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Abstract
The full-sky incoherent step is the most computationally heavy in the
hierarchical procedure developed in the search for continuous gravitational
signals in the data of the Virgo detector. This step is based on the Hough
transform. We have implemented it by means of an approach that uses
look-up tables. Here, after a short introduction to the whole data analysis
method, we describe the implementation of the Hough transform and discuss
the performances of the code. Then, we discuss the computing framework in
which data analysis will be performed. In particular, we briefly describe the
architecture of the European DataGrid software, which we have used to deploy
a small computational ‘grid’. In this ‘grid’ environment we have tested our
code and the results are shown.

PACS numbers: 04.80.N, 07.50.Bx, 07.05.Kf

1. Introduction

The detection of periodic gravitational signals emitted by astrophysical sources is one of the
main goals of today’s and forthcoming detectors. According to current models about 109

neutron stars are expected to exist in our Galaxy. Most of these are probably rotating at a rate
too low to be inside the frequency band accessible by detectors. A non-negligible fraction,
however, is rotating at higher frequencies and then could emit detectable signals. The simplest
model of a periodic source is given by a bi-axial rotating neutron star, asymmetric with respect
to the rotation axis. In this case the frequency of the signal is twice the rotation frequency
of the star. The detected frequency is not constant due to the intrinsic source spin-down and
the Doppler effect due to the Earth’s motion. The spin-down is a consequence of the loss of
energy of the star through the emission of electromagnetic and gravitational waves; this last
causes a slow-down at a rate proportional to the fifth power of the rotation frequency. The
Doppler effect is the sum of two components: the Earth’s orbital motion around the Sun, with
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Table 1. Main quantities for the optimal analysis. The numbers refer to a total observation time
Tobs = 4 months, a frequency band up to f0 = 500 Hz, a minimum neutron star decay time
τ ≡ f0

ḟ0
= 104 years. A full-sky search is also assumed. LFFT is the length of FFTs (number

of points), Ntot is the total number of points in the parameter space and depends on the number
of points in the sky, on the number of spin-down parameters to be taken into account and on the
number of different frequencies to be investigated. CP is the computing power needed, hmin is
the ‘nominal’ sensitivity, that is the amplitude of the signal, at the detector, that could be detected
with a SNR equal to 1. In the sensitivity evaluations a detector noise power spectral density
Sh = 10−46 Hz−1 is assumed.

LFFT Ntot CP (Tflops) hmin

1.0 × 1010 6.5 × 1028 1.5 × 1016 6 × 10−27

a period of one year, and the Earth’s rotation, with a period of one sidereal day. On timescales
of the order of one day, or shorter, the latter is dominant. Other effects can further complicate
the signal:

• glitches, which are sudden changes in the rotation frequency and its derivative, probably
due to cracks in the neutron star crust or to the interaction between the crust and the inner
superfluid;

• the presence of a companion star which adds a third component to the Doppler effect due
to the orbital motion of the source in the binary system;

• the accretion of matter from a surrounding nebula, or another star, which can make the
frequency evolution of the source not easily predictable;

• the case of a triaxial neutron star, which produces a splitting of the spectral lines and
complicates the analysis.

In the following discussion we will not take into account these complicating factors and assume
that the only relevant effects are the source spin-down and Earth’s Doppler effect.

2. The detection of periodic signals

The basic method in the search for periodic signals of unknown frequency in the data of
gravitational detectors consists in estimating the power spectrum using FFTs. Due to the
weakness of the sources the signal must be integrated for a very long period of time, at least
of the order of months, and this implies the calculation of very long FFTs. Moreover, due to
the frequency variations described above, the signal is spread among many frequency bins. A
way to achieve optimal detection in the case of varying frequency is to correct the data for
the supposed position, frequency and spin-down of the source. In the case of the so-called
blind search (completely unknown position, frequency and spin-down) the resulting parameter
space is so large that the required computing power for this optimal method is completely
unreasonable. In table 1 the main quantities related to the optimal search are reported. In the
appendix we show how the number of points in the parameter space is calculated.

