
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 20 (2003) 3523–3531 PII: S0264-9381(03)62474-3

Correlation between gamma ray bursts and
gravitational wave bursts: the AURIGA complete data
analysis

P Tricarico1, A Ortolan2 and P Fortini3

1 Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131 Padova, Italy
2 INFN, Laboratori Nazionali di Legnaro, via Romea 4, 35020 Legnaro, Padova, Italy
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Abstract
A widely accepted paradigm for astrophysical models of gamma ray bursts
(GRB) prescribes a compact ‘central engine’ dominated by gravitational
interactions, and therefore a concurrent emission of GRBs and gravitational
wave bursts is likely to occur. Consequently, we have tested a novel and reliable
method for searching for time correlation in the AURIGA and BATSE complete
dataset. The analysis covers the period 1997–1999. The obtained upper limit
on the averaged gravitational wave energy released in a neighbourhood of
300 s around the GRB triggers is hRMS = 1.8 × 10−18 at 95% confidence level.
We also estimate the minimum statistical coverage of confidence levels for a
frequentist interpretation of our upper limit.

PACS numbers: 04.80.Nn, 98.70.Rz

1. Introduction

Flashes of γ radiation, known as gamma ray bursts (GRB), light up the sky with a mean rate
of one per day. The cosmological origin of GRBs is widely accepted: the data collected
using the BATSE satellite have demonstrated that GRBs are isotropically, but not
homogeneously, distributed over the sky [1], as confirmed by the BeppoSAX satellite
observations [2]. The occurrence of gravitational wave bursts (GWBs) associated with GRBs
is a natural consequence of current models for the central engine [3]. For instance, GRBs
can be produced by a class of supernovae, known as collapsar or hypernovae, when a massive
star collapses to form a spinning black hole; in the meantime the remaining core materials
form an accreting torus with high angular momentum [4, 5]. Another interesting scenario is
a neutron star and black hole (∼7M�) coalescing system where the disruption of the neutron
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star, caused by the rapidly rotating black hole, will also form a torus emitting a large amount
of energy (∼0.1M�c2) both in gravitational and electromagnetic waves [4]. For the GWB
models, the amplitude of the gravitational wave strain is expected to be h ∼ 10−23–10−21 at
cosmological distances, i.e. ∼1–3 orders of magnitude greater than the sensitivity of planned
ground-based gw detectors. These commonly accepted estimates require search methods able
to cumulate the GWB effects, for instance, by exploiting their time correlation with detected
GRBs.

The aim of this paper is to present a reliable method to find a GWB versus GRB time
correlation and to complete the previous analysis [6]. From the experimental runs performed
during the years 1997 and 1998 the AURIGA detector exhibited a sensitivity level of hmin ≈
2–8 ×10−19, where hmin is the minimum gw amplitude detectable with unitary signal-to-noise
ratio (SNR) [7]. In 1999, the sensitivity was improved by a factor of two using a better room
temperature amplifier. The overall duty cycle was ∼1/3 of the total observation time (1997–
1999). It is worth noting that AURIGA, as any other resonant detector, is quite insensitive to
the details of GWB waveforms. This is related to its narrow detection band, typically 1 Hz
around the two resonance frequencies (913 and 931 Hz) of the bar and transducer system.
As a consequence, ‘blind’ searches for GWBs over an event list produced by a resonant gw
detector have a poor signature in the low SNR regime [8–10]. However, such a drawback of
narrow-band detectors is somewhat compensated when the gw search is focused on specific
time spans around GRB triggers: in fact, as we will show in section 2, the total gw energy
released in the detector is relevant for a search triggered by electromagnetic emission, and
GWB waveforms can be safely treated as a δ-like pulse.

