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Abstract.
Hadron physics deals with the study of strongly interacting subatomic particles such as neutrons,
protons, pions and others, collectively known as baryons and mesons. Physics of strong
interaction is difficult. There are several approaches to understand it. However, in the recent
years, an approach called, holographic QCD, based on string theory (or gauge-gravity duality)
is becoming popular providing an alternative description of strong interaction physics. In this
article, we aim to discuss development of strong interaction physics through QCD and string
theory, leading to holographic QCD.

1. Introduction
The accepted theory of strong nuclear forces, or strong interactions, is Quantum
Chromodynamics (QCD) [1], an Yang-Mills gauge theory with SU(3) gauge group. It can
be studied at high energies using perturbation theory with enormous success, but, it is very
hard, known to be intractable for the analytical analysis at low energies because of the strong
coupling problem. The low energy regime of QCD contains the most interesting phenomena
related to hadron physics, thus it is of great theoretical interest. Due to unavailability of suitable
analytical tools for understanding QCD in the non-perturbative regime, QCD inspired heuristic
models and approximation schemes, ranging from the bag models [2, 3] to chiral perturbation
theory [4, 5] have been used to get partial information about the dynamics of QCD in the
strongly coupled regime. These models use simple frameworks for the analysis of some aspects
of non-perturbative QCD, but give impressive results. Though the simplicity of the effective
models make them very interesting and useful for the phenomenology of strong interactions,
no rigorous relation has been established with these models to QCD in spite of much efforts.
Another approach of studying non-perturbative QCD is by numerical simulation using lattice
gauge theory or lattice QCD [6, 7]. This procedure, though computationally intensive, appears
to be successful for the calculation of static quantities such as the vacuum structure and the
spectrum.

Almost immediately after the discovery of asymptotic freedom in QCD, existence of a new
phase of matter called Quark-Gluon-Plasma (QGP) was predicted [8, 9] at very high temperature
and density. QGP was expected to be made of de-confined free quarks and gluons. The
programme of heavy ion collision at relativistic energies started to realize QGP experimentally.
The experimental observations, over the last decade, in relativistic heavy ion collisions have
revealed that QGP is, contrary to expectations, also a strongly coupled system instead of a gas
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of free quarks and gluons [10, 11]. Lattice QCD has been an effective tool for understanding the
static properties related to equilibrium thermodynamics of QGP, but for the real time dynamic
properties of strongly coupled plasma, the transport coefficients particularly, it is much more
difficult [12]. This is mainly because lattice QCD methods are inherently Euclidean, and it is
very difficult to extrapolate numerical results to Minkowski signature. Thus, unfortunately we
do not have appropriate theoretical methods that would be applicable to the problems of QCD
at strong coupling.

Another attempt of understanding strong interactions had been through S-matrix formalism
[13, 14, 15]. It eventually led to the development of string theory [16, 17, 18]. The string
description reproduces the Regee trajectories of hadrons very well, however this model was
unable to reproduce the experimental results for hard and deep inelastic scatterings. Such
a process described by string theory in flat space-time is soft, that is the amplitudes decay
exponentially with energy, while both experimental data and QCD theoretical predictions [19, 20]
indicate a hard behavior in which the amplitudes decay with a power of energy. So, the interest in
string theory shifted towards making it a description of quantum gravity [21, 22]. This happened
primarily due to the huge success of QCD at high energies, and consistency problem of string
theory as well. Though terms like string tension, flux tubes are frequently used in hadron
physics, still it was generally believed that string theory had very little to do as description of
hadron physics.

A new way of thinking about strongly coupled gauge theories has emerged now, due to
progress in string theory over the past decade, in the form of gauge-gravity duality [23, 24, 25]
which connects a gauge theory in d-dimensional space-time to a gravity theory in (d + 1)-
dimensional spactime. Thus, the duality is holographic. The most widely studied example
of the duality is known as AdS/CFT correspondence. AdS stands for anti de Sitter space
and CFT for confromal field theory. The AdS/CFT correspondence connects a maximally
supersymmetric Yang-Mills theory in the gauge theory side to a string theory in a particular ten-
dimensional space-time, AdS5 × S5, in the gravity side. This duality, between strongly-coupled
Yang-Mills theories and weakly-coupled gravity is very attractive for its potential application in
understanding QCD in strongly coupled regime.

Direct application of the AdS/CFT correspondence to QCD is not possible, since QCD is
neither supersymmetric nor it is fully conformal, though there are some energy regime in which
it is ‘quasi conformal.’ So, gravity dual of QCD is not known yet. However, inspired by
AdS/CFT correspondence, and assuming that dual gravity theory to QCD exists, Witten [26]
first proposed to deform the AdS/CFT correspondence to describe strong interactions. A large
amount of activity started since then in building holographic models of QCD or AdS/QCD
models.

The idea behind Ads/QCD is to introduce an additional spatial direction to the four
dimensional space-time, which roughly corresponds to the energy scale of the field theory, and
try to construct a model that captures important non-perturbative aspects of the original 4-
dimensional field theory, such as confinement and chiral symmetry breaking. These models have
been proved to be successful in understanding these non-perturbative effects in simple terms.

The gravity dual of gauge theory at finite temperature has also been constructed introducing
black hole horizon in AdS5 [26]. Using the dual theory it becomes relatively easy to compute [27]
transport coefficients, such as viscosity and diffusion constants, for strongly coupled plasma. The
analysis of scattering amplitudes in the AdS black hole background led to the universal viscosity
bound [28], which plays an important role in understanding the physics of the elliptic flow of
QGP observed in relativistic heavy ion collisions.

In this article we aim to describe pedagogically the evolution of the understanding of strong
interaction from QCD to holographic QCD. In section (2), we give an introduction to strong
interaction in terms of QCD and S-matrix formulism. In section (3), we give very elementary
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description of string theory as least as required to appreciate the terms used in AdS/CFT
correspondence. In section (4), we introduce gauge gravity duality and holographic principle.
In section (5), we discuss AdS/CFT correspondence through Maldacena conjecture introducing
anti de Sitter space and conformal field theory. In section (6), we discuss different approaches of
AdS/QCD models. In section (7), we discuss application of AdS/CFT correspondence to gauge
theories at finite temperature. Finally, section (8) contains the summary and conclusions.

2. Strong interactions
Microscopic understanding of strong interaction (nuclear force) started with Yukawa [29]
postulating that protons and neutrons (nucleons) interact by exchanging pions, pseudo scalar
particles (0−) of mass about 140 MeV. This idea got experimental approval after pions were
discovered [30] in cosmic rays. However, it was soon realized that, (a) nucleons and pions show
excitations (resonances), i.e these are not point like elementary particles, and (b) exchange
of pions alone cannot explain the nuclear force. Strong interaction appears to be far more
complicated.

With the availability of higher and higher energy accelerators, more and more particles
other than the protons, neutrons and pions were produced. Fermions among them were named
baryons, and bosons were named mesons. Some of these have strange properties, namely copious
production and slow decay. A new quantum number called strangeness (S) was assigned to these
particles. Strangeness has been found to be conserved in strong interactions.

To face this situation of understanding a large number of particles and their interactions, two
proposals came by almost concurrently, (1) approach based on symmetry, that gave rise to the
quark model and QCD, (2) approach based on S-matrix, that led to hadronic strings and string
theory.

2.1. Symmetry approach of strong interaction
Patterns were found, when mesons and baryons of same spin and parity were placed on a two
dimensional plot with charge (Q) and strangeness (S) as axes [31]. These patterns were identified
with higher dimensional representations of SU(3) group. Strong interaction must have SU(3)
symmetry. As higher dimensional representations of SU(3) can be constructed taking direct
product of fundamental representations, it was thus suggested that the particles corresponding
to higher dimensional representations of SU(3) could be made up of the particles corresponding
to its fundamental (3-dimensional) representation.

Fundamental representation of SU(3) constitutes three spin-1
2 particle states with fractional

charge, and baryon number (B = 1
3), namely, up (u) with charge, Q = 2

3 , strangeness, S = 0,

isospin, I = 1
2 , third component of isospin, Iz = 1

2 , down (d) with charge, Q = −1
3 , strangeness,

S = 0, isospin, I = 1
2 , third component of isospin, Iz = −1

2 , and strange (s) with charge,

Q = −1
3 , strangeness, S = −1, isospin, I = 0. These are collectively called quarks [32, 33], and

are not observed in free state. Quark Model was developed to understand baryons as bound
states of three quarks (qqq), (p ≡ (uud), n ≡ (udd) etc ) and mesons as bound state of quark
and antiquark (qq̄), (π+ ≡ (ud̄), π− ≡ (dū) etc.)

However, immediately, quark model was found to suffer from spin-statistics problem. In
(J = 3

2 , Jz = 3
2) state of ∆++ there are three u quarks with spin aligned in the same direction.

Identical quarks in the same quantum state, giving rise to symmetric wavefunction for a fermion,
violates Pauli principle. The problem disappears if quarks are not identical. A new quantum
number, called color, was introduced for quarks [34, 35]. Each quark must appear in three
colours (say, red qr, green qg and blue qb). Quark model became extremely successful book-
keeping model for strongly interacting particles. However, quarks were considered at that time
as just “mathematical entities” having little to do with physical reality.
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It was known quite early that quantum field theory is the appropriate framework to
understand the dynamics of a system obeying principles of quantum mechanics and relativity. It
was very successful in describing electromagnetic interactions. However, for strong interactions,
there were some basic difficulties in constructing a quantum field theory, namely, (1) there are
too many hadrons and too many forces to construct a sensible interaction lagrangian to build
a useful field theory wit predictive power, (2) perturbative expansion of field theory becomes
meaningless as the coupling constant in strong interaction is large. So, at the end of the 1960’s,
a fundamental theory of strong interactions did not exist.

Finally, conclusive evidences of point like constituents (quarks) of nucleons were found in
deep inelastic scattering of electrons off nucleons [36]. However, isolated quarks with color
charge were not “seen”. Quarks are found to be, (1) almost non-interacting at high energy or
short distances (asymptotic freedom), and, (2) very strongly interacting at low energy or large
distances (infrared slavery).

Quarks, instead of baryons and mesons, were identified as the fundamental degrees of freedom
of strong interaction. There are 6 flavors of quarks, as shown in table 1 and each flavor is a
three component vector in color space.

Flavor Q(e) I I3 S C B T Mass
u 2/3 1/2 1/2 0 0 0 0 2 MeV
d -1/3 1/2 -1/2 0 0 0 0 5 MeV
s -1/3 0 0 -1 0 0 0 100 MeV
c 2/3 0 0 0 1 0 0 1.3 GeV
b -1/3 0 0 0 0 1 0 4.2 GeV
t 2/3 0 0 0 0 0 1 175 GeV

Table 1. Different flavors of quarks with respective quantum numbers and mass.

After quarks were identified as the fundamental degrees of freedom of strong interaction,
complete understanding of strong interaction reduced to, (1) knowing interaction of quarks that
explains observations of deep inelastic scattering experiment, (2) constructing bound states of
three quarks for baryons, and of quark and anti-quark for mesons with this interaction, and (3)
deriving the interaction between baryons and mesons. The methodology to achieve the above
objective is quantum field theory with perturbative techniques that worked extremely well for
electromagnetic interactions.

Interaction of quarks is modeled in the same way as interaction of electrons in
electromagnetism. Quarks interact through its color charge by exchanging gluons, Gaµ, which
are, like photon, mass-less spin 1 particle having two polarizations (µ), and unlike photon, carry
color charge (a = 1, · · · 8). Quantum field theoretic description of the dynamics of quarks and
gluons is called Quantum Chromodynamics (QCD) [37] in which the form of the interaction
lagrangian is determined by the principle of local gauge invariance; that is, by demanding the
total lagrangian to be invariant under the transformations belonging to the local (color) SU(3)
group. Such theories are called gauge theories or Yang-Mills theories [38]. The QCD lagrangian
is written as,

LQCD = q̄f iγµ (Dµ −mf ) qf − 1

2
Tr [GµνG

µν ] , (1)

where the covariant derivative, Dµ = ∂µ− igT aGaµ, the gluon field tensor, Gµν = i
g [Dµ, Dν ], mf

is the mass of quark of flavor f , T a are SU(3) generators and g is quark-gluon coupling constant.
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Expanding LQCD of (1) we get,

LQCD = q̄f (iγµ∂
µ −m) qf − 1

4

(
∂µG

a
ν − ∂νGaµ

)2

︸ ︷︷ ︸
L0

+ g q̄f γµT
aGaµ qf︸ ︷︷ ︸
LI

−
(
g fabc ∂µG

a
ν G

b µ Gc ν +
1

4
g2 feabfecdGaν G

b
µG

c νGdµ
)

︸ ︷︷ ︸
LII

, (2)

where L0 represents the lagrangian for free quarks and gluons, LI represents quark-gluon
interaction, and LII represents gluon self interaction of gluons. Self interactions of gluons, a
feature of non-abelian gauge theory, occurs because gluons have color charges. Such interactions
make QCD non-linear and thus complicated. The quark-gluon interaction as well as the gluon
self interaction strength is governed by the same coupling constant, g.

