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Abstract
Cosmic rays, mostly composed of high energy muons, continuously hit the
Earth’s surface (at sea level the rate is about 10 000 m−2 min−1). Various
technologies are adopted for their detection and are widespread in the field
of particle and nuclear physics. In this paper, cosmic ray muon detection
techniques are assessed for measurement applications in engineering, where
these methods could be suitable for several applications, with specific
reference to situations where environmental conditions are weakly
controlled and/or where the parts to be measured are hardly accessible.
Since cosmic ray showering phenomena show statistical nature, the Monte
Carlo technique has been adopted to numerically simulate a particular
application, where a set of muon detectors are employed for alignment
measurements on an industrial press. An analysis has been performed to
estimate the expected measurement uncertainty and system resolution,
which result to be strongly dependent on the dimensions and geometry of
the set-up, on the presence of materials interposed between detectors and,
ultimately, on the elapsed time available for the data taking.

Keywords: cosmic ray muons, multiple scattering, mechanical alignment
monitoring, Monte Carlo simulations, elementary particle detectors, position
measurements

1. Introduction

Primary cosmic rays are mainly composed of high energy
protons coming from the Sun and from the outer Galaxy. When
such particles enter the Earth’s atmosphere, they eventually
collide with the nuclei of the air molecules, producing hadronic
showers, cascades of many types of subatomic particles.
Cosmic ray muons are the most numerous charged particles
of these cascades, at sea level, and their energy and angular
distribution at ground level [1] are the result of a convolution
of the decay, the production spectrum, the energy loss in the
atmosphere and the angular deviations due to collisions.

When a muon crosses a piece of material, it loses
energy and is deflected from its original trajectory [2]. This
phenomenon is stochastic and it is caused mainly by multiple
scattering. The distribution of the deflection angle (θ ) is

described by the multiple scattering theory of Moliere [3]. For
small deflection angles, less than 10◦, it can be approximated
by a Gaussian distribution, with mean value equal to zero
[1].

Cosmic radiation has been known since the first decades
of the 20th century: it has been considered for decades, the
best source of projectiles to investigate the core of matter,
from nuclei to elementary particles. Nowadays, cosmic rays
are very important in Particle and Nuclear Physics, because
they are used for detector testing and calibration, as described
in [4–6], and for detector alignment in complex measurement
apparatuses used in this field, like in [7–10], thanks to their
high penetration capability. However, cosmic ray radiation
has been already applied in fields beyond pure Physics. For
instance, muon radiography has been used for geological
research [11–14], archaeological studies [15] and it has been
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Figure 1. Pictures of the simulated configuration for the structure of the industrial press and the detectors, crossed by a cosmic ray. The
upper (DETu), middle (DETm) and lower (DETl) detectors constitute the detection system, called telescope. They are mechanically
connected to the parts of the structure whose relative positions have to be monitored.

(This figure is in colour only in the electronic version)

proposed to detect high-density materials in closed containers
[16], especially to prevent contraband of radioactive material
[17–19].

Due to their property of crossing very thick materials,
cosmic rays appear as suitable tools for the realization of
measurement systems, specially as a helpful alternative to
traditional optical systems, when detectors are not mutually
visible.

This paper is aimed at assessing potentialities and limits
of muon detection techniques, when applied outside the field
of Particle and Nuclear Physics, with particular reference
to the engineering applications, such as alignment and
positioning measurements and monitoring on large mechanical
and civil structures. Advantages in the adoption of this
methodology could be remarkable for several applications,
i.e. where the parts to be measured are partially or completely
inaccessible, making other conventional methods useless,
where weakly controlled atmospheric conditions lessen the
performances of traditional optical laser techniques [20] or
where interposed materials prevent their use. A feasibility
analysis performed by numerical simulations is proposed
here, in order to verify the possible application of cosmic
ray detection techniques to engineering measurements and
monitoring problems. Moreover the results of this study could
provide useful information to identify a specific detector to be
used in such a measurement system.

2. Monte Carlo simulation of a reference case

The feasibility of a measurement system based on the detection
of cosmic ray muons has been evaluated considering, as a
representative example, the case of a mechanical press. The
analysis has been performed by numerical simulations, with
the aim of estimating the measurement uncertainty of the
method and its dependence on the geometrical dimensions of
the structure, on the materials interposed between the particle
detectors, on the detector dimensions and spatial resolution
and, ultimately, on the data-taking time.