For this reason hierarchical methods have been developed, which are not optimal but
which permit the loss of sensitivity for a given computing power to be limited (Papa et al
1997, Frasca 2000). They alternate coherent steps, typically based on FFTs, with incoherent
ones, selecting some candidates during the incoherent step and refining the search in the
following coherent phase. The incoherent steps are normally based on the Radon transform
(‘stack–slide’ search, see Brady and Creigthon (2000)) or the Hough transform. These methods
start from a time–frequency map of the detector data and produce a false alarm probability map
in the space of source parameters. In each incoherent step candidates with a map value below
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a given threshold are selected. The hierarchical method developed in the Virgo experiment
for the detection of periodic sources is described in the following.

The starting point is the construction of a short FFT database (SFDB) containing the FFTs
of the data. The 4 kHz h-reconstructed data of the Virgo detector will be used. They will be
filtered and undersampled depending on the maximum frequency we want to search for. The
data of this subset are divided into interlaced (by half) chunks of duration TFFT each properly
windowed in order to reduce the dispersion of power due to their finite length. The length
of the FFTs is chosen in such a way that a signal, if present, would be completely contained
in a single frequency bin. In order to optimize the sensitivity, the SFDB is divided into four
blocks, one for each frequency band which will be analysed. The four frequency bands are

B1 = [500 Hz, 2 kHz], B2 = [125 Hz, 500 Hz],

B3 = [31.25 Hz, 125 Hz], B4 = [5 Hz, 31.25 Hz].
(1)

From the SFDB, calculating the periodograms (the square modulus of the FFT) and selecting
the maxima above a given threshold, we obtain a time–frequency peak map. The frequency
resolution is given by δf = T −1

FFT. In the absence of a signal the points in the peak map are
distributed in a random way; if a signal is present, with high enough signal-to-noise ratio,
some of these points will be distributed along the trajectory of the received frequency. The
Hough transform is applied to the peak map. It maps each point of the peak map into the space
of source parameters. To clarify this point, let us assume that the only parameters are the two
coordinates of the source and that the source emits a signal at a frequency f0. Moreover, we
assume that at a given time t a peak at frequency f̃ is present in the peak map. The Hough
transform maps this peak into the set of points, on the celestial sphere, where a source emitting
a signal with frequency f0 could be located in order to produce at the detector a peak at f̃ .
This set of points is a circle. This circle has a centre given by the direction of the detector
velocity vector �v at time t, calculated with respect to the solar system barycentre, and a radius
φ which can be calculated from the equation of the Doppler effect:

f̃ − f0(t) = f0(t)
v(t)

c
cos(φ). (2)

As a matter of fact, this would be exact if we worked in a continuum. Due to the frequency
discretization, the frequency of the peak has an indetermination given by the bin width δf and
then the possible sky locations form an annulus with radii

cos(φ)max = f̃ − f0(t) + 1
2δf

f0(t)
v
c

, cos(φ)min = f̃ − f0(t) − 1
2δf

f0(t)
v
c

. (3)

Summing in a suitable way the annuli corresponding to all peaks present in a given peak map,
we have the final Hough map where candidates are selected. Their parameters are used to
correct data for the next coherent step. If the time–frequency peaks were due only to a signal,
the annuli would intersect in a single ‘point’ of the Hough map identifying the source position.
Due to the presence of noise many candidates will be found. Obviously, not only the frequency
space but also the celestial sphere is discretized. This means that ‘points’ in the Hough map
are, in fact, pixels. The choice of the best kind of tiling is not trivial and is important in order
to speed up the computation and increase the signal-to-noise ratio. At the moment, we have
chosen a rectangular tiling, obtained with standard parallels and meridians, but other kinds of
tilings are investigated. The resolution on the celestial sphere, that is the pixel dimension, is

res = (
v
c

LFFT
2

)−1
(see the appendix for more details). An under-resolution factor of 2 is used

for the highest frequency band, in order to limit the computing needs.
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Table 2. Main quantities for the full-sky incoherent step. A total observation time Tobs = 4 months
and a minimum neutron star decay time τ ≡ f0

ḟ0
= 104 years are assumed. The four frequency

bands defined in equation (1) are considered. LFFT is the FFT length (number of points), Ntot is
the total number of points in the parameter space, CP is the computing power needed, calculated
assuming that the computation takes place in half the total observation time, hmin,eff is the sensitivity
after selection of 109 candidates, Floss is the ‘effective’ loss factor of the hierarchical search with
respect to the optimal one. In the sensitivity evaluation a detector noise power spectral density
Sh = 10−46 Hz−1 is considered.