The QCD lagrangian, LQCD, possess, beside Poincare and local SU(3) (color) gauge
symmetry, chiral symmetry and scale symmetry. In the limit, mu ,md ≈ 0, (mu ' 1.7 −
3.3MeV ,md ' 4.1−5.8MeV ), LQCD in the (u, d) sector is invariant under SU(2)×SU(2) chiral
symmetry. However, due to absense of parity doublets in hadronic states the chiral symmetry
is spontaneously broken. The QCD action,

SQCD =

∫
d4xLQCD , (3)

is invariant under the scale (conformal) transformations,

xµ → λxµ , q → 1

λ
3
2

q , Gaµ →
1

λ
Gaµ , (4)

in absence of the quark mass term in QCD lagrangian. This is called scale symmetry (or
conformal symmetry), however, this symmetry is also broken due to quantum effects.

After quantization and renormalization, the QCD lagrangian, LQCD, uniquely defines the
algorithm (or Feynman rules) for calculating amplitudes for all physical processes of strong
interaction in perturbative expansion. The quadratic terms give the propagators, whereas the
cubic and quartic terms give the interaction vertices.

The wisdom of mixing quantum mechanics and relativity is that the vacuum or the ground
state of a relativistic quantum mechanical system is not trivial, i.e. it is not just the empty
space. Actually it can be thought of as a medium of virtual particles. Because of this, a general
feature of quantum field theory is that the coupling constant, g, depends on the energy scale, µ
at which observations are made. This dependence is given by the renormalization group (RG)
equation, relating the beta function,

β(α) = µ
dα

dµ
(5)

with the coupling constant. In case of QCD the RG equation is given as,

µ
dα

dµ
= −β0

α2

2π
− β1

α3

4π2
− · · · , (6)
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where the strong coupling constant, α = g2

4π . In the lowest order, solution of (6) is,

α(µ) =
2π

β0 ln
( µ

Λ

) , (7)

with β0 = 11− 2
3nf . The integration constant, Λ, is an intrinsic energy scale of QCD, which is

introduced dynamically. Several measurements of the strong coupling constant at the Z-boson
mass scale fix [41] the QCD scale parameter, Λ, as,

α(MZ) = 0.117, Mz = 91 GeV , ⇒ Λ = 217 MeV . (8)

It is seen from (7) that the coupling constant decreases with increasing energy, thus explaining
asymptotic freedom, and the growth of the coupling at small energy is consistent with the non-
observation of isolated quarks [39, 40]. The quarks are always confined to form hadrons. It is
also seen from (7) that α(µ) diverges at Λ. This is known as strong coupling problem of QCD.
Moreover, the appearance of an intrinsic energy scale (Λ) in QCD breaks the scale symmetry
(conformal symmetry).

Observationally to test the correctness of QCD, we require to compute the correlation
functions, 〈O (x1)O (x2)〉, of gauge invariant operators, O (x1). At high energy when the strong
coupling constant, α, is small ( α < 1, weak coupling domain) the correlation functions are
expressed as a perturbative expansion in α, and a few terms in the expansion give correct result.
However, at low energies, below Λ (≈ 217 MeV), the strong coupling constant, α, is large ( α > 1,
strong coupling domain), the perturbative expansion is invalid, consequently interesting domain
of strong interaction remains intractable.

At low energy QCD possesses no expansion parameter. ’t Hooft proposed to consider a
generalization of QCD obtained by replacing the gauge group SU(3) by SU(Nc) and to perform
an expansion in 1

Nc
[42, 43] in the limit Nc → ∞. It was found that SU(Nc) Yang Mills gauge

theory has a well defined perturbative expansion in the parameter, 1
Nc

, only if the number of

colors, Nc, is large, while keeping the ’t Hooft coupling, λ = g2Nc fixed. This is what is called
large Nc limit of QCD. Representing gluon lines in double line notation of color and anti-color,
it can be shown that a certain class of Feynman diagrams called planer diagrams survive in
this limit. The diagrams look like two-dimensional surfaces. The topological classification of
the Feynman diagrams can be made precise by associating a Riemann surface to each Feynman
diagram. It turns out that contribution of a given Feynman diagram to the amplitude is governed
by the factor Nχ

c , where χ is the Euler number of the Riemann surface corresponding to that
Feynman diagram. Thus, the expansion of any amplitude, A, of QCD in terms of Feynman
diagrams can be expressed as,

A =
∑
χ

Nχ
c A

(χ) (λ) (9)

where the coefficients A(χ) (λ) are to be computed separately for the diagrams. The large Nc

QCD is clearly not the same as QCD, however, in many cases the results for large Nc are
almost the same as those for Nc = 3 theories. There are two regimes in large Nc QCD when
parameterized by the coupling λ. For λ � 1 the theory is perturbative in λ and Feynman
diagram summation can be used to calculate amplitudes, however, for λ � 1 the theory is in
the non-perturbative domain, the diagrams become discretized two dimensional surfaces which
are too difficult to compute.

In this situation, when QCD is known to be highly difficult for the analytical analysis at
low energies because of the strong coupling problem, two paths were followed, namely, (1) QCD
inspired models and effective theories, (2) numerical calculations using lattice QCD.
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QCD inspired models aim to understand structure of baryons and mesons and their
interactions incorporating some features of QCD, mainly, asymptotic freedom, confinement and
chiral symmetry. These models include several versions of phenomenological bag models [2].
In the (u, d) sector, QCD lagrangian (1) has chiral symmetry which is spontaneously broken
as parity doublets are not found in the hadronic ground states. The chiral symmetry and
its spontaneous breaking was identified to be the key feature of low energy QCD. Taking
pseudoscalar mesons, the Goldstone bosons of spontaneous chiral symmetry breaking, as the
fundamental degrees of freedom of strong interaction at low energy, an effective theory called
chiral perturbation theory was developed to replace QCD for low energy hadron physics [44].
Though the QCD inspired models and effective theories describe low energy hadron physics
phenomena quite well, but these are not rigorously derivable from QCD.

Lattice QCD appears to be the only known way to study QCD without approximations
[6, 7, 45]. It aims to solve QCD numerically by discretizing space-time on a four dimensional
lattice, so that it can be simulated on a computer using methods analogous to those used for
systems of statistical mechanics. Fields representing quarks are defined at lattice sites while the
gluon fields are defined on the links connecting neighboring sites. The input parameters in these
simulations are the strong coupling constant, αs, and the quark masses, mq. The discrete space-
time lattice can be thought of as a nonperturbative regularization scheme. At finite values of the
lattice spacing a, (providing an ultraviolet cutoff of the order of 1

a) there are no infinities, and in
the limit, a→ 0, finite renormalized physical quantities are recovered. These simulations allow
to calculate correlation functions of hadronic operators and matrix elements of any operator
between hadronic states in terms of the fundamental quark and gluon degrees of freedom.

These calculations being computationally demanding require the use of largest available
supercomputers. It seems to be the only hope for understanding non-perturbative QCD. In
the past several years, it has produced quantitatively impressive results, however, there exists
conceptual and technical problems to apply it in all situations of strongly coupled QCD.

One of the major successes of SU(3) lattice QCD calculation is to demonstrate that a
confining potential naturally emerges between a static, infinitely heavy quark (q) and antiquark
(q̄) by considering the Wilson loop [46, 47]. The (qq̄) potential can be well reproduced by a sum
of the Coulomb term due to the perturbative one-gluon-exchange process, a linear confinement
term and a constant,

Vqq̄ (r) = −A
r

+ σr + V0 , (10)

where σ ' 0.89 GeV/fm of the confining term is like string tension. The linear potential at
the long distance can be physically interpreted with the flux-tube picture or the string picture
for hadrons, in which the quark and the antiquark are linked with a one-dimensional flux-tube
with the string tension σ. This flux-tube picture (or the string picture) in the infrared region is
supported by the Regge trajectory of hadrons.

Therefore, the starting problem of hadron physics, that is, how to construct the spectrum
of mesons and baryons from the fundamental constituents, quarks and gluons, remains one
of the most challenging unsolved problems of strong interaction dynamics. In addition, data
from RHIC experiments also have convincingly suggested, contrary to expectations, that the
quark gluon plasma (QGP) is strongly coupled [10]. Actually, every experimental datum of
hadron physics contains at least a part that depends on strong coupling physics. It is ironical
that though QCD is a beautiful physical theory, but in the low energy domain, that contains
interesting phenomena of hadron physics, QCD remains inaccessible. No escape from strongly
coupled regime !
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2.2. S-matrix approach to strong interaction
In the 1960’s, when list of strongly interacting particles, mesons and baryons, was ever increasing,
it was clear that none of these particles were elementary. The idea of “nuclear democracy” was
invoked, in which the notion that some particles are more elementary than others was rejected.
All hadrons have similar status and the concept of elementary constituent was thought to be
unnecessary. The form of a quantum theory to describe the strongly interacting particles can be
determined by using very general consistency criteria, and features of the spectrum of particles.

It was observed that the resonances (very short lived strongly interacting particles) can be
arranged in straight lines in two dimensional plots with spin (J) and square of mass (m) as axes.
These are called Chew-Frautschi plots [48], and the straight lines are called Regge trajectories
which follow the relation,

J (= α(s)) = α s+ α(0) , (11)

with s = m2. The Regge trajectories can be derived from a simple assumption that the hadrons
are described by rotating relativistic strings. Energy (E) and the angular momentum (J) of a
rigidly rotating string of length L with tension T , the endpoints of which move at near the speed
of light c, can be written as,

E = T

∫ L/2

−L/2

dr√
1− v(r)2

=
π

2
TL , J = T

∫ L/2

−L/2

v(r) r dr√
1− v(r)2

=
π

8
TL2 . (12)

that reproduces the Regge trajectory as,

J =
1

2πT
E2 = α s , (13)

taking E = m. Understanding Regge trajectories in terms of rotating string marks the beginning
of string description of hadrons.

A self consistent theory of strong interaction in which there are no elementary constituents, all
particles are composites (lying on Regge trajectories), and they scatter by exchanging composite
particles was formulated using S-matrix (scattering matrix) that describe what happens when
particles collide. The S-matrix transforms the initial state, |i〉, at t → −∞ into the evolved
state, |f〉, at t→ +∞,

|f〉 = S |i〉 , (14)

satisfying general principles of unitarity, analyticity, crossing symmetry, and asymptotic
behavior. The transition matrix T is defined as,

S = I + iT , (15)

and the scattering amplitude, Mfi, for a scattering process |i〉 → |f〉, is defines as,

〈f |T |i〉 = (2π)4δ(pf − pi)Mfi . (16)

The scattering amplitude, Mfi, can be expressed as product of two factors,

Mfi = KfiA(s, t, u) . (17)

where Kfi is a covariant factor depending on spin, isotopic spin, and momentum components of
the external particles, and the invariant amplitudes A(s, t, u) is the dynamical part depending
only on the Mandelstam variables, s, t and u of which only two are independent. The scattering
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in the “t-channel” and “s-channel” must produce the same amplitudes, because same set of
poles (resonances) participate in scattering in both channels. Veneziano [15] constructed the
amplitude of a scattering process as,

A(s, t, u) = A(s, t) +A(s, u) +A(t, u) , (18)

with

A(x, y) =
Γ(−α(x))Γ(−α(x))

Γ(−α(x)− α(y))

=

∫ 1

0
dz z−α(x)−1 (1− z)−α(y)−1 , (19)

where α(x) is a linear function of x, satisfying Regge trajectory. Veneziano formula was
extremely successful in understanding low energy data of meson scattering.