The considered geometry is represented in figure 1. The
press is about 5 m high, 1.5 m long and 1.2 m deep; the
detection system (telescope) is mechanically connected to
the parts of the structure that have to be monitored and is
made up of three plane position detectors, placed in the upper
(DETu), middle (DETm) and lower (DETl) parts of the press.
The distance between DETu and DETl is 3.3 m, and the
distance between DETu and DETm is 2.5 m; the detection
plane of the simulated detectors is a sensitive 200 mm edge
square and each detector is 10 mm thick. The simulated
structure of the press is considered as composed of iron,
whereas the volumes representing the detectors are made of
plastic organic scintillator, a typical constituent of common
particle detectors, such as scintillating fibres [2]. A more
detailed simulation of a specific detector was not required
since the results of the study are largely independent of the
detector constituent material, with respect to the thickness of
the crossed iron. In the simulation, the particle detectors are
considered perfectly aligned on the vertical and each one is
fixed to one of the components of the mechanical structure
whose relative positions have to be monitored. As will be
clear in the following, in a real system, this requirement would
not be crucial and normal mechanical positioning precision
is sufficient. A measurement system like the one described
above shows the simplest realizable configuration, but it is an
exhaustive example for what concerns the involved physical
phenomena and the statistical analysis of the data.

The Monte Carlo simulations have been performed by
a C++ toolkit for the simulation of the passage of particles
through matter, called Geant4©: this package is largely used
in Particle and Nuclear Physics studies [21]. The geometries
of the press structure and of the detectors and their constituent
materials have been taken into account in the simulations. The
detector spatial resolution has been fixed to σ = 100 µm
on both coordinates of the sensitive surface, a typical value
for different types of detectors. Finally, to obtain significant
results, a realistic cosmic ray muon generator, based on
experimental data [22], has been implemented in the code, in
order to simulate, as realistically as possible, the momentum
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and angular distributions of cosmic rays at the terrestrial
surface.

3. Measurement of the detector alignment

The procedure to evaluate the detector alignment, implemented
in the simulation and based on the measurement of the cosmic
ray crossing points on the detectors, will be briefly described
in the following.

When a cosmic ray crosses a detector, the coordinates
of the hit are available. The response of each detector
gives the position of the detection point in its horizontal
sensitive plane. In the assumption of a muon straight line
trajectory, the hits of the three detectors are aligned and a
possible mechanical displacement of a particular detector of
the telescope represents the systematic effect to be evaluated.
However, the trajectory is a perfect straight line only in the
absence of any magnetic field and when the muon crosses
a vacuum. The interaction between the Earth’s magnetic
field and, for example, a 3 GeV/c momentum particle,
causes a deflection of about 5 µm m−1 in the direction
perpendicular to both magnetic field and particle velocity.
Since in cosmic rays there is an excess of positive muons with
respect to negative ones, this could induce a systematic effect
on the measure. However, the proposed method is based on
relative measurements, that is considering differences between
measurements taken at different times, thus the effect of
terrestrial magnetic field has been neglected in the following.

When a muon crosses any kind of matter, it deviates in a
stochastic way, because of interactions, and the deviations are
symmetrical around the flight path. The larger is the amount
of the crossed matter, the more the stochastic effects are
dominant, so a single cosmic ray is not, in general, sufficient
to measure a possible systematic misalignment of a detector
relative to the others. In addition, the spatial resolution of
the detector is, in general, a source of uncertainty in the
determination of the crossing point on the sensitive surface
and it has random behaviour. A statistical distribution of
the hit points of a population of cosmic rays crossing the
detector telescope is therefore necessary, so stochastic effects
on the position measurements can be reduced and treated by
statistical inference methods. In this way, it becomes possible
to extract information, from the data, about systematic effects,
within a certain confidence level depending on the features of
the distributions and the statistics of the collected sample.

To implement a procedure to analyse the data, two
statistical variables, described in figure 2, have been defined:
�x = xint − xr and �z = zint − zr , where x and z are the two
coordinates of the horizontal detection plane of the middle
detector DETm (whereas y is the vertical direction of the
adopted reference system). The two statistical variables are
defined as the difference between the coordinate of the cosmic
ray crossing point, detected by DETm, and the same coordinate
of the intersection between the detection plane of DETm
and the straight line connecting DETu and DETl cosmic ray
hits.