There are two main sources of uncertainties in correlation searches with γ -triggers which
greatly affect their overall sensitivity: (i) the delay Tgw between a GWB and the corresponding
GRB; (ii) the selection of GRBs suitable for correlation searches with a gw detector. In this
paper, we have considered almost constant delays, i.e. the delay jitter is assumed to be less
than the inverse of the AURIGA bandwidth (∼1–2 s). As far as the selection of GRB triggers
is concerned, we have taken into account all triggers collected in the BATSE catalogue falling
into validated time spans of the AURIGA detector.

The crucial problems addressed in this paper are related to the background estimation in
the presence of a non-stationary noise and the evaluation of the upper limits characterized by a
minimum statistical coverage of the corresponding confidence interval. In fact, the operation
of the AURIGA detector over a long time period (3 years) showed a strong non-stationary
behaviour of the noise variance. Moreover, a lot of spurious events with a non-uniform
rate originating from unmodelled noise sources [9] appeared in the detector output. In this
framework, the detection statistics and the corresponding confidence intervals have to be
estimated by Monte Carlo methods, i.e. by injecting a large number of impulsive signals
into the real AURIGA noise; the event amplitudes are drawn from astrophysical distributions
characterized by different averaged gw energy.

The paper is organized as follows. In section 2, we summarize our improved method
of statistical search for a GWB–GRB time correlation and also we present the new features
devised for the analysis. In section 3, we present our results and the relevance of some
assumptions on the AURIGA data with the help of Monte Carlo methods. Discussion and
conclusions follow, respectively, in sections 4 and 5.

2. Search method

The non-stationarities of the detector noises and the uncertainties on delay Tgw between γ and
gravitational bursts led us to elaborate on a reliable statistical method for searching for GWB
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versus GRB time correlations. Our method has been demonstrated to be quite insensitive
to the above issues. In order to gain in sensitivity, it requires a ‘reasonable’ assumption on
expected delays, i.e. the standard deviation σTgw of delay fluctuations around the mean value
(delay jitter) should not exceed the inverse of the detector bandwidth, namely 1–3 s for the
AURIGA detector. In contrast, the mean delay 〈Tgw〉, where 〈·〉 represents the average over
the astrophysical population of the GRBs, is left unconstrained.

The proposed statistical method relies on the observation that, if there is a concurring
emission of GWB and GRB, the output of the gw detector at GRB arrival time, properly
shifted by the Tgw delay, should be, on average, more energetic than the output at other times.
Stated differently, the statistical behaviour of the detector’s output is modified by the presence
of GWBs. In the following we adopt a discrete time domain representation: we substitute
for the continuous noise n(t) and signal h(t) a finite length sequence of samples ni ≡ n(ti)

and hi ≡ h(ti), respectively; here ti+1 − ti ≡ �t is the sampling time, which corresponds to
14.336 ms for the AURIGA filtered output. The energy of the filtered output, within a time
window 2W = 2N�t centred at the GRB trigger tα , is represented by the statistical variable
X(tα) defined as

X(tα) = 1

2N

∑
i

f 2
i , (1)

where fi = hui + ni is the sampled output of the Wiener filter matched to a δ-like signal
[11]. A well-known result of the Wiener filtering theory is that the response of the filter to
its matched signal and the auto-correlation of the filtered noise are proportional to the same
function ui . Note that this result reflects the time invariance of the stochastic process n(t),
which is approximately met by quasi-stationary systems. Quasi-stationary behaviour has been
observed in the real noise of the AURIGA detector on a time scale of at least several hours
[11]. For a narrow-band detector and for a wide class of impulsive waveforms, ui turns out to
be a superposition of two exponentially damped oscillating functions with nearby frequencies.
A convenient approximation for ui is [9]

ui � exp[−|i|/τ̂w] cos(ω̂i) cos(�̂i), (2)

where τ̂w ≡ τw/�t, ω̂ ≡ ω�t and �̂ ≡ ��t are the dimensionless Wiener filter decaying
time τw, carrier frequency ω and amplitude modulation frequency �.