The 4-particle Veneziano formula was generalized to an N-particle amplitudes which were
factorized using operators consisting of an infinite number of harmonic oscillators. The complete
spectrum of mesons was determined. It turned out that the degeneracy of states grew up
exponentially with the mass that agrees with Hagedorn observation [49]. This suggested that
Veneziano formula might be indicating something more than just approximate phenomenological
descriptions of hadron scattering. These could be regarded as the lowest order approximation
of amplitudes from some new quantum theory.

The Veneziano amplitude grew out of S-matrix theory where the scattering amplitude is the
only observable object, the action or the lagrangian does not play any role. Nambu [16], Nielsen
[17] and Susskind [18] found that the infinite number of oscillators, that one gets through the
factorization of N-point Veneziano amplitude, naturally comes out from quantization of the
lagrangian for a one-dimensional relativistic string, and Veneziano formula can be obtained as
the tree-level string interaction amplitude. This is the beginning of string theory to understand
hadronic physics. In the following section we give a very brief introduction to string theory.

3. Elements of string theory
We discuss some basic concepts of string theory mostly following the text books [50, 51, 52, 53,
54, 55, 56, 57]. Some of these concepts will be required to appreciate the connection between
gauge theories and string theories through Ads/CFT correspondence.

3.1. Bosnic strings
String are objects extended in one spatial dimension, having no thickness but only length,

typically of the order of Planck length

(
lP =

√
h̄G
c3
≈ 10−33 cm

)
, thus practically look like point

particles in the hadronic length scale. The strings could be open ended or closed. As the string
moves, it sweeps out a two-dimensional surface (sheet), called the worldsheet, similar to the
world-line generated by the motion of a point particle. We need two coordinates, (σ, τ), to
describe the worldsheet, where σ is a coordinate along the string, and τ a timelike coordinate,
with the limits, 0 ≤ σ ≤ ls and −∞ ≤ τ ≤ ∞, where ls is the length of the string. The world
sheet is embedded in a d-dimensional space-time, M. Thus, any point P having worldsheet
coordinates (σ, τ) can also be specified by d-coordinates, Xµ(σ, τ) (µ = 0, 1, · · · , d− 1), of M.

The action to describe the dynamics of string can be taken as proportional to the invariant
area of the worldsheet,

S ∝
∫
dA . (20)
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The infinitesimal area, dA, can be written as,

dA = dσdτ
√
−det(hab) , (21)

where

hab = Gµν∂aX
µ∂bX

ν , (a, b) ∈ (σ, τ) , (22)

is the induced metric on the worldsheet. Gµν is the metric of M, it governs all the geometric
properties of M. The Nambu-Goto action is written as,

SNG = −T
∫
dσdτ

√
−det(hab) = −T

∫
dσdτ

√
−det(∂aXµ∂bXµ) , (23)

where T , called ‘string tension’, has dimension of force, and can be related to the Regge slope,
α, as,

T =
1

2πα
, α ≡ l2s , (24)

with fundamental length scale, ls, (string length). This action is difficult to quantize, because of
the square root. An alternate action, equivalent to the Nambu-Goto action, SNG, the so called
‘Polyakov action’ is constructed by introducing an auxiliary field, γab, as,

SP = −T
2

∫
dσdτ

√
−det(γab) γ

abGµν∂aX
µ∂bXµ . (25)

The polyakov action is similar to the action of d bosonic fields, Xµ(σ, τ) in 2-dimensions
(one space and one time). It is invariant under Lorentz transformations and translations of
Xµ(σ, τ), in d-dimensions, thus exhibits Poincare symmetry. In addition, SP is invariant under
2-dimensional diffeomorphism or reparametrization, τ → τ ′(σ, τ), σ → σ′(σ, τ) , and the Weyl
rescaling of the auxiliary field, γab → γab e

φ(τ,σ) .
The equations of motion of Xµ (σ, τ) can be obtained by varying SP with respect to Xµ (σ, τ)

as,

δSp
δXµ

= 0 =⇒ ∂a
(√
−γγab∂bXµ

)
= 0 , (26)

which are constrained by the equation of motion for γab, obtained by varying SP with respect
to γab as,

δSp
δγab

= 0 =⇒ ∂aX
µ∂bXµ −

γab
2
γcd∂cX

µ∂dXµ = 0 . (27)

These constraints are called the Virasoro constraints. The equation of motion for Xµ are
supplemented with boundary conditions that make the boundary terms vanish in variation.
The closed string satisfies the periodic boundary conditions, Xµ(σ, τ) = Xµ(σ + ls, τ), and the
open string satisfies either Neumann boundary conditions, ∂σX

µ(0, τ) = ∂σX
µ(ls, τ) = 0, or

Dirichlet boundary conditions, δXµ(0, τ) = δXµ(ls, τ) = 0, at the end points of the string.
For an open string there could be Neumann boundary conditions in p directions, and Dirichlet
boundary conditions in d− p directions.

The re-parametrization and Weyl symmetry of SP are local gauge symmetry on the
worldsheet. These can be utilized to fix the auxiliary field, γab. However, even after gauge
fixing, SP is left with a residual 2-dimensional conformal symmetry.
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The solution of (27) can be written as an expansion in terms of different oscillation modes
of string. The string action, SP , can be quantized using canonical quantization procedure, by
making the dynamical variable, Xµ(σ, τ), and its conjugate momenta as operators and employing
commutation relations between them. The expansion coefficients of oscillation modes become
creation and annihilation operators. A Fock space of quantum states corresponding to different
oscillation modes are generated by applying these creation operators on the vacuum. The
residual symmetry is implemented on quantum states using Gupta-Bleuler like methodology of
quantum electrodynamics. The particles corresponding to the excitations of the open string
propagate in the world-volume on which the end points of the string is fixed, while particles
corresponding to the excitations of the closed string propagate in the full d-dimensional space-
time. The main results of bosonic string theory can be listed as,

(i) The bosonic string can be quantized consistently only if the dimension of M, d = 26,

(ii) Each vibrational mode of the string corresponds to a particle with distinct spin (J) and
mass (M). The spectrum contains a finite number of massless and infinitely many massive
excitations with, M2 = n

2α with n ∈ N .

(iii) The lowest energy state (ground state) is tachyonic, M2 < 0 ,

(iv) The spectrum of the closed string contains a massless spin-2 (graviton) particle.

The above results were not encouraging enough to sustain interest in string theory as a candidate
to describe strong interaction physics. The graviton-like particle was a great embarrassment as
the string was first developed as a model of hadrons. However, progress in string theory continued
to make it free from above anomalies, particularly the tachyonic states. The major development
in string theory at this stage involved inclusion of fermions in string action as any fundamental
theory of nature must contain both of these types of particles. In doing this, a new kind of
symmetry called ‘supersymmetry’ was developed.

3.2. Supersymmetry
The supersymmetry is a symmetry between bosons and fermions [58, 59]. It came about in trying
to unify gravity with other interactions. According to Einstein’s general theory of relativity,
gravity is related to the space-time symmetries of Poincare group, a non-compact Lie group,
whereas other interactions, namely strong, weak and electromagnetic, are based on local gauge
invariance of internal symmetries (or gauge groups) of compact Lie groups namely, SU(3), SU(2)
and U(1) respectively. Therefore, any attempt to unify gravity with other interactions requires,
the Poincare group and the internal symmetry group to be part of same algebra. However,
the answer to such attempts turned out to be no, in the form of the Coleman-Mandula ‘no-go
theorem’, which says that if the Poincare symmetry and internal symmetries were to combine
in a Lie algebra, the S-matrices for all processes would be identically zero [60]. However, like all
theorems, this theorem also was only as strong as its assumptions, and one of the assumption
was that the final algebra is a Lie algebra. It was realized that the notion of Lie algebra can be
generalized to a graded Lie algebra ( or super algebra) to circumvent the no-go theorem.

A super algebra is an algebra that contains some generators, Qi, which satisfy
anticommutation relations among themselves, and commutation relations with other generators
which satisfy commutation relations among themselves. An anticommuting operator Qi is
fermionic, so, these operators generate transformations shown schematically as,

Qi|Boson〉 = |Fermion〉 , Qi|Fermion〉 = |Boson〉 .

This is called supersymmetry (SUSY). Fermions and bosons are grouped together into
supermultiplets which are related under this symmetry. Thus, according to supersymmetry,
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corresponding to every boson there must be a fermion with the same mass and internal quantum
numbers, and vice-versa.

Supersymmetry generators, Qi, are intrinsically complex objects, so Qi† are also distinct
symmetry generators. The index i = 1, · · · ,N represents different supersymmetric generators
in case there are more than one pair.

Supersymmetric partners of currently known particles have not yet been observed
experimentally. It is believed that the reason for non observation of these particles is because
supersymmetry is a broken symmetry, and as a result the superpartners are much heavier than
the known particles. Particle accelerators (LHC) may be on the verge of finding evidence for
high energy supersymmetric partners in the near future!

3.3. Superstring theory
Superstring theory attempts to describe both bosons and fermions in terms of the vibrational
modes of the fundamental string. In doing that, the field content of the world-sheet is enlarged
to include fermionic (anticommuting) variables, Ψµ

α, in addition to the bosonic variables, Xµ.
For every µ, the two component Ψµ

α is a fermionic variable on the world-sheet, quantization of
which would give rise to particle states that behave as space-time fermions. The Polyakov string
action with world-sheet fermions can be written in conformal gauge as,

SP = −T
2

∫
dσdτ

(
∂αX

µ∂αXµ − iΨ̄µρα∂αΨµ
)
, (28)

where ρα are 2-dimensional Dirac matrices,

{
ρα, ρβ

}
= −2ηαβ , ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
, (29)

and the world-sheet fermions, Ψµ =

(
ψµ−
ψµ+

)
, with Ψ̄µ = Ψ† ρ0 .

The original action, from which (28) is obtained after gauge fixing, is invariant under: (i)
Poincare transformations, (ii) Worldsheet reparametrizations, (iii) Weyl transformations, (iv)
super-Weyl transformations (for fermionc variables), and (v) worldsheet supersymmetry. The
worldsheet supersymmetry transforms fermions into bosons and vice versa as,

δXµ = εΨµ , δΨµ = −iρα∂αXµε , (30)

where ε is a constant anti-commuting spinor.
The equation of motion for the Xµ fields is the same to that in the bosonic case (Laplace

equation), and the equation of motion for the fermionic variables Ψµ is the Dirac equation in two
dimensions. These are supplemented with boundary conditions. For the closed superstring there
are two possibilities for the boundary conditions of fermions, (i) periodic boundary conditions
(Ramond (R) sector) ψµ+/−(σ, τ) = ψµ+/−(σ + l, τ) and (ii) anti-periodic boundary conditions

(Neveu-Schwarz (NS) sector) ψµ+/−(σ, τ) = −ψµ+/−(σ + l, τ).

In addition there are constraints, coming from the equation of motion of the auxiliary field,
to be satisfied by the fermionic variables. These are more involved and called the super-Virasoro
constraints.

The quantization of the superstring is achieved, in canonical quantization procedure, by
promoting the bosonic variable, Xµ, and the fermionic variable,Ψµ, to operators, and imposing
commutation and anticommutation relations respectively between them and their canonical
conjugates. In doing that the coefficients corresponding to vibrational modes become creation
and annihilation operators.
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A Fock space of quantum states corresponding to different oscillation modes of superstring
are generated by applying these creation operators on the vacuum. The residual symmetry is
implemented on quantum states. These vibrational modes of the superstring correspond to an
infinite tower of particle states with definite spin (J) and mass (M), satisfying a linear Regge
trajectory relation. It also turns out that the spectrum of the superstring can be organized
into spacetime supersymmetry multiplets. The spectrum of the fermionic string is truncated
by an additional projection, the Gliozzi-Scherk-Olive (GSO) projection [61]. This projection
can be chosen in such a way that the tachyon is projected out, and the remaining spectrum is
space-time supersymmetric. The main results of superstring theory can be listed as,

(i) The quantized theory of superstring shows that vibrational mode corresponds bosonic and
fermionic particles with distinct spin (J) and mass (M),

(ii) The superstring can be quantized consistently only if the dimension of the space-time is 10.

(iii) The ground state is not tachyonic.