LFFT Ntot CP (Gflops) hmin,eff Floss

B1 4194 304 1.90 × 1014 603.43 1.23 × 10−25 2.76
B2 4194 304 1.90 × 1014 150.86 0.87 × 10−25 2.09
B3 2097 152 1.19 × 1013 4.71 0.73 × 10−25 1.91
B4 1048 576 7.42 × 1011 0.147 0.62 × 10−25 1.77

In the proposed hierarchical scheme we have up to four iterations in each of which
the length of FFTs is increased by a factor of 16, until a length corresponding to the total
observation time is reached. At the end of the first iteration a number of candidates up to
about 109 will be selected. This number is constrained by the necessity that the computing
power needed for the subsequent analysis and the disk space to store these candidates are not
too large. In the next iterations the number of candidates will rapidly reduce to very small
values and so the false alarm probability becomes negligible. In table 2 the main quantities
relative to the full-sky incoherent step are given. The computing power needed for the whole
hierarchical procedure is about twice that needed for the first step.

In the blind search the first Hough transform takes into account the whole parameter space,
this is why it is also called the full-sky incoherent step. Starting from the second step, the
Hough transform is performed only considering a small region of parameter space surrounding
each candidate. As a consequence, the first incoherent step is the most computationally heavy
and great care must be taken in trying to implement an efficient method to calculate the Hough
transform. This is the main subject of the next section.

The loss of ‘nominal’ sensitivity, which is the amplitude of the signal that could be
detected with SNR equal to 1, of the hierarchical method with respect to the optimal one is
given by the factor(

Tobs

TFFT

)1/4

. (4)

However, in order to calculate the ‘effective’ sensitivity loss, the number of selected candidates
at the first step must be taken into account. The Hough map distribution can be approximated
as a Gaussian and the selection of 109 candidates corresponds to a threshold in the map number
count at about 4 sigma, i.e. a further reduction of sensitivity of 2. On the other hand, in the
optimal detection the reduction of sensitivity due to the selection of 109 candidates is greater,
about a factor 6, due to the larger number of points in the parameter space. The ‘effective’
loss factor of the hierarchical search with respect to the optimal one is given in the last column
of table 2.

3. Implementation of the Hough transform

An effort has been made in order to outline an efficient way to implement the Hough transform.
Many algorithms have been studied and several codes have been written, trying to optimize
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their performances. Much of this work, mainly devoted to the case of search in small ‘patches’
in the sky, has been done in collaboration with the GEO group at AEI (Golm, Germany) and
CASPUR (Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e
Ricerca). Here we focus attention on the code developed in Rome for the full-sky Hough
transform.

The basic problem, as we have stated before, is that of ‘drawing’ annuli on the celestial
sphere. An annulus is delimited by two circles. Each circle can be split into two halves, a ‘left’
border and a ‘right’ border. The algorithm we have used is based on look-up tables (LUT),
which has been shown to be largely more efficient than the other methods we have studied.
A LUT, in our case, is a C array containing the list of borders, each with the corresponding
list of its point coordinates. More precisely, given a source reference frequency f0 and a time
t0 to which a detector velocity vector direction (λ0, β0) corresponds, the LUT contains the
coordinates (λ, β) of the points belonging to the borders with all possible values of radius and
β0 (remember that (λ0, β0) defines the centre of annuli for a given t0). In practice, several
symmetries can be exploited to simplify the building of the LUT. First, the LUT does not need
to contain both ‘left’ and ‘right’ borders (the latter can be obtained from the former using
symmetry with respect to the meridian λ0). Using invariance of the β coordinate of a border
point with respect to shifts in λ, the same LUT can be used to build borders for all possible
λ0. That is, the same LUT can be used for all times.