The histograms of the variables �x and �z obtained
with the full simulation are represented in figure 3; the mean
values of these statistical distributions are connected to the
systematic displacement of the middle detector relative to

Figure 2. �x and �z are, respectively, the displacement along the
x and z directions between the point Pint, detected by the middle
detector, and the intersection point Pr between the plane of the
middle detector and the straight line that joins the hit points
measured by the upper and the lower detectors. �x = xint − xr and
�z = zint − zr .

the others, in the two coordinates of the sensitive plane, while
the standard deviation of each distribution is related to the
uncertainty of the measurement of these systematic effects
[23]. In the simulated geometry, detectors were perfectly
aligned; therefore the two distributions are centred at zero.
In effect, the proposed method is sensitive only to relative
displacements among detectors and it is not possible to say
which component has moved with respect to an absolute
external reference system. Nevertheless, it can be effective
to monitor variations of relative displacements of mechanical
parts with time.

The rate of cosmic ray muons that reach the terrestrial
surface is rather low and their angular distribution, peaked
at the vertical, is rather large. Data-taking time is closely
related to the collected statistics and, consequently, to the
achievable uncertainty on the measurement of the systematic
displacement. In the simulated geometrical conditions
described above, the detector system acceptance, that is the
ratio between the number of cosmic rays crossing all three
detectors and the number of cosmic rays hitting at least the
upper detector, is (1.63 ± 0.23) × 10−3. This low value is
due to the small solid angle covered by the telescope, by
the spread of the cosmic ray angular distribution around the
vertical and by the deviations of the cosmic rays due to the
multiple scattering in the interposed materials.

In conclusion, only one or two cosmic rays in one
thousand hitting the upper detector are useful for building
the �x and �z statistical distributions; therefore, long
data-taking times are in general needed for a significant
application of the method, at least, in a geometry similar to the
proposed one. For example, to collect a sample of 35 000
significant cosmic rays, it is necessary to wait for about
5 weeks.
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Figure 3. Histograms of the variables �x and �z for a large population of cosmic rays crossing the telescope.

4. Statistical analysis

4.1. Shape of the �x and �z parent populations

To perform an effective statistical analysis of the data, it
is necessary to find efficient unbiased estimators that could
return the values of both the possible displacement and of
the uncertainty of its measurement. In order to find the best
estimators, the shape of the distribution of the �x and �z

parent populations, as seen in figure 3, has been approximated
by a proper analytical function obtained by a best-fit procedure.

For a fixed value of the momentum of a particle, the
physical process of the multiple scattering produces, at a
first approximation, a Gaussian distribution of the deviation
angle [1]. However, cosmic rays at the ground level have
a wide momentum spectrum, and the material thickness that
they have to cross may be different from one cosmic ray to
another, because of the geometry of the structure, the different
crossed thicknesses and the cosmic ray angular distribution.
Therefore, the shape of the parent distributions of �x and
�z is more complex than a simple Gaussian function. If the
mechanical structure is symmetric enough, it is symmetrical
around the vertical axis of the telescope and has long tails,
due to the low momentum cosmic rays, which suffer larger
deviations.

Since the main physical effect has Gaussian characteris-
tics, at fixed particle momentum, it has been supposed that the
distributions of figure 3 can be well represented by a sum of
Gaussian functions with the same mean value and different
standard deviations and weights. The number of Gaussian
functions necessary to obtain a suitable best-fit function has
been determined by fitting the distributions relative to figure 3
with sums of different numbers of Gaussian functions and
by using statistical tests to determine the best number of
functions. Proper statistical tests have also been used to verify
the validity of the adopted form of the best-fit function.

The most general best-fit function is represented by the
following formula:

f =
n−1∑
i=0

wi

σi

e
− 1

2

(
t−mi

σi

)2

. (4.1)

It depends on 3n parameters, where n is the number of
Gaussian functions that compose the best-fit function: mi are
the mean values, σi are the standard deviations and wi are the
relative weights of each Gaussian function. Assuming that all

the Gaussian functions have the same mean value (m = mi),
the number of free parameters decreases and becomes (2n+1),
i.e. n values both for σi and wi and the common mean
value m.

Two very large Monte Carlo samples, 43.0 and 21.5
millions of muons crossing the upper detector, have
been generated, corresponding respectively to data-taking
campaigns of about 2.50 and 1.25 months. They are used for
producing high statistic distributions of �z and �x statistical
variables, respectively, as seen in figure 4. The �x distribution
of the larger sample could not be used due to an excessive
asymmetry caused by the presence of a pillar too close to
the detector telescope, in the x direction, in that particular
simulation. Indeed, in the simulation corresponding to the
smaller sample, the detectors were placed at a larger distance
from the pillar.