(iv) The spectrum of the closed superstring contains a massless spin-2 excitation (J = 2 ,M =
0), whereas the spectrum of the open string contains a massless spin-1 excitation (J =
1 ,M = 0), along with their space-time supersymmetric partners.

The massless spin-1 excitations of open string were identified with gluons and the massless spin-2
excitation of closed string was identified with graviton. A bold assertion was made that string
theory could be a framework for understanding quantum gravity [21, 22].

There are five types of perturbatively consistent superstring theories in 10 space-time
dimensions. These are called, Type-I, Type-IIA, Type-IIB, Heterotic SO(32) and Heterotic
E8× E8. All of these are free from tachyon problem, and contain closed strings implying that
string theory is inconsistent without closed strings (or gravity).

3.4. String interaction
The simplest string interaction is mediated by joining two open strings at their end points, or
splitting an open string into two open strings. For example, the Feynman diagram corresponding
to annihilation of two particles is obtained by merging of two open strings into a single open
string.

The strength of the interaction is controlled by the value of the dimensionless string coupling
constant gs, which is dynamically determined through the vacuum expectation value, Φ0, of the
dilaton, Φ, as gs = eΦ0 . The dilaton is a massless excitation present in every string theory.

In quantum field theory, computation of scattering amplitudes for a given process involves
summation over all possible Feynman diagrams corresponding to that process. However, in string
theory, it is replaced by the summation over world-sheets of different topologies, depending on
the choice of the type of the string theory. For example, the worldsheet corresponding to
scattering of two closed strings, in the tree level, is topologically equivalent to a sphere with
four discs cut out, and in the one-loop it is a torus. These are two dimensional surfaces with
holes. Thus, interactions are introduced in string theory through the inclusion of topologically
non-trivial surfaces.

Scattering amplitudes, A, of a given process can be computed in perturbation theory, where
A is expanded in a power series in the string coupling gs as,

A =
∑
χ

g−χs A(χ) , (31)

where each term A(χ) is computed separately. The validity of perturbation theory requires
gs � 1. The strength with which a given world-sheet contributes to the scattering amplitude
is governed by χ, the Euler number of the worldsheet, determined by its topology. Though
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the scattering amplitude is formally given in (31), however, extracting answers from diagrams
with more than two loops is very difficult due to the complexity of the mathematics involved in
dealing with these surfaces.

The scattering amplitudes in string theory at each order in perturbation theory consist of
only one diagram which is not plagued with infinity, in contrast to that in quantum field theory
where there are many Feynman diagrams at each order and diagrams containing loops suffer
from ultra-violet divergences. Heuristically this can be understood as if the point-like interaction
vertices of quantum field theory are now smeared due to finite extent of the string.

The scattering amplitude (31) of string perturbation theory is similar to the scattering
amplitude (9) in ’t Hooft large N expansion of SU(N) gauge theory with the identification,
gs ∼ 1

N . Feynman diagrams of the gauge theory become surfaces that represent interacting
strings. This gives the strongest hint that there could be some connections between string
theory and gauge theory.

3.5. Compactification
Superstrings are consistently quantized in 10-dimensional space-time, but observationally space-
time of our universe is 4-dimensional. To make the superstrings to describe the universe, the
extra 6 dimensions have to be curled up into a small compact space of dimension of the order of
the string scale (10−33 cm), so that the presence of these extra dimensions will not be detected.
Thus, a compact 6-dimensional space needs to be hidden at every point in the 4-dimensional
space-time.

It is possible to formulate string theory in non-trivial ten dimensional space-times where
only four dimensions are infinitely extended and the remaining six are curled up and compact.
One possible realization of compactification can be achieved by making a direct product or
factorization ansatz, M10 = M4 × K6 for the 10-dimensional space-time, where M4 is 4-
dimensional Minkowski space, and K6 a 6-dimensional compact manifold. The resulting theory
in M4 depends on the geometry and topology of the compact manifold, K6. A particular
scheme of compactification is known as Kaluza-Klien compactification, in which the extra 6
spatial dimensions may be put on 6 circles, forming a 6-dimensional torus.

The compactification leads to a tower of states, called Kaluza-Klein states, because if one of
the spatial dimensions is circular of radius R (periodic), we know from quantum mechanics
that the momentum in that dimension is quantized as, p = n

R (n = 0, 1, 2, 3, ....). These
states may show up in the mass spectrum, however, choosing the spatial extension, R, of the
compactified dimension appropriately the Kaluza-Klien states may be made unobservable in the
uncompactified 4-dimensional world.

Another interesting implication of compactification is that strings can wind around a compact
dimension. This leads to winding modes in the mass spectrum. A closed string can wind around
a periodic (circular) dimension an integral number of times. The energy of the winding mode is
equal to the string tension, T , times the total length of the wrapped string, Ew = w2πRT = wR

α ,
with w (= 0, 1, 2, · · ·) being winding the number.

Another compactification scheme is by taking the compact manifold K6 to be Calabi-Yau
space. In fact, the string dynamics, in particular the assumption of the factorization ansatz,
M10 = M4×K6, and supersymmetry in uncompatified M4, restricts the compactified space, K6,
to be Calabi-Yau space. It is possible to cleverly compactify [62] the superstring to get realistic
gauge groups, SU(3) × SU(2) × U(1), of standard model in M4. The topology of Calabi-Yau
space controls the number of families of low mass fermions, quarks and leptons.

3.6. Non-perturbative string theory
The formulation of string theory is of perturbative nature. The Feynman diagrams correspond
to surfaces. There is no a priori reason, however, to assume that the string coupling constant,
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gs, which controls the expansion in terms of surfaces, is small. In addition, there are five
independent perturbative superstring theories with different basic properties. Thus, for a
complete understanding of the string theory we need to include non-perturbative effects.
Understanding non-perturbative effects in string theory was possible by the discovery of duality
symmetries [63, 64]. Dualities actually are equivalences between two apparently different
theories. The idea of duality is very powerful, since mapping to a dual set of variables we can
transform a difficult question (strong-coupling behavior) of one theory into a easy one (weak-
coupling behavior) of the other. There are two types of duality symmetry in string theory,
namely S-duality and T-duality.

The S-duality, which has a correspondence in quantum field theory, relates strong coupling
regime of one theory to the weak coupling regime of the other. The T-duality, on the other
hand, has no analogue in quantum field theory, it belongs solely to string theory, and originates
due to compactification of extra dimensions in string theory. It relates a theory in which extra
dimension is compactified on a circle of radius R, to another theory in which extra dimension is
compactified on a circle with radius 1/R.

These dualities play a very important role in unifying five different perturbative superstring
theories. Using a combination of S and T dualities it was realized that the five perturbatively
defined string theories are actually different phases of a unified theory called M-theory which
is defined in 11-dimensions [65, 66]. In this picture, different ground states of the M-theory
correspond to various string theories. The perturbation theory only probes the vicinity of each
ground state, whereas duality makes non-perturbative correlations across different vacua.

Using T-duality Polchinski [67, 68] showed that string theory necessarily includes, in addition
to strings, various higher dimensional objects known as branes [69]. One important class of
branes are called Dp-branes (or Dirichlet-p-branes, with 0 ≤ p ≤ 9) which are (p+1)-dimensional
hyper-surfaces in the (9+1)-dimensional target space,M. D0-branes are particle-like, D1-branes
are string-like, and D2-branes are membrane-like objects, and so on.

There are two ways to think about Dp-branes. On the one hand, in closed string theory these
are solitonic solutions of the equations of motion, characterized by a charge and mass per unit
volume, called brane tension, which is inversely proportional to the string coupling constant gs.
This dependence on the coupling constant is typical of the solitons in field theory. Because of
their masses, Dp-branes can deform the space-time metric around them as manifestation of the
gravitational effects.

On the other hand, in open string theory these are (p + 1)-dimensional hyper-surfaces. The
end points of open strings, satisfying Neumann boundary conditions in p longitudinal directions
and Dirichlet boundary conditions in 9−p transverse directions, lie on these surfaces, and move
freely along the p-directions of the D-brane, but cannot leave it by moving in the transverse
directions. The end points of an open string while moving on a Dp-brane may come in contact
and become a closed string which can leave the brane, and closed strings can break touching
the Dp-branes and become open strings. The massless excitations of a open string whose
end points lie on a Dp-brane are gauge fields and their super-partners constitute a maximally
supersymmetric U(1) gauge theory in p+1 dimensions. This gauge theory is localized on the
world-volume of the Dp-branes. The gauge coupling constant, g, is related to the string coupling
constantgs as, g2 = 4πgs, for p = 3.

4. Gauge-Gravity duality
Strong interaction appears to be too difficult to understand in both the approaches described
above, because of QCD becoming strongly coupled at low energies, and string theory becoming
more of a theory of quantum gravity. In this situation, it is an interesting idea to look for a
duality, that is, to find a theory which is equivalent to QCD, but weakly coupled when QCD is
strongly coupled.
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There are several examples of duality in physics. A famous example of duality in (1 + 1)-
dimensions is between Sine-Gordon model describing massless bosons and Thirring model
describing massive fermions. The Sine-Gordon model [70] is a quantum field theory in (1+1)-
dimensional space-time of a single scalar field φ(x) which is self-coupled as described by the
lagrangian,

LSG =
1

2
∂µφ∂

µφ+
α

β2
(cos (βφ)− 1) , (32)

where α is a parameter and β is the coupling constant. The classical equations of motion
corresponding to the lagrangian (32) give rise to stable solutions known as solitons and
antisolitons. Interestingly, many-soliton solutions obey Pauli’s exclusion principle, which can
be interpreted as a fermion-like behavior [70]. In turn, the Thirring model [71] is a theory of a
self-coupled Dirac field ψ(x) in (1+1)-dimensional space-time described by the lagrangian,

LT = iψ̄γµ∂µψ −mf ψ̄ψ −
κ

2

(
ψ̄γµψ

)2
, (33)

where mf is the mass of the fermion field and κ is a dimensionless coupling constant. Coleman
[72] compared the n-point Green functions of the Sine-Gordon and Thirring model computed
using a perturbative approach in coordinate representation and concluded that they should be
equivalent if the coupling constants β and κ are related by,

4π

β2
= 1 +

κ

π
. (34)

Weak Coupling in the Sine-Gordon model corresponds to strong coupling in the Thirring model.
The Thirring model is S-dual to the sine-Gordon model. The fundamental fermions of the
Thirring model correspond to the solitons of the Sine-Gordon model.

Given the above example of duality between two completely different theories we may think
that a dual to strongly coupled gauge theory like QCD may be found in string theory, because
there are several connections between QCD and string theory, namely,

(i) Understanding Regge trajectories (11) in terms of semi-classical spinning relativistic string,

(ii) The confining term in quark-antiquark potential (10) appears to be string-like,

(iii) Feynman diagrams of the SU(N) gauge theory in the large N limit can be identified as
surfaces that represent interacting strings.

However, in course of time, strong interaction and string theory got disconnected mainly because
of overwhelming success of QCD at high energy, and string theory becoming more of a theory
of quantum gravity than strong interaction.

A very important development namely holographic principle, has played the crucial role in
finding a dual theory of QCD that brings strong interaction and string theory together again.

4.1. Holographic principle
The holographic principle originated in trying to understand thermodynamics of black holes. A
black hole is a region of space from which nothing, not even light, can escape. Thus, a region of
space of radius r containing mass M becomes a black-hole, in newtonian description of gravity,
if escape speed from that region is greater than the speed of light,√

2GM

r
> c . (35)

5th DAE-BRNS Workshop on Hadron Physics (Hadron 2011) IOP Publishing
Journal of Physics: Conference Series 374 (2012) 012004 doi:10.1088/1742-6596/374/1/012004

16



Dense enough matter collapses into a black hole [73]. In Einstein’s general theory of relativity,
which is relativistic description of gravity, black holes appear as the singularities of space-time,
where the curvature diverges. The singularities are conjectured [74] to be hidden behind the
event horizon, the surface, r = rH ,

rH =
2GM

c2
, (36)

through which things can go in but can not come out. Thus, black holes are an essential feature
of gravity. Physically black holes may be created in astrophysical processes when stars run out
of nuclear fuel and implode under gravitational force. If the mass of the leftover matter after
supernova explosion exceeds about 3 solar masses, it will collapse into a black hole.