On the celestial sphere we use a system of ecliptical coordinates. The detector velocity
vector makes, in time, small oscillations around the ecliptic, with an opening angle of about 1◦

and periodicity of 1 day. This belt around the ecliptic defines the region where the centres of
annuli can be found. In order to take into account the deformation of annuli passing near the
poles (if we project the celestial sphere onto a plane), the position of the centres is identified
using a finer grid with respect to that used for drawing annuli (i.e. the LUT is built considering
a number of possible values of β0 larger than the number of pixels contained in the allowed belt
width). Using ecliptical coordinates some symmetries of the problem can be better exploited
in the construction of the LUT. For instance, when building the LUT we can consider just half
the width of the belt where β0 can be found, and this holds for every coordinate system, but
in ecliptical coordinates the width of this belt is minimum, thus reducing the LUT dimension
and the time needed to build it.

Another property, easy to show, is that once a LUT has been built for a given reference
frequency f0, it can be used for a range of frequencies at least of the order of the Doppler band
for f0, depending on the value f0 itself: the lower the f0, the larger the range of validity of
the LUT.

Once we have built the LUT, we use it to build the Hough map (HM). First, for each
peak in a peak map we access the portion of LUT we need and use it to calculate the set
of borders corresponding to that peak (in this operation the right ascension of points, which
is stored as a continuous variable in the LUT, becomes a discrete variable). In fact, we use
the peaks corresponding to ten consecutive times to build what we call a partial Hough map
derivative (PHMD). It is a ‘derivative’ because only annuli borders are taken into account at this
stage.

The memory occupation of LUTs, calculated for the maximum frequency of each of the
four frequency bands we consider, is

MLUT =




1.3 MB at 2 kHz
1.3 MB at 500 Hz
0.17 MB at 125 Hz
0.022 MB at 31.25 Hz.

(5)
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The times needed to build LUTs for the same frequencies on our reference machine, a PC
equipped with the Xeon processor at 2.4 GHz, are

TLUT =




(51.9 ± 0.2) ms at 2 kHz
(51.9 ± 0.2) ms at 500 Hz
(6.55 ± 0.01) ms at 125 Hz
(940 ± 2) µs at 31.25 Hz.

(6)

These numbers are calculated averaging over 200 iterations. The timings we obtain for the
construction of PHMDs (over ten times), on our reference machine, using a simulated peak
map built assuming Gaussian noise and a threshold for selecting peaks thr = 2.2σ , are the
following:

TPHMD =




(32 ± 2) ms at 2 kHz
(31 ± 2) ms at 500 Hz
(5.8 ± 1) ms at 125 Hz
(0.65 ± 0.2) ms at 31.25 Hz.

(7)

These numbers, which are not particularly useful, can be converted into the number of clock
cycles needed to increment by one the number count in a pixel. The results are:

Ncycle =




(63 ± 4) at 2 kHz
(63 ± 4) at 500 Hz
(45 ± 8) at 125 Hz
(21 ± 6) at 31.25 Hz.

(8)

This is the measure of performance we use to compare different codes. At the moment,
these timings are dominated by the increase of the pixels count in the PHMD, which is the
main bottleneck in the building of the map (contributing up to about 80% to TPHMD). We are
now working to eliminate it. TPHMD is the main time scale in the whole Hough transform
because taking into account spin-down corresponds to performing a suitable sum of PHMDs,
corresponding to different times and frequencies, which produces for each spin-down value a
total Hough map derivative (HMD), and the calculation of the final Hough map (HM) consists
in the integration of the total HMDs (and this operation is done just once for every spin-down
value, so it is not relevant from a computational point of view). Then, it emerges that the
time for building LUTs is generally small with respect to the time for building all the needed
PHMDs. This can be easily seen considering that with Tobs = 4 months, for instance, the
number of PHMDs to be summed, for each spin-down value, is (assuming that each PHMD is
built using the peaks corresponding to ten consecutive times)

NPHMD =




989 at 2 kHz
247 at 500 Hz
124 at 125 Hz
62 at 31.25 Hz

(9)

and then the total time to build a HM is ≈NPHMDTPHMD � TLUT.
We stress the fact that this kind of procedure is particularly suited to be implemented in a

distributed computing environment: each node can take a portion of the parameter space, e.g.
a range of frequencies, and analyse it without interacting with the other nodes.