Fitting the obtained histograms of the statistical variables
�x and �z with the most general best-fit function (4.1), the
number of needed Gaussian functions (n), the value of the
standard deviation (σi) and the relative weight (wi) of each
Gaussian function included in the sum have been determined
and fixed, using the following statistical techniques: the least-
squares method, the chi-square goodness-of-fit test and the F
Fisher–Snedecor test for the evaluation of functional forms
[24, 25].

In figure 4, the results of the fitting procedure are shown:
for the �x distribution five Gaussian functions were needed,
whereas only four were needed for the more regular �z

distribution. The difference between �x and �z distributions
is the consequence of a light asymmetry in the x direction of the
press structure around the principal axis of the measurement
telescope, caused by the presence of a pillar.

The resulting functions are a sum of Gaussian functions
with the same mean value, fixed standard deviations and
relative weights, and with only two free parameters: the
common mean value (m) and a global scale coefficient (W).
These functions represent the full population �x and �z and
may be used to fit distributions of samples extracted from these.
The best-fit parameter (m) constitutes an efficient estimator of
the mean value of �x and �z populations. The standard
deviation of the parameter m provides an estimation of the
uncertainty in the measurement of the population mean value.
This last parameter is directly dependent on the statistics of
the sample.
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Figure 4. In these two figures the best-fit functions are superimposed on their respective Monte Carlo distributions for �x and �z statistical
variables. Moreover the reduced χ 2 values, the best-fit function mean values (mfx

and mfz
) and the values of the (σi, wi) parameters are

reported.

Table 1. The table shows the comparison between the results obtained with the method based on the sample parameters and on the best-fit
procedure.

Sample quantities Best-fit

Ns (samples) Generated muons N̄c (events) εm (µm) εm′ (µm) εmf
(µm) εsf (µm)

10 4 M 6848 ± 29 241.22 ± 56.86 242.77 86.31 ± 20.34 83.11 ± 0.29
21 2 M 3420 ± 14 384.56 ± 60.80 343.55 118.63 ± 18.76 118.60 ± 0.84
43 1 M 1790 ± 6 561.11 ± 61.22 486.03 192.22 ± 20.97 169.44 ± 1.45
86 500 k 854 ± 3 806.30 ± 61.84 687.35 255.24 ± 19.58 244.59 ± 1.89

172 250 k 427 ± 2 1025.66 ± 55.46 972.06 366.36 ± 19.81 347.26 ± 2.22
344 125 k 214 ± 1 1427.00 ± 54.50 1374.70 539.62 ± 20.60 483.00 ± 3.21

Ns = number of samples having the same generated number of events
N̄c = average number of cosmic rays crossing the whole telescope, calculated on the Ns samples
εm = measurement uncertainty estimated by the standard deviation of the distribution of the Ns sample mean values
εm′ = measurement uncertainty estimated by the ratio between the standard deviation of the whole population of
43 million generated events and the square root of N̄c

εmf
= measurement uncertainty estimated by the standard deviation of the distribution of the means (m) of the Ns

best-fit functions
εsf = measurement uncertainty estimated by the average of the errors in the mean values of the Ns best-fit functions
calculated by error propagation in the fitting algorithm.

4.2. Relation between uncertainty and data-taking time

4.2.1. Data samples and estimators. The number of cosmic
rays crossing the whole telescope is strictly connected to
the data-taking time. To simulate periods of data taking of
different length, the larger population of Monte Carlo data
(43 millions of muons crossing the upper detector) has been
split into smaller samples, characterized by different numbers
of events. In particular, the following samples have been
extracted:

10 samples of 4 M events, corresponding to a measurement
time of 6.9 days per sample;

21 samples of 2 M events: measurement time 3.5 days per
sample;
43 samples of 1 M events: measurement time 1.7 days per
sample;
86 samples of 500 k events: measurement time 0.9 days per
sample;

172 samples of 250 k events: measurement time 0.4 days per
sample;

344 samples of 125 k events: measurement time 0.2 days per
sample.

The evaluation of the measurement uncertainty of the
telescope has been performed only on the �z distribution,
the procedure being the same for the �x distribution. In
this work, two methods have been used to obtain statistical
estimators of the mean value of the parent population with
their uncertainties, and the results have been compared. The
first is simply based on the sample mean value and standard
deviation of the distributions of the statistical variables; the
second is based on the best-fit parameters returned by the
aforementioned best-fit procedure, applied to the different
samples. The results obtained by these two methods are
reported and compared in table 1.