Using general relativity Hawking [75] proved an useful theorem called the horizon area
theorem, according to which the total horizon area, A, in a closed system containing black
holes never decreases. It can only increase or stay the same,

∆A ≥ 0 . (37)

Increase in total horizon area comes from the growth of black holes by accretion of “normal”
matter or by the coalescence of black holes.

Stationary black holes are unique, in the sense that any arbitrary system having mass M ,
angular momentum J and charge, Q, will collapse to form a unique black hole. This is known
as black hole uniqueness theorem or ‘no hair theorem’ [76]. Thus, black holes are actually
extremely simple macroscopic objects, which can be parametrized by only a few numbers, similar
to elementary particles which are characterized by a few quantum numbers.

The black hole uniqueness theorem apparently leads to a paradox of violating second law of
thermodynamics, since in the initial state the matter that forms or falls into a black hole has
arbitrarily large phase space or entropy, and in the final state the black hole occupies a point
in phase space having zero entropy. Resolution of the paradox was given by Bekenstein [77].
Noting striking similarity between second law of thermodynamics, ∆S ≥ 0 and Hawking area
theorem: ∆A ≥ 0, he proposed that black holes must have entropy, Sbh, which is proportional
to the area of their event horizons,

Sbh ∝ A . (38)

Black holes having entropy gives rise to paradox again, since objects having entropy are hot,
so they must radiate, but nothing can come out of black holes. Resolution of this paradox was
given by Hawking using quantum mechanics [78]. Virtual pairs of particles and antiparticles
are produced and annihilated in vacuum all the time violating energy conservation for short
durations allowed by Heisenberg’s uncertainty principle. If such an event occurs near the event
horizon of a black hole, the virtual pair can be split up by the strong gravity so that it is
possible for one with negative energy to fall in the black hole and the other with positive energy
to escape. The energy conservation “debt” involved in the vacuum fluctuation is paid by the
black hole itself, the negative energy particle makes a negative contribution to the mass of the
black hole when it goes in. The black hole’s mass decreases by the mass of the escaping particle.
The escaping particle is seen by a distant observer as emission by the black hole.

The spectrum of the emitted particles is similar to black body radiation with a temperature.
Using semi-classical method Hawking [78] estimated the temperature to be,

TH =
h̄c3

16π2kBGM
. (39)
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Using, dE = c2dM , and first law of thermodynamics, dE = THdSbh , we get the black hole
entropy as

SBH =

∫
c2

TH
dM =

kBA

4l2P
, (40)

where A = 4πr2
H is the area of the event horizon. In contrast to statistical physics or local field

theory where entropy is a measure of the phase space volume and proportional to volume of
the system, black hole entropy, as proposed by Bekenstein, is proportional to the area of the
horizon. Proportionality of black hole entropy to the area rather than volume indicates that the
degrees of freedom of (quantum) gravity may not be similar to that of local field theories. In
the context of string theory using D-branes, the Bekenstein-Hawking formula (40) of black hole
entropy has been derived [79] for some special class of black holes.

Application of second law of thermodynamics shows that the entropy of any region is bounded
and the upper bound is equal to the entropy of the largest black hole that can be accommodated
in the region. Let the entropy, S, of a region of volume V with area A be greater than the entropy,
SBH , of the largest black hole which can be accommodated in the region (S > SBH). Then,
putting in some matter in that region a black hole can be formed, the entropy of the region
becomes SBH which is less than original entropy S. It violates second law of thermodynamics.
The conundrum of violating second law of thermodynamics can be resolved if the original
assumption is wrong. Therefore, in a system with gravity, maximum entropy of any region
is proportional to the boundary area of the region.

The perplexing result of quantum gravity that maximum entropy of a given region is
proportional to its boundary area, led ’t Hooft [80] and Susskind [81] to formulate holographic
principle. It states that any theory of gravity in d dimensional space-time should have a
description in terms of a quantum field theory defined in a flat (i.e without gravitational
interactions) (d − 1)-dimensional space-time. Both the theories have an entropy proportional
to the area in d-dimensions, because surface in d-dimension is the same as volume in (d − 1)-
dimensions. In other words, quantum gravity in any space of d-dimension can be formulated
in terms of degrees of freedom of a local field theory defined in the boundary space of (d − 1)
dimension. This situation is analogous to an optical hologram, which stores all information of a
3-dimensional object in a 2-dimensional surface.

The holographic principle suggests that there should exist a relation (equivalence) between
gauge theory in (3+1)-dimensions with a gravity theory in (4+1)-dimensions. This equivalence
of a gravity theory in bulk to a gauge theory on surface is called gauge-gravity duality. The
remarkable utility of this duality is that, in particular limiting situations when quantum field
theory is strongly coupled, the corresponding gravity theory becomes classical. Thus, strongly
coupled regime of quantum field theories can be approached doing calculations in classical gravity
theory.

An extensively studied particular case of the gauge-gravity duality in the context of string
theory is the AdS/CFT correspondence proposed by Maldacena [23]. In the recent time, with
the conjecture of Maldacena, string theory has become a powerful analytic tool for studying
strongly coupled gauge theories. The most interesting strongly coupled gauge theory is QCD
at low energies. Though gravity dual of QCD has not been found yet, but theories close
(supersymmetric generalizations) to QCD have been studied using the so-called ’gauge gravity
duality.

5. AdS/CFT correspondence
The AdS/CFT correspondence is a special case of gauge-gravity duality, where the gravity
theory is defined on a 5-dimensional Anti de-Sitter (AdS5) space, and the dual gauge theory
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is a conformal field theory (CFT) defined in the boundary of AdS5, which is 4-dimensional
Minkowski space. Before giving a heuristic derivation of AdS/CFT correspondence, we discuss
briefly about the Anti de-Sitter space and conformal field theory.

5.1. Anti de-Sitter space
The anti-de Sitter space is a maximally symmetric, homogeneous and isotropic space-time with
constant negative curvature (hyperboloid) [82, 83, 84]. Roughly, a negative curvature can be
described by the fact that geodesics (shortest line between two points) which are parallel to
begin with start moving away from each other while in a spherical or elliptical surface (with
positive curvature) they come closer to each other.

Five dimensional anti-de Sitter space, AdS5, with constant negative curvature, R, can be
conveniently defined by the equation,[(

X0
)2
−
(
X1
)2
−
(
X2
)2
−
(
X3
)2
]
−
(
X4
)2

+
(
X5
)2

= R2 (41)

as an embedding in a 6-dimensional flat space-time with co-ordinates, (X0, · · · , X5), and having
(2, 4) signature. The defining equation (41) is symmetric under the transformation,

Xµ → X ′µ = Λµν X
ν , (42)

where Λµν belongs to SO(2, 4), the conformal group in 4-dimension. Thus, SO(2, 4) is the
isometry group of AdS5. The line element can be written as,

ds2 = −
(
dX0

)2
+
(
dX1

)2
+
(
dX2

)2
+
(
dX3

)2
+
(
dX4

)2
−
(
dX5

)2
, (43)

with the constraint (41). Introducing a set of coordinates, called Poincare co-ordinates, given
by a four dimensional Lorentz vector, xµ ≡ (x0, ~x), and a fifth coordinate, z, as,

Xi =
Rxi

z
, i = 1, · · · , 3 ; X5 =

Rx0

z
,

X0 +X4 = z − ηµνx
µxν

z
, X0 −X4 =

R2

z
, (44)

with ηµν = diag(1,−1,−1,−1), the AdS5 metric in (xµ, z) co-ordinates can be written as,

ds2 =
R2

z2

(
ηµνdx

µdxν + dz2
)

= gMN dx
MdxN , (45)

where

gMN =
R2

z2


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 =
R2

z2
ηMN , (46)

with ηMN as 5-dimensional Minkowaski metric and det(g) = L10

z10
. The AdS5 has slices isomorphic

to four-dimensional Minkowski space-time put on z-axis. The Minkowski metric is multiplied

by a warp factor R2

z2
, so, an observer living on a Minkowski slice sees all lengths rescaled by a

factor of z depending on its position in the fifth dimension.
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The Ricci tensor, RMN , calculated from the AdS5 metric gMN is,

RMN = − 4

R2
gMN , (47)

which gives the Ricci scalar, R, of AdS5 metric as, R = − 20
L2 . We see that Ads5 metric is

solution of source free Einstein’s equation of general relativity,

RMN −
1

2
RgMN + ΛgMN = 0 , (48)

in five dimension having coordinates (t, x1, x2, x3, z ) with cosmological constant, Λ = − 12
R2 .

To understand physically the significance of the fifth coordinate, let us consider a 4-
dimensional space with coordinates, [xµ ≡ (t, ~x)], with a variable, l, that corresponds to energy
scale,

l ≡ E = ‘ ∂t ’ .

Under a scale transformation the coordinates transform as,

xµ → x′µ = λxµ , l→ l′ =
l

λ
. (49)

We can construct a 5-dimensional space with co-ordinates, (xµ, l), that encodes the requirement
of scale invariance should have the line element as,

ds2 = R2

(
l2 ηµνdx

µdxν +
dl2

l2

)
, (50)

where R is the radius of curvature of the AdS5 space. By changing the coordinate, l → 1
z , in

(50), we get the line element (45) of AdS5. Thus, the fifth co-ordinate, z, of AdS5 is inversely
related to the energy scale. Large energy scale, or the ultra violet region, corresponds to small z,
and small energy scale, infra red region, corresponds to large z. Thus, physics in the Minkowski
space at different energy scale can be explored from AdS5-space at different values of z.

5.2. Conformal field theories and N = 4 Supersymmetric Yang Mills theory
The conformal transformations include Poincare transformations and scale transformations that
preserve the metric up to a scale factor, gµν(x)→ g′µν(x) = Ω2(x) gµν(x). These transformations
form a group called conformal group. The generators are the usual Lorentz generators, Mµν , the
Poincare translation operators Pµ, and in addition two generators D and Kµ corresponding to
scale transformations. The conformal group in 4-dimensions is isomorphic to SO(2, 4). A field
theory which is invariant under conformal group is called a conformal field theory. If we want
to combine the conformal algebra with the supersymmetry algebra, then additional fermionic
generators are required to be included in the algebra. The scaling dimension ∆ of a field φ(x)
is governed by the transformation rule under scaling of coordinates,

D : xµ → λxµ , ⇒ φ(x)→ φ′(x) = λ∆φ(λx) . (51)

Representations of the conformal group are labeled by the scaling dimension ∆ and Casimir
invariants of Poincare group. The structure of the correlation functions of primary fields, that is
n-point functions, in a conformal field theory are completely determined by conformal symmetry.
N = 4 SU(Nc) super Yang-Mills theory in 3 +1 dimensions is an example of superconformal

field theory [61, 85, 86], which is invariant under superymmetry as well as conformal
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transformations. Because of exact conformal invariance even after quantization, unlike non-
supersymmetric 3+1 dimensional pure Yang-Mills theory, it is scale invariant, that is beta
function is zero in all orders of perturbation theory and the same is supposed to be true
at the non-perturbative level. It means that the couplings do not depend on the energy
scale. It contains two types of fermionic operators (generators of supersymmetry), QAα and
Q̄Aβ (A = 1, 2, 3, 4) which transform under lorentz transformations as four spinors. The theory
has the maximal amount of supersymmetry. The supersymmetric algebra is invariant under a
SU(4) rotation of the fermionic operators, consequently the lagrangian of N = 4 SU(Nc) SYM
is invariant under SU(4) ∼ SO(6) global transformations. This is called R-symmetry. The
degrees of freedom of this theory are as follows:

(i) A vector field Aµ in the adjoint representation of SU(Nc), which is a singlet under SO(6).

(ii) Six real scalars χa in the 6 dimensional vector representation of SO(6), which also transform
in the adjoint representation of SU(Nc).

(iii) Four Weyl fermions λAα also transforming in the adjoint representation of SU(Nc) and 4
spinor representation of SO(6), corresponding to the fundamental representation of SU(4).

5.3. The Maldacena Conjecture
The Maldecana conjecture about the duality between gauge theory and gravity, or the AdS/CFT
correspondence, arises from two different descriptions of a system of Nc coincident D3 branes.