4. Computing framework

As seen in the previous section, the hierarchical procedure though strongly cutting the non-
realistic computing power needed in the optimal procedure, still requires large computing
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resources. The larger the available computer power the deeper the search. We aim at reaching
a total sustained computing power of the order, at least, of 1 Tflops. It is not obvious, at least
at the level of current technology, that such power can be collected all in one place. Then,
a distributed computer architecture is needed. The Virgo computing model is organized,
concerning the off-line analysis, according to a multi-tier hierarchy (Virgo Collaboration
2000). Data are produced at the experiment site, which is the tier-0. A large fraction of the
computing power for off-line analysis will be collected at Cnaf in Bologna and Lyon (tier-1),
where data will also be stored. Other sites, such as Rome and Naples will act as tier-2 centres,
each holding, at regime, a fraction of the order of 20% of the total available computing power.
Also smaller tier-3 centres are foreseen. In this context, the emerging grid technologies can
play a very important and useful role. They enable the coordinated and coherent use of largely
distributed resources in a complete transparent way for the user who submits jobs and accesses
data as if everything were located on his workstation. Concerning the Rome tier-2, we are
moving towards a mixed architecture in which some machines will work as a standalone farm
and others as elements of the grid environment. Among the different grid projects which
have started in recent years, we have joined INFN-Grid, which is strongly connected to the
European DataGrid project1 (EDG). This EU funded project has been started mainly to answer
the computing needs of future LHC experiments. It has already produced several software
releases, which enable the ‘gridification’ of a local cluster of computers. In the following we
summarize the EDG architecture; for more information see, e.g., Gagliardi et al (2002).

4.1. Overview of EDG

A ‘grid’ is a collaborative set of computing, data storage and network resources, belonging
to different administrative domains, that has knowledge about the status of its components
through active, distributed information services. It allows certified users belonging to multi-
domain virtual organizations to access large amounts of resources via single login and manages
concurrent access by a large number of dispersed users.

The EDG architecture is based on the ‘grid’ architecture proposed by Ian Forster and
Karl Kesselmann. We can distinguish four main layers: the physical fabric layer, which
deals with the basic management of computing fabrics, storage and networking (automatic
installation of the operative system, installation of EDG software, etc); the basic services layer,
mainly based on Globus2 toolkit, which concerns services such as authentication, secure file
transfer (GridFTP), information system, etc; the grid middleware, dealing with workload
management, data management and monitoring system; the application layer, which contains
the experiments software. Seven different types of machines are present in EDG. The access
point of the user to the grid is a machine called User Interface (UI), from which the user,
after authentication, will submit jobs. The request is sent to the Resource Broker (RB) which
matches the job requirements to the available resources; in doing this, the RB interacts with
the Information Service (IS) which publishes information on the available grid computing
resources, and with the Replica Catalogue (RC), which manages data location. A computing
resource is called a Computing Element (CE) and is given by a gatekeeper and one or more
Working Nodes (WN). The gatekeeper is the front-end interfacing the grid environment to the
underlying local cluster. Moreover, it also hosts the server for the Local Resource Management
System (LRMS), typically a batch system like PBS or LSF. The WNs are the machines where
computations actually take place and host the clients of LRMS. The data are located in the
Storage Elements (SE). In the matchmaking process done by the RB the characteristics of

1 Website: eu-datagrid.cern.ch/eu-datagrid/.
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Figure 1. Timing for the grid test. The time (in seconds) needed to complete each of the submitted
jobs is plotted. The number of available cpus for computation was 14. The total number of
submitted jobs was 42.

the WNs (number of available processors, processor speed, memory and so on) versus job
requirements and the location of the needed data are taken into account.

Using the EDG software, we have deployed a small computational grid and have performed
some tests of geographically distributed computing with our codes for periodic source search.
These tests will be described in the following section.