In table 1, the first column shows the number of samples
into which the total population of 43 million events has been
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split; the second one shows the number of generated muons
in each sample of the corresponding row (muons crossing the
upper detector); the third column shows the average number
of muons crossing the whole telescope calculated over the
corresponding samples; the fourth and fifth columns show
the results for the measurement uncertainties obtained with
the method of sample parameters and the sixth and seventh
ones those obtained with the best-fit procedure.

In particular, in the fourth column, εm is the measurement
uncertainty estimated by the standard deviation of the Ns

sample mean values. In the fifth column, εm′ is the
measurement uncertainty estimated using the well-known
relation for the error of the mean value of a sample, given by the
ratio between the standard deviation of the parent population
(relative to 43 million events generated) and the square root of
the number of events in the sample. The compatibility between
εm and εm′ has been assessed checking that the value of εm′

was included into the εm uncertainty interval, considering a
99.7% coverage interval. As expected, the estimated error in
the mean value decreases with the number of events contained
in the sample.

In the sixth column, εmf
is the measurement uncertainty

estimated by the standard deviation of the distribution of the
means (m) of the best-fit functions corresponding to the Ns

samples. In the seventh column, εsf
is the measurement

uncertainty estimated by the average value of the errors in
the mean values of the Ns best-fit functions calculated by
error propagation in the fitting algorithm. The compatibility
between εsf

and εmf
, assessed by checking that εsf

was
included into the εmf

uncertainty interval, demonstrates the
statistical correctness of the fitting procedure.

The data in table 1 show that the best-fit procedure gives
systematically better estimators, since, at the same value of N̄c,
their uncertainties are smaller than the ones obtained by the
sample parameters [23]. This result appears reasonable, since
the best-fit procedure adds to the calculations extra information
about the analytical shape of the parent population given
as a continuous function obtained by the simulated parent
distributions. Therefore, the construction and the use of the
best-fit function of the parent population for fitting the sample
distributions are justified.

In conclusion, to assess the measurement uncertainty of
the displacement of a detector relative to the others, in the
simulated configuration, by using a sample of cosmic rays
containing Nc events, the value of εsf

, as defined in table 1,
can be confidently adopted. For instance, for a sample of
1 million events, corresponding to a data taking of 1.7 days,
the estimated uncertainty in the measurement of the systematic
displacement of a detector is about 170 µm at one standard
deviation. The measurement uncertainty depends on

√
Nc as

expected. This statement can be verified in the data in table 1
checking that the ratio between the uncertainty of a N̄c sample
and the uncertainty of a 2N̄c sample is ∼√

2.

4.2.2. Uncertainty versus data-taking time. Cosmic ray flux
at the terrestrial surface is about 1 cm−2 min−1, so the number
of generated muons reported in table 1 is directly proportional
to the data-taking time (in realistic conditions, the muons
crossing the upper simulated detector in a minute are about
400).
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Figure 5. Relation between the average standard uncertainty of the
measurement procedure and the data-taking time, up to a maximum
of a week. The relation has been obtained using the εsf column in
table 1: the function in equation (4.2) has been fitted to the average
standard uncertainties, obtaining (226.6 ± 0.3) µm day1/2.

As aforementioned, the uncertainty relative to the
measurement of the detector displacement depends on

√
N̄c;

consequently it also depends on
√

t , where t is the data-
taking time. Therefore, the general relation connecting the
measurement uncertainty u and the data-taking time t can be
written as

u = C · t−1/2, (4.2)

where C is a constant, mainly depending on the system
geometry and materials interposed between detectors.

In the considered conditions, using the values of the best
estimators available in table 1 (i.e. the values of εsf

), it is
possible to obtain the general relation between the average
uncertainty of the measurement procedure and the data-taking
time up to a week. This is done by fitting the function equation
(4.2) on the values of εsf

reported in figure 5. The following
best-fit function is obtained:

u = [(226.6 ± 0.3)t−1/2] µm, (4.3)

where the data-taking time t is expressed in days, the constant
is measured in µm day1/2 and u is the standard uncertainty
relative to the measurement procedure. As time increases, the
uncertainty decreases and the relation (4.3) can be adopted as
a general one representing the uncertainty of the measurement
procedure for different data-taking times.

Equation (4.3) depends on the particular geometry of both
the mechanical structure and the detector telescope, on the
materials that cosmic ray muons have to cross and on their
thickness and on the detector spatial resolution; therefore the
whole procedure would have to be repeated if geometry and/or
materials were modified.