Let us consider type IIB superstring theory in the presence of Nc D3 branes. On this
background, string theory contains perturbative excitations corresponding to both closed string
and open strings. Closed strings propagate on the bulk, whereas open strings are attached to
the D3 branes and go from one D3 brane to another. The stack of Nc D3 branes are connected
by N2

c different type of open strings because the strings can begin or end on any of the D3
branes. N2

c is the dimension of the adjoint representation of U(Nc). At energies lower than
energy of string scale (1/ls), that is in the limit, ls → 0, only the massless string states can
be excited and the interaction between closed string modes in the bulk and the open string
modes in the the stack of D3 branes vanishes. The closed string modes describe free gravity in
the bulk, and the N2

c massless open string modes and their superpartners constitute maximally
supersymmetric N = 4 U(Nc) super Yang-Mills gauge theory on 4 dimensional worldvolume of
the stack of branes. However, the rigid motion of the entire system of branes as a whole can be
described by the excitations of the U(1) subgroup of U(Nc). Because of the overall translation
invariance, this mode decouples from the remaining SU(Nc) modes that describe motion of the
branes relative to one another. Thus, there are two decoupled systems, one of free gravity in
the bulk and the other a 4-dimensional N = 4 SU(Nc) super Yang-Mills gauge theory on the
brane.

The same system can considered from a different point of view. D branes are massive, so
a stack of Nc D3 branes is heavy and naturally deform the 10 dimensional space-time. The
solution of the equation of motion of low energy string theory effective action for a stack of Nc

D3 branes can be written as,

ds2 =
1√
f(r)

(
−dt2 + (dx1)2 + (dx2)2 + (dx3)2

)
+
√
f(r)

(
dr2 + r2dΩ5

)
. (52)

The metric inside the parentheses in the first term is the 4-dimensional Minkowski metric of the
D3 brane and that in the second term is the flat metric of the 6 transverse coordinates written
in spherical coordinates. The function f(r) is given by,

f(r) = 1 +
R4

r4
. (53)
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In the limit, r � R, f ' 1, the metric (52) reduces to that of flat space with a small correction
corresponding to the gravitational potential due to the massive stack of Nc D3 branes.

On the other hand, for r � R, f(r) = R4

r4
, in which case the metric (52) reduces to,

ds2 = ds2
AdS5

+R2dΩ5 , (54)

where

ds2
AdS5

=
r2

R2

(
−dt2 + (dx1)2 + (dx2)2 + (dx3)2

)
+
R2

r2
dr2 ,

=
R2

z2

(
ηµνdx

µdxν + dz2
)
,

(
with, r =

R2

z

)
, (55)

is the metric (45) of five-dimensional anti-de Sitter space-time. Thus, the ten-dimensional metric
factorizes into AdS5 × S5 in the strong gravity region. The geometry of 10-dimensional space-
time due to the stack of Nc D3-branes is flat at regions far away from the branes, whereas close
to the branes a ‘throat’ geometry of the form AdS5 × S5 develops. The size of the throat is set
by the curvature, R of AdS5. There are two distinct sets of degrees of freedom corresponding to
gravity, one propagating in the flat region and the other of closed string excitations propagating
near the throat. At low energies these two modes decouple from each other.

Thus, in the low-energy limit of both descriptions of a stack of Nc D3-branes there are two
decoupled theories, one of which is supergravity in flat space. So, the other theories that appear
in both descriptions can be identified. This leads to the Maldacena conjecture: N = 4 SU(Nc)
super Yang-Mills theory in 3+1 domensions is equivalent (or dual) to type II B string theory on
AdS5 × S5.

There are two parameters in the gauge theory side, namely, (1) the gauge coupling constant,
g, and (2) number of colors, Nc. The value of ’t Hooft coupling constant, λ = g2Nc decides
whether gauge theory is in weakly coupled or strongly coupled regimes. When λ � 1, gauge
theory is strongly coupled, and λ � 1 corresponds to weakly coupled regime. On the other
hand, string theory on AdS5 × S5 has three parameters, namely, (1) string length ls, (2) string
coupling gs, and (3) radius of curvature of AdS5 space, R. When R � ls, closed string theory
reduces to Einstein’s classical gravity. The parameters of two sides are related as,

g2 = 4πgs , R4 = 4πgsl
4
sNc . (56)

The weak coupling regime of gauge theory, λ� 1, corresponds to gsNc � 1, we see from (56)
that R� ls. It means the radius characterizing the gravitational effect of the D-branes becomes
small in string units. Closed strings feel a flat space-time everywhere except very close to the
locations of D-branes. In the regime of weak coupling, thus the closed string description is not
useful since it would involve complicated sub-string-scale geometry. On the other hand, in the
strong coupling regime of gauge theory, λ� 1 corresponds to gsNc � 1, we see from (56) that
R� ls. It means the radius characterizing the gravitational effect of the D-branes becomes large
in string units, so the geometry becomes weakly curved. In this limit the closed string description
simplifies and essentially reduces to classical gravity. Thus, the difficult strongly coupled regime
of gauge theory is mapped to classical gravity through this remarkable correspondence.

We see that when the gravity side is strongly coupled the gauge theory side is weakly coupled
and vice versa. It is a strong-weak coupling duality. This is the reason why this duality is so
exciting to study strongly coupled gauge theories. However, finding the dual theory, in general
cases is difficult. It has been possible only for those cases which have a D-brane interpretation,
and whose low-energy theory is understood.
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Though the conjecture has not been proved rigorously, there are many tests that indicate
that the conjecture is correct. One of them is symmetry consideration. Symmetries on both
sides of the duality are identical. On the gravity side, AdS5×S5 has two symmetry groups, the
SO(6) of the 5-sphere, and SO(4, 2) of the of the AdS5 space-time. On the other side, N = 4
super Yang-Mills has SU(4)R ∼ SO(6) group as the R-symmetry and SO(4, 2) as the conformal
symmetry in 4-dimensions.

5.4. Correlation functions
We now wish to understand how the AdS/CFT correspondence can be used to extract
information about the strongly coupled gauge theory in 4-dimensions. Let us consider a gauge
theory defined by the action, say S4D [q]. The correlation functions of suitable gauge invariant
operators, O(xµ) = f(q), which are functions of the field variable q encode all information about
the gauge theory. The general idea in calculating the correlation functions using AdS/CFT
correspondence is that the operators in gauge theory side are related to a field in the AdS5

space. Corresponding to every operator O(xµ) of the conformal field theory in 4-dimensions,
there exists a unique φ(xµ, z) field living in the 5-dimensional AdS5 space. These fields are
called bulk fields, which are related to the boundary field, φ0(xµ), on the boundary of AdS5 by
the relation,

φ(xµ, z) = z4−∆φ0(xµ) , (57)

where ∆ is the conformal dimension of the operator O(xµ). The connected correlation functions
can be calculated from the generating functional,

Z4D [φ0] ≡ eW4D[φ0] =

∫
D [q] exp

(
iS4D [q] + i

∫
d4xO(x)φ0(x)

)
, (58)

by taking the successive functional derivative of the generating functional as,

〈O(x1)O(x2) · · · O(xn)〉c = (−i)n δ(n)W4D [φ (x)]

δφ(x1)δφ0(x2) · · · δφ0(xn)

∣∣∣∣∣
φ0=0

. (59)

These are very difficult to calculate in the strongly coupled regime of gauge theory. The
AdS/CFT correspondence provides a procedure to calculate these correlation functions using
the gravity theory in AdS5.

Given the nature of the field, φ(xµ, z), depending on the operator O(xµ), we construct the
lagrangian density, L (φ, ∂Mφ), and construct action, S5D [φ(xµ, z)] in 5-dimensional space AdS5

as,

S5D[φ] =

∫
d5x

√
det(gMN )L (φ, ∂Mφ) , (60)

where gMN is the metric of AdS5.
The AdS/CFT correspondence [24, 25] identifies the generating functional,W4D [φ0], of

connected correlation functions of the gauge-invariant operator, O(xµ), in 4-dimensional gauge
theory with the 5-dimensional action, S5D[φ], as,

W4D[φ0] = i lim
ε→0

S5D[φ(xµ, ε)] , (61)

so that the correlation functions can be calculated using S5D[φ],

〈O(x1)O(x2) · · · O(xn)〉c = (−i)n−1 lim
ε→0

δ(n)S5D[φ (x, ε)]

δφ(x1, ε)δφ(x2, ε) · · · δφ(xn, ε)

∣∣∣∣∣
φ0=0

. (62)

This can be viewed as the definition of gauge theory correlation functions in terms of the
action, S5D, in a higher dimensional space. This is an useful formulation of the AdS/CFT
correspondence for computing correlation functions of the strongly coupled gauge theory.
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6. Holographic QCD
Holographic QCD aims to study strongly coupled regime of QCD using AdS/CFT to get
analytical model for hadron structure and their interactions [87, 88]. The AdS/CFT
correspondence gives an equivalence between classical gravity theory in 5-dimensions and N = 4
SU(Nc) supersymmetric Yang-Mills theories (SYM) in the large Nc limit. QCD is fundamentally
different from SYM theories, it is non-supersymmetric and conformal symmetry of classical QCD
is broken by quantum effects. Exact string theory (or gravity) dual of QCD is not known yet. In
this situation, to apply the remarkable AdS/CFT correspondence to QCD, we need to modify
the AdS geometry to build a realistic gravity dual of QCD. Two Approaches are usually followed
to construct holographic models of QCD.

(i) Top down approach: In this approach, one starts from string theory and chooses an
appropriate D-brane configuration to get as close as possible to the realistic QCD [89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110].The most
closely related to QCD is of Sakai and Sugimoto [93, 94], where the ’color’ Yang-Mills fields
are introduced by the massless open string fluctuations of a stack of Nc D4-branes wrapped
on a circle, and flavor degrees of freedom through fermionic open string fluctuations between
D4-branes and a pair of Nf D8-branes and D8-branes. The model is nonsupersymmetric
and describes SU(Nc) Yang-Mills theory, giving a geometrical picture of chiral symmetry
breaking. In the strong coupling limit (large Nc), the stack of Nc color branes has a dual
description in terms of a classical gravity theory. we shall not discuss this approach in this
article.

(ii) Bottom up approach: In this approach, one looks at the hadron phenomenology of QCD
first and then attempts to build its 5D-gravity equivalent model in AdS5 space-time by
introducing appropriate fields and modifying the geometry of the extra dimension to
reproduce the phenomenology [111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127]. The Kaluza-Klien modes of five dimensional fields with quantum
numbers of QCD states are identified with the hadronic resonances. The most important
aspect of QCD at low energy is confinement. This means that there exists a maximum
separation for quarks in the hadrons. The five dimensional model of QCD in AdS5 must take
this into account. Because of confinement, there must exist limiting separation of quarks
and therefore a minimum value of energy scale r, or a maximum value of z. Therefore,
AdS5 space should end at a finite value in the fifth axis, z0 = 1

r0
≡ 1

ΛR2 . Cutoff at z0 breaks
conformal invariance and allows the introduction of the QCD scale. Introduction of cut-off
in z-axis (to implement confinement) can be done in two ways,

(a) Hard wall model: The lagrangian is multiplied by a step function, so that it vanishes
beyond z = z0. This is similar to the MIT bag model, but with the boundary condition
on the fifth dimension.

(b) Soft wall model: Introduce an additional field called dilaton field that breaks the scale
symmetry. The lagrangian is multiplied by e−D(z), so that it vanishes slowly as z
increases.

We shall discuss in the following some elements of how the mass spectrum of scalar and
vector particles are generated in the gravity dual models models. We shall also discuss how
chiral symmetry appears in holographic QCD.