5. Description of grid tests

The aim of these tests was to understand if the use of a computational grid can be useful for
our data analysis problem. In the grid tests several sites of the INFN-Grid testbed have been
involved. We have used the code for the Hough transform (with no spin-down). The input
data were peak maps produced starting from simulated data. The INFN-Grid RB, located at
CNAF, has been used for global workload management. At the farm level, the local resource
management system was PBS. The tests have been carried out according to the following
scheme.

Input data have been located on the SEs. Jobs have been submitted from the UI in Rome.
Each job was staged to a given WN by the RB. Also input data were copied to the local disk
of that WN from the nearest SE. Once the computation was completed, output was sent back
to the SE. The important point is that the grid offers independence from execution location,
that is the user does not know where his job will be run, and independence from data location,
i.e. the user does not know where the data his job needs are. In one of the tests we have
submitted several jobs ‘at the same time’ and we have verified that they spread homogeneously
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among the available WNs, as expected. The overhead time due to the managing activity of
the RB is negligible (if the job duration is long enough; in our case about 2 h); this means
that the time needed to complete N jobs is nearly equal to the time needed for just one job,
Tjob, if N � M , where M is the number of available cpus. If N > M the total time needed is
Ttot = Tjob ceil

(
N
M

)
. This is a consequence of the complete independence of each job from the

others. This behaviour is shown in figure 1 where the timings relative to the test are plotted.

6. Conclusions

In this paper we have focused our attention on the full-sky incoherent step of the hierarchical
procedure developed in the search for periodic signals in the data of the Virgo detector. This
step is the most computationally heavy, because it involves the whole parameter space to
be searched, and is based on the Hough transform. We have devised an efficient way to
implement it, based on the use of look-up tables. Here, we have described the main aspects
of the implementation and the performance measurement we have done. We have also shown
that the code is very suitable to be run in a distributed computing environment, due to the fact
that the whole analysis task can be divided into several smaller tasks, each independent of the
others. In particular, we have tested the code in the context of emerging grid technologies
which are today passing through a phase of strong acceleration. Tests have been performed
among several sites, where the EDG (European DataGrid) software has been installed, and
have been successful in showing that grid computing can be an important and efficient tool
for our kind of analysis. In the near future our main targets are to complete and integrate all
the parts of the software for the periodic source search, to test it and apply it to the analysis of
the engineering data of the Virgo detector. This will be done both on local clusters and in a
grid environment.
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Appendix

Here we derive the general formula for the number of points in the parameter space. This
number enters the calculation of the computing power needed for the analysis. Let us indicate
with TFFT the duration of the FFT (equal to the total observation time, Tobs, for optimal
detection), with f0 the maximum frequency for which the analysis is done (half of the sampling
frequency). In the hierarchical search we have different values of f0 for the different frequency
bands. The maximum length of FFT is

LFFT,max = 2TFFT,maxf0, (10)

where TFFT,max is the maximum FFT time duration such that a signal, if present, would be
completely contained in a frequency bin. The length of FFT, LFFT is obtained approximating
LFFT,max to the nearest power of 2. Then, the effective FFT duration is

TFFT = LFFT

2f0
. (11)
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The number of independent frequencies is

Nf = BTFFT, (12)

where B is the width of the frequency band. The mean number of frequency bins in the
Doppler band is

Nbin = v

c

LFFT

2
, (13)

where v is the modulus of the detector velocity, and the angular resolution in the sky is its
inverse, so that the total number of pixels in the sky is

Nsky = 4πN2
bin. (14)

Concerning the number of spin-down parameter values, expanding the signal frequency as a
power series of the time and considering the maximum frequency variation in a time Tobs, at
the various orders, we find the following expression for the number of spin-down parameters
of order j :

nsd,j = LFFT

(
Tobs

τ

)j

, (15)

where τ is the neutron star minimum decay time. Then, the total number of spin-down
parameters is

Nsd,tot =
∏

j ;nsd,j �1

nsd,j . (16)

Finally, the total number of points in the parameter space is

Ntot = Nf NskyNsd,tot. (17)

Using this expression we have found the numbers listed in tables 1 and 2.
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