4.2.3. Dependence of the uncertainty on other effects. As
further studies, the effects of the interposed material thickness
and composition and of the spatial resolution of the detectors
on the measurement uncertainty of the telescope have been
evaluated.

In particular, figure 6 shows the uncertainty as a function
of the data-taking time for three different values of the
thickness of the materials interposed between detectors, i.e.
900 mm, 280 mm and 120 mm of crossed iron. A lower
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Figure 7. Measurement uncertainty versus time for concrete and
iron: both are obtained on equal thickness, changing the crossed
material. The less dense the material crossed by cosmic rays, the
less the standard uncertainty of the measure.

uncertainty is obtained with less interposed material, but it
may appear surprising that the functions relative to 280 mm and
120 mm of interposed material thickness appear superimposed.

In general, the thinner the crossed material thickness, the
less the measurement uncertainty, since the effects generating
cosmic ray deviations are less relevant. However, under certain
conditions, a compensation takes place between the amount
of multiple scattering and the modification of the momentum
spectrum of the cosmic rays crossing the whole telescope,
which depends on energy loss by ionization.

Indeed, in this specific case, when the crossed iron is at
the minimum value of 120 mm thickness, the effect of multiple
scattering is minimized, but a larger number of cosmic rays
with very low momentum crosses the whole detector telescope,
undergoing larger trajectory deviations. When the thickness
of iron is increased to 280 mm, fewer cosmic rays cross the
whole measurement system, a part of them being stopped in the
interposed material, but they have more energy on average and
suffer less deviation. The effects of this interplay can hardly
be calculated analytically and a Monte Carlo simulation,
which accounts accurately for the geometrical distribution of
materials and the muon interactions with matter, is needed to
obtain meaningful results.

Concerning the effect of different interposed materials on
the measurement uncertainty, figure 7 shows a comparison

between the relation of equation (4.2), calculated on equal
thickness and geometry of iron and concrete. The latter is less
dense than iron and generates less multiple scattering, thus
allowing for better performance of the measurement system.

To understand how the detector spatial resolution
influences the whole telescope measurement uncertainty, the
simulations have been repeated for detectors having spatial
resolution σ = 100 µm and σ = 1.0 mm; in particular, so far,
all the evaluations have been performed adopting detectors
having a spatial resolution σ = 100 µm. The result is
that, in the simulated configuration, multiple scattering is
the dominant effect affecting measurement uncertainty, and
a degradation of the detector spatial resolution up to σ =
1.0 mm, which corresponds to a very coarse resolution, does
not sensibly change the results.

5. Resolution of the measurement system for a
mechanical misalignment

If a misalignment in the relative position of the detectors
is imposed in the simulated geometry, a change of the
calculated mean values of the sample distributions of the
statistical variables �x and �z is expected; in contrast, if
the displacement is sufficiently small, so that the solid angle
covered by the detector telescope does not sensibly vary, no
variation of the standard deviations of the sample distributions
should result.

Figure 8 shows �x and �z histograms obtained by
imposing, in the Monte Carlo simulation, a large displacement
of the middle detector of the telescope, of �Sx = +2 cm and
�Sz = −2 cm. The distributions are now centred around the
value of the imposed displacement.

In a realistic measurement, since the detectors are
positioned with a standard mechanical precision, the reference
geometry of the system must be calibrated. With this aim, a
1 week long measurement campaign can be foreseen for the
calibration of the system; for such a period a measurement
standard uncertainty of about ε0 = 85 µm is expected in
the measurement of the two reference positions (m0x

, m0z
) of

the middle detector with respect to the other two, recalling
that equation (4.3) determines the measurement uncertainty,
at one standard deviation, for a sample of cosmic rays
collected during a data-taking time ti . To assess a possible
positive displacement �Sx of the mechanical structure in the x
direction, the following standardized variable is constructed:

sx =
(
mti

x − m0x

) − �Sx√
ε2

0 + ε2
ti

(5.1)

where mti
x is the mean value of best-fit function applied to the

�x distribution of the sample collected in the data-taking time
ti , εti is the corresponding one standard deviation uncertainty,
obtained from equation (4.3), the other symbols have the
aforementioned meaning.