6.1. Scalar mesons
We start with the action for a scalar (or pseudoscalar) field Φ(xµ, z) in five dimensional AdS5,
in which xµ represent the four dimensional Minkowski space-time coordinates and z repesents
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the fifth coordinate. The action is written as,

S =

∫
d4x dz

√
|g| e−D(z) 1

2

(
gMN∂MΦ∂NΦ− µ2Φ2

)
, (63)

where the term µ2Φ2, though looks like a mass term in the five dimensional space, but, as we
shall see, the parameter µ is not related to the masses in Minkowski space. A background dilaton
field, D(z), has been introduced in the action, which can be taken of the form as,

D(z) =

{
0 , Hard wall ,
λ2z2 , Soft wall .

for the hard wall and soft wall scenarios. The metric of AdS5 as given in (46) can be written,
introducing, A(z) = − log z + logR, for convenience, as,

gAB = e2A(z) ηAB , gAB = e−2A(z) ηAB ,
√
|g| = e5A(z) (64)

with ηAB as the five dimensional Minkowski metric. We can read off from (63) the lagrangian
density as,

L = eB(z) 1

2

(
ηMN∂MΦ∂NΦ− e2A(z)µ2Φ2

)
, (65)

where B(z) = 3A(z) − D(z). The equation of motion of Φ(xµ, z) can be written as the usual
Euler-Lagrange equation as,

∂A

(
∂L
∂∂AΦ

)
− ∂L
∂Φ

= 0 , ⇒ ηαβ∂α∂βΦ− ∂2
zΦ− ∂zB(z)∂zΦ + e2A(z)µ2Φ = 0 . (66)

We decompose, Φ(x, z), as,

Φ(x, z) = eipµx
µ
φ(z) , (67)

a product of a plane wave part in four dimensional Minkowski space-time and a function φ(z)
depending only on the fifth cordinate z. Substituting Φ(x, z) in (66) we get the equation for
φ(z) as,

− ∂2
zφ(z)− ∂zB(z)∂zφ(z) + e2A(z)µ2φ(z) = m2φ(z) , (68)

where, m2 = pµpµ, corresponds to the mass of the scalar(pseudoscalar) particle in four

dimensions. Puttting, φ(z) = e−
B(z)
2 ψ(z) we can eliminate the term containing first derivative

in (68) and transform it to a Schrodinger like equation in ψ(z) as,

− ∂2
zψ(z) + V (z)ψ(z) = m2ψ(z) , (69)

with

V (z) =
1

2
∂2
zB(z) +

(
1

2
∂zB(z)

)2

+ e2A(z)µ2 . (70)

We now solve the equation for ψ(z), (69), in hard wall and soft wall scenarios.
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• Hard wall model: In this model there is no dilation field, so,

D(z) = 0 , ⇒ B(z) = 3A(z) = 3 (lnL− ln z) , (71)

consequently the potential V (z) from (70) becomes,

V (z) =
1

4z2

(
4ν2 − 1

)
, (72)

with, ν2 = µ2R2 + 4. In addition, the space of AdS5 is restricted in the fifth direction,
0 ≤ z ≤ z0, with the boundary condition that φ(z) vanishes at z0,

φ(z0) = 0 . (73)

Changing the variable, y = mz, and ψ(y) =
√
y f(y) the equation of motion can be

transformed to the Bessel equation,(
−∂2

y −
1

y
∂y +

ν2

y2

)
f(y) = f(y) (74)

with solutions f(y) = Jν(y). The solution of the field equation can be written as,

φ(z) =

(
z

R

) 3
2

(mz)
1
2 Jν(mz) ∼ z2Jν(mz) . (75)

The solution is valid for any value of m, thus it does not yield a discrete hadron mass
spectrum. To get the discrete mass spectrum, we impose the boundary condition, (73), on
the solution, which gives,

Jν(mz0) = 0 . (76)

A discrete spectrum of masses of scalar (pseudoscalar) meson is generated through zeros of
Bessel function. We get not only one, but a whole series with same index ν. In addition,
there are resonances corresponding to the different values of ν. A general feature of string
picture is realized. We would get similar pattern of the Regge trajectory, however these
excitations are not linear in m2, but, from the properties of zeros of Bessel function it is
seen that these are approximately linear in m.

• Soft wall model: In this model there is a dilation field, D(z), which is taken as,

D(z) = λ2z2 , ⇒ B(z) = 3A(z)−D(z) = 3 (lnL− k ln z)− λ2z2 , (77)

and the five dimensional space-time of AdS5 is not restricted. The equation for ψ, (69),
becomes,

− ∂2
uψ(u) +

(
4ν2 − 1

4u2
+ u2

)
ψ(u) =

(
m2

λ2
− 2

)
ψ(u) . (78)

with u = λz. The solution of this equation are the eigenfunctions,

ψn(u) = e−
u2

2 uν+ 1
2Lνn(u2) ⇒ φn(z) ∼ e−

λ2z2

2 z2+νLνn

(
λ2z2

)
, (79)

and eigenvalues,

m2 = 2λ2 (2(n+ 1) + ν) , (80)

where Lνn is the associated Laguerre polynomials. We see that the soft wall model has
the desired feature that the excitations are proportional to the squared mass, m2. The
agreement for the experimental values and the theoretical results from the soft wall model
is satisfactory.
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6.2. Vector particles
The action for the vector field, AM (xµ, z), in five dimensional AdS5 is written as,

S =

∫
d4x dz

√
|g| e−D(z)

(
gMM

′
gNN

′
FMNFM ′N ′

)
, (81)

where, FMN is the field tensor given as,

FMN = ∂MAN − ∂NAM , (82)

and D(z) is the dilaton field. The lagrangian can be read off from the action as,

L =
1

4
eB(z)

(
ηMM

′
ηNN

′
FMNFM ′N ′

)
, (83)

with, B(z) = A(z) − D(z). In Minkowski space there are three spin components of a vector
particle. We impose two gauge conditions to reduce 5 components of AM to three components.
The gauge conditions are,

A5 = 0 , ηMK∂KAM = 0 . (84)

The equation of motion are the usual Euler-Lagrange equations wich can be written as,

∂L
∂AB

− ∂A
(

∂L
∂AAB

)
= 0 , ⇒ − ∂zB(z)∂zAα − ∂2

zAα + ηµν∂µ∂νAα = 0 . (85)

We decompose Aα into a plane wave part in the Minkowski space and another part depending
only on the fifth coordinate z as,

Aα(xµ, z) = e−ipµx
µ
εα(p)φ(z) (86)

where εα(p) is the polarization vector of a transverse vector field, i.e. ε.p = 0. The equation for
φ(z) becomes, (

−∂2
z − ∂zB(z) ∂z

)
φ = m2φ , (87)

where, m2 = pµpµ corresponds to the mass of vector particles. To eliminate the term containing

first derivative we substitute, φ(z) = e−
B(z)
2 ψ(z), so that the equation for ψ(z) becomes a

Schrondiger like equation,

− ∂2
zψ(z) + V (z)ψ(z) = m2ψ(z) , (88)

with the potential, V (z), as,

V (z) =
1

4
(∂zB(z))2 +

1

2
∂2
zB(z). (89)

We solve (88) in hard wall and soft wall scenarios,

• Hard Wall Model: In this model there is no dilation field, so,

D(z) = 0 , ⇒ B(z) = A(z) = (lnL− ln z) , (90)
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consequently the potential V (z) from (89) becomes, V (z) = 3
4z2

, and the space of AdS5 is
restricted in the fifth direction, 0 ≤ z ≤ z0, with the boundary condition that φ(z) vanishes
at z0, φ(z0) = 0. The equation for ψ(z) becomes,

∂2
zψ(z) +

3

4z2
ψ(z) = m2ψ(z) , (91)

The solution of this equation can be written in terms of the Bessel function as,

ψ(z) =
√
mz J1(mz) , ⇒ φ(z) = e−

B(z)
2 ψ(z) =

√
m

R
z J1(mz) (92)

The five dimensional field vanishes at the hard wall, φ(z0) = 0. The masses, mn, of the
vector meson resonances are then determined by the zeros of first order Bessel function.
The mass spectrum, as found in the scalar particle case, is not linear in m2.

• Soft Wall Model: In this model there is a dilaton field, D(z) = λ2z2, an the AdS5 is not
restricte. The potential, V (z) can be obtained from (89) as,

V (z) =
1

4
(∂zB(z))2 +

1

2
∂2
zB(z) =

3

4z2
+ λ4z2 (93)

The equation for ψ becomes,

∂2
zψ(z) +

(
3

4z2
+ λ4z2

)
ψ(z) = m2ψ(z) , (94)

the solution of which can be written as,

ψn(z) = e−
λ2z2

2 (λz)
3
2 L1

n(λ2z2) , ⇒ φn(z) = e−
B(z)
2 ψ(z) =

√
λ3

L
z2 L1

n(λ2z2) , (95)

where L1
n are the Laguerre polynomials. The mass spectrum is obtained from the

eigenvalues,

m2 = 4λ2 (n+ 1) . (96)

The mass spectrum is linear in m2 in the soft wall scenario for the vector particles also.

6.3. Holographic model of QCD
In the holographic QCD model we consider a 5-dimensional dual of the two flavor, (u, d) sector of
QCD. In this case, QCD has a global SU(2)L×SU(2)R chiral symmetry. The conserved currents
corresponding to this symmetry are the vector and axial-vector currents which can be expressed
in terms of left handed and right handed currents, jµaL = q̄Lγ

µτaqL and jµaR = q̄Rγ
µτaqR, where

τa’s are SU(2) flavor generators. To describe the chiral dynamics, we shall also need an operator

called chiral condensate, q̄αRq
β
L, where α and β are SU(2) flavor indices in the fundamental

representation. The holographic QCD does not refer explicitly to quark and gluon degrees of
freedom, only deals with the bound states of QCD. According to the AdS/CFT correspondence,
there is a one-to-one map between 4-dimensional operators in field theory living on the boundary
and 5-dimensional bulk fields in gravity side. The global chiral symmetry SU(2)L × SU(2)R
of QCD is made local symmetry in the gravity side. Therefore, we need to introduce local
gauge (vector) fields LaM and RaM of which the values at z = 0 play a role of external sources
for SU(2)L and SU(2)R currents, jµaL and jµaR respectively. The vector and axial-vector gauge
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4D: O(x) 5D: φ(xµ, z) p ∆ m2
5

Current Operator : jaLµ = q̄Lγµt
aqL LaM (xµ, z) 1 3 0

jaRµ = q̄Rγµt
aqR RaM (xµ, z) 1 3 0

Quark bilinear : q̄αLq
β
R

2
zX

αβ(xµ, z) 0 3 -3

Table 2. Correspondence of operators in gauge theory side to fields in gravity side.

fields are defined as V a
M = (LaM + RaM )/

√
2 and AaM = (LaM − RaM )/

√
2. Since chiral symmetry

is known to be broken to SU(2)V spontaneously, we introduce a field Xαβ corresponding to

q̄αRq
β
L in order to realize the spontaneous chiral symmetry in the AdS5 side. In table (2) we

give the correspondence of operators and fields in QCD side and gravity side respectively. The
5-dimensional mass of the bulk gauge field L,R and X is determined by the relation,

m2
5R

2 = (∆− p)(∆ + p− 4) , (97)

[24, 25] where ∆ denotes the conformal dimension of the corresponding operator with spin p and
R is the AdS5 curvature. The mass of the gauge field in the bulk of five dimensional space-time
turns out to be, m2

5 = 0, which is expected because of gauge symmetry, and the mass of the
scalar X is, m2

5 = − 3
R2 .

The action in five dimensional space-time for the meson sector in holographic QCD is
constructed taking the fields of interest with the appropriate quantum numbers and Lorentz
structures as [116, 117],

S5D =

∫
d4x

∫
dz
√
|g| e−D(z) Tr

[
|DX|2 +

3

R2
X2 − 1

4g2
5

(∣∣∣FL∣∣∣ 2 +
∣∣∣FR∣∣∣ 2)] , (98)

where, |DX|2 = (DMX)†
(
DMX

)
with the covariant derivative, DMX = ∂MX−iLMX+iXRM ,∣∣∣FL∣∣∣2 = FLMNF

LMN with the field tensors, FLMN = ∂MLN −∂NLM − i [LM , LN ] (and analogous

expression for
∣∣∣FR∣∣∣2) and LM = τaLaM , RM = τaRaM . The gauge coupling, g5, in five

dimensional space-time is fixed by matching the vector correlation function in five dimension
to that from the operator product expansion, g5 = 12π2/Nc [116]. The action (98) contains
the dilaton field D(z) for soft wall model, however, by making, D(z) = 0, we can consider this
lagrangian for hard wall model.

The scalar field, X(xµ, z), in five dimensional space is taken as a product,

Xαβ(xµ, z) = Xαβ
0 (z) eiτ

aπa(xµ,z) , (99)

in which the vacuum expectation value, Xαβ
0 (z) = 〈Xαβ(xµ, z)〉 depends on z coordinate alone.

