e
independently from g.

Shot limit: kBT�e*V. In the blockade region I with
��E±

0��1, one has k2=� and k3=�2. In this case, the statistics

FIG. 6. Current in the IV-V state regime versus bias voltage at
g=�=1/3. Solid line, numerical result; dot-dashed line, approxi-
mate solution in Eq. �30� with ��p=g�+

3; dashed line, approximate
solution without plasmons ���p=0�. The curves are at �=2
�equivalent to �=0 in Fig. 5 because of the periodicity in magnetic
flux�, kBT=0.1Ec, �=1, and units are as in Fig. 5. The best fit
parameter is f =0.19I0 / �e*�. Inset: scheme of retained rates in the
approximation for region V.
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of the transport process is Poissonian. The transport through
the antidot is almost completely suppressed, �I�0, and the
residual current is generated only by a thermally activated
tunneling that is completely uncorrelated. So region I consti-
tutes an example of a special regime. Let us now consider
the two-state regime �II� for �E±

0 �1. For fractional edges
g�1, k2,3 have a particular functional dependence on �. We
find that they both develop a minimum and that for not too
strong asymmetries, the absolute values of the minima are

kn
min =

�n−1

2n−1 . �35�

These minimal values do not depend neither on g, as the
comparison of solid �g=1/5�, dotted �g=1/3�, and dashed
�g=1/2� curves in Fig. 7 confirms, nor on �. For Fermi-
liquid edges g=1, we have

k2 = ��1 + �2�/�1 + ��2,

k3 = �2�1 − 6��1 + �2�/�1 + ��4� , �36�

independently from �. Here, k2 and k3 assume their minimal
values � /2 and �2 /4 in the symmetric case �=1. In these
conditions, we have the strongest anticorrelation that is sig-
naled by a marked sub-Poissonian statistics.

We can conclude that in the two-state regime, in the shot
limit, the values of the minima for k2,3 obtained by varying �
and � correspond to a special condition where the system
shows the same universal sub-Poissonian statistics for any
g�1. This represents a means of testing fractional charge
outside Poissonian conditions and insensitive to renormaliza-
tions of the Luttinger parameter.

In the intermediate regime e*V�kBT, k2,3 depend more
strongly on the parameter g, and the interplay of these two
energy scales prevents the onset of special regimes.

2. Many-state regime: e*V2Ec

We study now higher voltages e*V2Ec where the renor-
malized interaction parameter g has a prominent role. For

this purpose, we consider the behavior of both the Fano fac-
tor and the normalized skewness. In Fig. 8�a�, a density plot
of k2 and k3 for �=g=1/3 as a function of magnetic flux and
source-drain voltage is shown for different asymmetries.
First of all, in region I, we recover Poissonian statistics: k2
=� and k3=�2 �middle gray� for any �. Outside this region,
light gray zones represent super-Poissonian Fano factor and
normalized skewness �k2� and k3�2�, while dark gray
regions represent sub-Poissonian behavior �k2�� and k3
��2�. Figure 8 shows that super-Poissonian regions are pos-
sible with g�1. For g�1, we always have sub-Poissonian
behavior in accordance with previous results �not shown�.38

In the presence of asymmetry, super-Poissonian regions in-
crease. We note that the Fano factor and skewness present
concurrent super/sub-Poissonian behavior, and that the maxi-
mal values of the skewness in the super-Poissonian regions
are stronger. Given this similarity, in the following, we will
discuss the Fano factor only.

Three-state region. In region III, a tractable analytical for-
mula for the Fano factor can be derived under the same as-
sumptions made for the current �Eq. �28��. One has k2 /�
=1−2��k2, with

�k2 =
�t

02�+
1�−

1 + �t
12�+

0�−
0 + �−

0�+
1��t

0 − �t
1����−

1 − �+
0�

���−
0�t

1 + �t
0��+

1 + �t
1��2 ,

�37�

with �t
0 and �t

1 in Eq. �28�. We note that in order to have
super-Poissonian noise, a fractional g�1 is necessary, with
additional conditions on the asymmetry. Indeed, setting �
=1 in Eq. �37� in the limit �E+

1 ,�E−
0 �1 yields �k20 for

any g. On the other side, setting g=1 gives �k2=2� / ��2

+�+1�20. It appears that positive correlations are induced
by an interplay of � and g.

Five-state region. Finally, interesting effects take place in
the five-state regime �V� for �=1/3. Here, a strongly super-
Poissonian Fano factor appears along the diamond lines for
�=1 and disappears for large asymmetries. An investigation

FIG. 7. Fano factor �left� and skewness �right� as a function of
�. ��a� and �b�� �=1; ��c� and �d�� �=3. Parameters: e*V=0.1Ec,
kBT=0.004Ec, and g=1/5 �solid line�, g=1/3 �dot-dashed line�,
and g=1/2 �dotted line�. Horizontal thin lines indicate the universal
limits at 1 /2 at 1 /4.

FIG. 8. �a� Fano factor k2 /� at �=g=1/3 and kBT=0.02Ec vs
source-drain voltage and �. �b� Normalized skewness k3 /�2 with
the same parameters. Both moments are plotted for symmetric bar-
riers �=1 �top� and strong asymmetry �=10 �bottom�.
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of this effect can be performed with the same methods used
to obtain Fig. 6. The rate enhancement due to the onset of the
plasmonic collective excitations can again be shown to be
responsible for the super-Poissonian behavior at small asym-
metries.

V. CONCLUSIONS

In conclusion, we have analyzed transport of quasiparti-
cles through an antidot coupled with edge states in the frac-
tional Hall regime. The model of a finite-size chiral Luttinger
liquid with periodic boundary conditions has been reviewed
and cast in a suitable form for calculations of higher current
moments through a master equation approach in the sequen-
tial regime. We have also allowed for the possibility of a
phenomenological renormalization of the interaction param-
eter.

We have found that independent information on interac-
tion renormalization and fractional charge can be extracted
from tunneling current and its moments, noise, and skew-
ness. For current, remarkable qualitative differences as a
function of the Luttinger parameter appear in the shot limit
of resonance peaks and in the three-state regime. A quantita-
tive determination of g is furthermore possible through the
power-law behavior of on-resonance current versus voltage
at low temperatures. Current moments also depend strongly
on the interaction parameter. In particular, super-Poissonian
behavior is never found for g�1 regardless of asymmetry.
On the other hand, we have identified special regimes in the
one- and two-state regions where a comparison of the Fano
factor and normalized skewness realizes an unambiguous
charge determination procedure, insensitive to renormaliza-

tions of g. Finally, signatures of plasmonic excitations are
indicated in the large bias voltage regime.

Confirmation of such results appears to be within reach.
Plugging estimated parameters from present experiments26

into our results gives currents in the range of 0.5–5 pA for
g=1/3 and T=10 mK. At the same time, recent accomplish-
ments in measurement techniques applied to electron count-
ing open the possibility for feasible noise and skewness de-
termination, even in systems with very low current and noise
levels.45

Furthermore, lithographic approaches have been devel-
oped that allow for antidot radii sensibly smaller than the
300 nm in the original experiments.46 Thus, the energy scale
Ec associated with the antidot finite size can be raised to the
order of some hundreds of milli-Kelvin, and more easily at-
tainable temperature regimes can be compatible with the re-
quirements of our approximations.

We believe that our results help clarify some issues re-
lated to transport in the Hall regime, namely, features such as
fractional charges and non-poissonian correlations. Such a
thorough analysis of a Hall antidot device is a necessary
building block, especially in view of possible applications of
similar systems to topological quantum computation.47
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