To assess the displacement �Sx at a 99.85% level of
significance, with a 3σ test at one tail, the standardized
variable sx should be larger than −3. In order to exclude
from the confidence interval of 3σ the reference value of the
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Figure 8. The �x and �z histograms after imposing a 2 cm displacement in both directions on the middle detector of the telescope. The
sample standard deviations are statistically compatible with respect to the distribution represented in figure 3, but the mean values are
displaced by an amount equal to the imposed displacement. The two distributions correspond to 21 h data taking.

Figure 9. Resolution of the measurement system as a function of
the data-taking time calculated for the considered geometry and
supposing a calibration data taking of 1 week.

displacement m0x,�Sx − 3
√

ε2
0 + ε2

ti should be greater than
zero and, consequently

εti <

√(
�Sx

3

)2

− ε2
0 (5.2)

This relation sets the maximum one standard deviation
measurement uncertainty of the mean value of the best-fit
function of the �x distribution for assessing, within a 99.85%
level of significance, a displacement �Sx of the middle
detector. Equation (5.2) establishes also the relation between
the resolution of the measurement system and the data-taking
time, because the value of εti is related to the data-taking time.

Figure 9 shows this relation calculated in the considered
geometry and supposing a calibration data taking of 1 week.
One can see that the system is able to detect a relative
displacement of 1.0 mm in about 12 h of measurement,
whereas 60 h are needed to detect a 0.5 mm displacement.
It is important to recall that these performances are obtained
in a geometrical condition where the external detectors of the
telescope, whose area is only 400 cm2, are 3.3 m far away and
the cosmic rays cross tens of centimetres of iron interposed
between the detectors.

6. Summary and conclusions

Cosmic ray muon detection techniques for apparatus
alignment are widespread in the field of Particle and
Nuclear Physics. A feasibility analysis concerning possible
applications of these methods in mechanical and civil
engineering is proposed in this work.

Specifically, a preliminary study for the case of monitoring
the alignment of an industrial press has been developed,
performing Monte Carlo simulations. A telescope formed by
three position detectors, vertically aligned, has been linked
to the mechanical structure of the press. The position of
the intermediate detector, relative to the other two, has been
determined by measuring the hitting positions of cosmic rays
crossing the whole telescope and performing an appropriate
statistical analysis of data, based on the distributions of the
two statistical variables �x and �z defined in section 3.

The position measurement standard uncertainty is the
most significant considered parameter. It is directly connected
to the data-taking time. The relation connecting the reachable
standard uncertainty u and the data-taking time t is given by
equation (4.2), where C is a parameter depending on the
detector telescope features (detector size, distance between
detectors, detector intrinsic resolution) and on the mechanical
structure on which the telescope is placed (interposed materials
and thicknesses, geometry).

For the studied configuration, where the distance between
the most external detectors was 3.3 m and the total crossed
iron thickness was 280 mm, C = (226.6 ± 0.3) µm day1/2.
Standard uncertainty improves when the crossed thickness
and/or interposed material density decrease. The sample
distributions �x and �z must be fitted with best-fit functions
representing the shapes of the parent population of the �x and
�z statistical variables. The best-fit parameters of the fitting
functions are correlated with the position measurement and its
uncertainty.

The shapes of the parent populations are obtained
by fitting a sum of Gaussian functions with the same
mean value and different standard deviations and weights
(see equation (4.1)) on a very large sample of data. Such very
large samples, of the order of one hundred thousand cosmic
rays crossing the whole telescope, are hardly obtained with a
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real data taking that should last a very long time, of the order
of 2.5 months for the considered geometry.

In this work, it is demonstrated that the simulation, by
the Monte Carlo method, of any mechanical system on which
measurement and monitoring techniques based on detection
of cosmic rays should be applied, can be a valuable tool. It
can be used to study the shapes of the �x and �z parent
populations and obtain reliable best-fit functions, to optimize
the position of the detector telescope relative to the mechanical
structure and to determine, a priori, the relation between
standard measurement uncertainty and data-taking time.

A possible improvement to the system is the use of
an additional absorber below the third detector, followed
by a fourth detector, e.g. a large plane scintillation counter.
Requiring the coincidence of such a detector, the low-energy
large multiple-scattering component of the included muons
would be eliminated. For example, if a 300 mm iron absorber
was placed under the press, which already accounts for
280 mm of iron, the coincidence with the fourth detector
would eliminate all muons below 900 MeV/c, thus improving
the system uncertainty. Of course, such an additional counter
is not practical in all topologies, but where possible it could
improve uncertainty and reduce data-taking time.