The pion field πa (xµ, z) appearing in (99) is dimensionless and related to the canonically-
normalized pion field π̃a (xµ, z) of chiral lagrangians via πa = π̃a

fπ
with fπ = 93 MeV. The

vacuum expectation value Xαβ
0 (z) spontaneously breaks the (approximate) chiral symmetry by

forming the quark condensate. The field Xαβ
0 (z) is determined solving the equation of motion

of this field obtained from the action (98) by turning off all fields except Xαβ
0 (z). The equation

of motion for Xαβ
0 (z) can be derived using usual variational procedure as,

∂z

(
1

z3
∂zX

αβ
0 (z)

)
+

3

z5
Xαβ

0 (z) = 0 . (100)
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The general solution to this homogeneous linear second order ordinary differential equation is
given by the polynomial,

2Xαβ
0 (z) = Mαβz + Σαβz3 , (101)

where two integration constants, Mαβ and Σαβ are determined by the boundary conditions at
z = and z = z0 in the hard wall model as,

Mαβ = lim
z→0

2Xαβ
0 (z)

z
, Σαβ =

2Xαβ
0 (z0)−Mαβz0

z3
0

.

The physical meanings of Mαβ and Σαβ are respectively the bare quark mass responsible for
explicit breaking of chiral symmetry and the chiral condensate responsible for spontaneous chiral
symmetry breaking.

The equations of motion of other fields of interest are obtained varying the action with respect
to the corresponding fields. The axial-like gauge, V5(xµ, z) = 0, A5(xµ, z) = 0 has been found
to be convenient to work with. The axial vector field Aµ is written as a sum of a transverse
(divergence less) part, Aµ⊥, and a longitudinal part φ, Aµ = Aµ⊥ + φ with ∂µAµ⊥ = 0. The
equations of motion for V a

µ (vector particles), Aaµ⊥ (transverse component of vector particles), φ
(longitudinal component of vector particles) and πa (pseudoscalar particles) become, after taking
the Fourier transform with respect to the four dimensional coordinates xµ, one dimensional
equations as,

∂z

(
e−D(z)

2
∂zV

a
µ (qµ, z)

)
+
q2

2
e−D(z)V a

µ (qµ, z) = 0 , (102)[
∂z

(
e−D(z)

z
∂zA

a
µ(qµ, z)

)
+
q2

2
e−D(z)Aaµ(qµ, z)− g2

5

z3
e−D(z)v(z)2Aaµ(qµ, z)

]
⊥

= 0 , (103)

∂z

(
e−D(z)

z
∂zφ

a(qµ, z)

)
+
g2

5

z3
e−D(z)v(z)2 (πa(qµ, z)− φa(qµ, z)) = 0 , (104)

−q2∂zφ
a(qµ, z) +

g2
5

z2
v(z)2∂zπ

a(qµ, z) = 0 , (105)

with qµ as the momentum in four dimensions. These equations are solved as eigenvalue equations
subject to appropriate boundary conditions of hard wall and soft wall models. In the hard wall
model, the masses of the mesons appear from the zeros of the solutions at the infra red cut off
z0. As discussed earlier, the hard wall model does not reproduce the linear relation in square of
mass. In soft wall model the mass spectrum appears from the eigenvalues and does reproduce
the linear relation in square of mass. The mass spectrum of soft wall model matches well with
the experimental values. The solutions can be used to calculate form factors of the mesons and
other correlators.

The electromagnetic form factor, for example of a scalar particle, with momentum transfer
q = p − p′ in holographic QCD can be defined in the same way as the form factor in four
dimension,

F (Q2) (2π)4 δ4 (p− p′ − q) ε.q =

∫
d4xdz

√
|g|gLL′

Φ∗p′(x
µ, z)i∂LΦp(x

µ, z)AL′(xµ, z) , (106)

where Φp(x
µ, z) are the solutions of equations of motion for scalar particles and AL′(xµ, z)

is an external electromagnetic field in 5 dimensions with the polarization vector ε. The
electromagnetic field AL′ satisfies Maxwell’s equations in 5 dimensions. Using solutions of the
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equations of motion for appropriate particles we can find the electromagnetic form factors of
mesons in hard wall and soft wall scenarios. Pion electromagnetic form factors have been
calculated using holographic QCD. The form factor reproduce the experimental data quite well.

The holographic QCD can be extended to baryons [128]. A spin 1
2 baryon operator in the

Minkowski space (boundary of AdS5) will correspond to a Dirac field in the bulk of AdS5. The
action in five dimensions for the Dirac field can be written with constraints of Lorentz invariance.
By solving equation of motion with appropriate boundary conditions tower of hadronic resonance
states can be generated. Similar procedure can be adapted as well for higher spin particles.

7. Thermal Gauge Gravity Duality
We want to construct gravity dual of gauge theory at finite temperature to describe, systems
like quark gluon plasma. The tool of AdS/CFT correspondence can be applied in these systems
to learn about strongly coupled gauge theories at finite temperature by doing calculations in
classical gravity [26]. In order to introduce a temperature into the gauge theory there are two
approaches which are valid in two different regimes,

(i) Thermal AdS: Temperature can be introduced in the gravity theory in AdS5 space-time by
Wick rotating the Minkowski time of AdS to euclidean time (t→ iτ) in AdS5 metric,

ds2
AdS5

=
R2

z2

(
dτ2 + dxidxi + dz2

)
, (107)

and making τ periodic (anti-pereodic) for bosons (fermions), by identifying, τ ∼ τ + β, as
done in equilibrium thermal field theory. The period (circumference of the ‘thermal circle’)
is related to the temperature by, β = 1

T , so that at high temperature the euclidean time
is on a small circle, and at low temperature the circle unwinds and the original theory on
Minkowski space is recovered. The temperature T is identified with the temperature of the
field theory on the boundary, namely SYM theory since, τ also corresponds to the euclidean
time coordinate of the boundary theory. In AdS/CFT correspondence, this description
corresponds to the low temperature regime of gauge theory.

(ii) Black hole AdS: In this case, temperature is introduced in the gravity theory in AdS5

space-time through a black hole metric,

ds2
AdS5

=
R2

z2

(
f(z)dτ2 + dxidxi

)
+

R2

z2 f(z)
dz2 , f(z) = 1− z4

z4
0

, (108)

since black holes have a temperature due to Hawking process [78]. The event horizon is
located at z = z0, which has three flat directions ~x. The metric (108) is thus called a black
three-brane metric. Hawking temperature, TH , for the metric (108) is, TH = 1

πz0
. This

description corresponds to high temperature regime of gauge theory.

There should be a temperature where the description of finite temperature SYM by thermal
AdS and the black hole AdS coincide. It was shown by Hawking and Page [129] that at some
critical temperature, THP , there is a first order phase transition where thermal AdS metric
tunnels to black hole AdS metric. Through gauge gravity correspondence this transition can
be interpreted in the gauge theory as a phase transition between confined to de-confined phase.
The de-confinement temperature, Tc, obtained using holgraphic QCD in the hard and soft wall
models is 122 MeV and 191 MeV respectively [130].

The quark-gluon plasma was expected to be a free gas of quarks and gluons, however, at
the experimentally accessible energies the observations seem to indicate that it behaves like a
almost perfect-fluid with small shear viscosity [10]. This observation leads to the conclusion that
quark-gluon plasma is a strongly coupled system, within the non-perturbative regime of QCD.
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The AdS/CFT correspondence can be applied to such situations. It identifies strongly coupled
plasma at finite temperature in the gauge theory side with a black brane in gravity side. There
exists a one-to-one correspondence between the thermodynamic properties of the black hole and
those of the plasma, namely its temperature and entropy. The plasma properties thus should
be calculable using black branes. The AdS/CFT correspondence relates the correlators of the
energy-momentum tensor, Txy(t, ~x), in two space-time points at zero frequency, ω = 0, and the
absorption cross section, σ(ω), of a graviton by the static black brane in the bulk,

σ(ω) =
8πG

h̄ω

∫
d4x eiωt 〈[Txy(t, ~x), Txy(0, 0)]〉 . (109)

The shear viscosity, η, of plasma is given by a Kubo formula,

η = lim
ω→0

1

2h̄ω

∫
d4x eiωt [Txy(t, ~x), Txy(0, 0)] , (110)

from which we can relate the shear viscosity and graviton absorption cross section by black
brane as,

η =
limω→0 σ(ω)

16πG
. (111)

According to a general theorem [132], the graviton absorption cross-section of black hole in the
low energy limit (ω → 0) is, σ(ω) = A, where A is the horizon area. The entropy density, s,
of the black brane is, s = A

4G . We get the viscosity to entropy density ratio of strongly coupled
plasma of N = 4 SYM theory as,

η

s
=

h̄

4πkB
. (112)

The shear viscosity was first computed [27] for the D3 brane corresponding to the N = 4 SYM
which is a conformal field theory. This result is extremely robust because it depends only on
the universal properties of black hole horizons. All gauge theory dual to gravity should fulfill
this relation in spite of their different field contents and type of supersymmetry [28]. This is a
kind of universality relation. However, in the absence of gravity dual of QCD it is not clear yet
if the result (112) holds for QGP.

8. Summary
In this article we have tried to present in a simplistic way an overview of the developments that
has taken place over many years in understanding strong interaction.

In the 1970’s QCD was established as the quantum field theoretical description of strong
interaction, which by now is extremely well tested experimentally. The degrees of freedom
of QCD are quarks and gluons that transform respectively in the fundamental and adjoint
representation of the non-abelian local (color) gauge group SU(3). The interaction between
quarks is mediated by gluons. QCD has the desired feature of asymptotic freedom. However,
QCD remained intractable for the problems of hadron physics at low energies. The mechanism
of confinement of quarks into hadron is still not clear.

In the late 1960’s phenomenological understanding of strong interaction in terms of S-matrix
and Regge trajectories led to the formulation of string theory. It was soon realized that string
theory including both bosons and fermions need 10-dimensional space-time to be consistent. It
also had inescapably a graviton like massless spin-2 excitation mode. It became a promising
candidate for quantum gravity. Energy regime of string theory is in the Planck scale (∼ 1019
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GeV), making the predictions of string theory almost impossible to verify experimentally. So,
string theory was given up as a theory of the strong interactions.

QCD and string theory became two independent successful theory. However, it was always
hoped from both sides to find a link between them, from string theory side the link would provide
some way for its experimental verification, and from QCD side it may give some new path to
understand the low energy phenomena of confinement, chiral symmetry breaking and hadronic
interactions. There had been many hints to expect that string theory may be a potential
candidate to provide new insights in QCD.

The holographic principle developed in the context of black hole thermodynamics proposed
that there must be a duality between a QCD like gauge theory and a gravity theory in higher
dimensional space-time. However, it was not possible to find an useful connection between QCD
and string theory until the discovery of D-branes in superstring theory.

D branes are special non-perturbative objects in string theory. On the one hand, from the
closed string point of view, D branes are soliton like solutions of low energy effective theory of
superstring theories. The excitations here are the gravitational modes of closed string vibrations
in the space-time curved by by the mass of D branes. On the other hand, from open string point
of view, these are hypersurfaces in 10-dimensional space-time, on which open strings end. The
excitations in this case are gauge bosons produced due to the motion of charged ends of open
strings on the D branes.

The dream of finding an useful connection between QCD and string theory was partially
fulfilled with the AdS/CFT correspondence conjectured by Maldacena in 1997, noting two
different descriptions of the same object D branes. Tn the original form of the correspondence,
the gauge theory is, N = 4SU(Nc) supersymmetric Yang-Mills theory in 4-dimensional
Minkowski space-time, and in the gravity theory is type IIB string theory in AdS5 × S5 space-
time. In the large Nc limit the gravity theory becomes classical.

QCD is very different from N = 4SU(Nc) supersymmetric Yang-Mills theory. So it is
necessary to break supersymmetry and conformal invariance by modifying AdS5 space to apply
AdS/CFT correspondence to QCD. Two approaches, namely top-down and bottom-up, have
been developed to achieve the above goal. There are considerable success in both the approaches
in understanding low energy features of QCD.

Strongly coupled gauge theories at finite temperature have also been studied with the help of
AdS?CFT correspondence by introducing black hole horizon in AdS5 space. These studies give
an universal lower limit for the viscosity to entropy ratio for strongly coupled plasma.

Criticisms have been raised against the holographic QCD approach because strictly AdS/CFT
works for SYM theories. However, as long as gravity dual to QCD not discovered, we
may consider holographic QCD as a effective low-energy model independent of the AdS/CFT
correspondence.

We may conclude this article by saying that strong interaction is indeed very difficult to
understand, and we have a long way ahead to go to fully understand it.
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