In the studied reference case, assuming a calibration time
of 1 week data taking to set the reference position of the
detectors, a displacement �S = 1.0 mm is detectable by a
measurement of about 12 h and a displacement �S = 0.5 mm
after a measurement time of 60 h, as shown in figure 9.

The most important factors affecting the performance of
the system are the solid angle covered by the detector telescope
and the amount of multiple scattering suffered by cosmic
ray muons crossing the telescope. Detector intrinsic spatial
resolution seems not to be a crucial parameter.

The studied measurement method is suitable to detect
relative displacements among parts of the same structure, both
translations and rotations; so it could be particularly useful
when the purpose is monitoring the relative positions of parts
of a structure with time. Moreover, using more than three
detectors in the telescope, it could be possible to produce also
an image of the deformed structure.

This method could be particularly useful when the parts
that have to be monitored are not reciprocally visible or when
the measuring area is hardly accessible directly. The distances
between two successive detectors do not represent a restriction
for the reachable uncertainty that just depends on the data-
taking time available. The last is the most limiting factor of
the method.

Different potential applications of this method can be
found both in civil and industrial engineering.

(i) Civil engineering field. Installations to supervise static
stability of (a) dams, in place of the current expensive
inverse-pendulum; (b) historical monuments, such as
towers and belfries; and (c) constructions in seismic-
risk areas. The advantages could be a low upkeep and
steady data acquisition. The last would permit data to be
collected continuously and increase available statistics.
The cosmic ray detection based method shows reachable
uncertainties which are comparable to those affecting
other monitoring systems typically used in this field,
such as laser scanner and theodolites [26, 27], global
positioning system based methods [28] or pendulums [29].

(ii) Industrial engineering and big structures field.
Installations to monitor structural degradation, i.e.
permanent deformations of big structures such as
construction site and shipyard cranes, big presses, dock
and airport hulls [16]. The measurement uncertainties
obtained by this method are comparable with the
industrial traditional ones, such as electronic levels or
laser alignment [30, 31] and with interferometric laser
techniques [29, 32], if they are employed in weakly
controlled conditions [20].
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Ingegneri (Bologna: Progetto Leonardo)

[26] Alba M et al 2006 Structural monitoring of large dam by
terrestrial laser scanning Proc. ISPRS Commission V
Symp.—Image Engineering and Vision Metrology vol 36
(Dresden, Germany)

[27] Leica industrial theodolites and total stations—highest
industrial precision Leica industrial theodolites and total
stations data-sheet

3545

http://dx.doi.org/10.1103/PhysRev.89.1256
http://dx.doi.org/10.1140/epjcd/s2005-02-007-y
http://dx.doi.org/10.1016/S0168-9002(01)01227-X
http://dx.doi.org/10.1109/TNS.2006.869833
http://cmsdoc.cern.ch$hbox {ma char '75}$documents.html
http://www.ts.infn.it/experiments/finuda/piano_phd.pdf
http://www.lnf.infn.it/sis/preprint/
http://dx.doi.org/10.1016/S0168-9002(96)01041-8
http://dx.doi.org/10.1016/0168-9002(94)01169-9
http://dx.doi.org/10.1016/S0168-9002(03)01372-X
http://dx.doi.org/10.1126/science.167.3919.832
http://dx.doi.org/10.1016/j.nima.2004.03.093
http://dx.doi.org/10.1063/1.1606536
http://www.inf.uu.se/Reports/UUNF05-08.pdf
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1103/PhysRevLett.83.4241


I Bodini et al

[28] Website of the School of Surveying and Spatial Information
Systems, University of South New Wales (Sydney,
Australia) http://www.gmat.unsw.edu.au/snap/gps/
gps survey/chap10/chap10.htm

[29] Doeblin E O 1990 Measurement Systems—Application and
Design (New York: MacGraw-Hill International Editions)

[30] Tesa Niveltronic data-sheet
http://www.tesach.ch/catalog/

[31] Leuze Electonic data-sheet
http://www.leuze.com/products/products en.html

[32] Laser measurement system LSP Compact data-sheet
http://www.feanor.com/

3546

http://www.tesach.ch/catalog/
http://www.leuze.com/products/products_en.html
http://www.feanor.com/

	1. Introduction
	2. Monte Carlo simulation of a reference case
	3. Measurement of the detector alignment
	4. Statistical analysis
	4.1. Shape of
	4.2. Relation between uncertainty and data-taking time

	5. Resolution of the measurement system for a mechanical misalignment
	6. Summary and conclusions
	References