The statistical variable X(tα) depends very weakly on noise correlation parameters τw, ω

and �. It depends, otherwise, on the local noise variance and, for the window centred on the
correct delay, on the amplitude signal h. In principle, the X(tα) belong to two complementary
statistical populations: (i) the on-source population χon, when W contains the GWB or (ii) the
off-source population χoff, corresponding to windows that leave out any GRB. The sets χon

and χoff have probability distributions pon and poff, respectively.
Depending on the window W we have

Xoff = 1

2N

∑
i

n2
i = σ 2 (3)

Xon = 1

2N

∑
i

(hui)
2 + Xoff = τw

2W

h2

4
Gon(τw, ω,�) + Xoff, (4)

where the cross term
∑N

i=−N huini has been neglected as the noise has zero mean. The
function

Gon(τw, ω,�) = 1 +
1

1 + τ 2
wω2

+
1

1 + τ 2
w�2

+
1

2

[
1

1 + τ 2
w(ω − �)2 +

1

1 + τ 2
w(ω + �)2

]
(5)
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is close to unity for typical values of the AURIGA detector parameters. For instance, allowing
the maximum fluctuation of measured parameters during the 3 year run, i.e. 0.2 � τw � 1.6 s,
919 � ω/(2π) � 921 Hz, 8 � �/(2π) � 10 Hz, we have 1 � Gon � 1.01.

In order to test the hypothesis of the existence of a GRB versus GWB time correlation, we
use the Mann–Whitney test, also known as the rank sum test or U-test [12]. The Mann–Whitney
test does not assume that the two populations off and on follow Gaussian distributions but
it does assume that the two samples are randomly and independently drawn. Accordingly,
the Mann–Whitney test is useful for systems plagued by non-modelled backgrounds and/or
quasi-stationary noises, as an unbiased reference set for the off population can be constructed.

The U-test works by ranking all the elements of the union set χoff ⊕ χon ordered by
increasing values, and adding the rank of each element to the parent set: Roff = ∑

R(Xoff)

and Ron = ∑
R(Xon). The value of the statistical variable U is defined by the following

relations:

U = (Ron − µon)/σU (6)

σ 2
U = NoffNon(Noff + Non + 1)/12 (7)

µon = Non(Noff + Non + 1)/2. (8)

We take advantage of the classical theory of hypothesis testing to establish if the GWBs
impinging on the detector affect the statistical characteristic of its output, i.e. the on probability
distribution. The null hypothesis H0 that the two populations off and on are identical and the
alternative hypothesis that they differ only in their mean value, can be stated as U < Ucr(ε)

and U � Ucr(ε), respectively, where Ucr(ε) is the critical value of U at a given confidence level
1−ε and ε is the statistical significance of the test. The rejection of the H0 hypothesis supports
an association between GRBs and GWBs. In such a case, the difference of the mean values of
the off and on populations is proportional to the squared GWB amplitude h2

RMS ≡ 〈h2〉, where
the average is taken over the GWB source population.

If the requirements of the Mann–Whitney test are met, the one-tailed z-test [13] can be
applied to its outcome U. In the next section we will discuss how to carefully check this crucial
statement by means of Monte Carlo runs.

Now, we address the question how to set upper limits with minimum statistical coverage,
taking into account the physical boundaries Xon � 0 and hRMS � 0. Note that the calculation
of a confidence level is trivial only for Gaussian variates without physical constraints. After
the estimation of the experimental background (Xoff probability distribution) and the choice of
the nominal confidence level 1− ε, we define the confidence interval of the measured quantity
hRMS to be in the range hinf < hRMS < hsup. To compute these limits we have to relate the
outcomes of the U-test to the physical parameter hRMS. This can be achieved by means of
Monte Carlo simulations. We indicate with hU the nominal hRMS connected to the U and
with p(hU) the corresponding probability distribution. If the null hypothesis H0 is true, the
boundaries of the confidence belt are set to hinf = 0 and h2

sup = h2
U + δh2; in the opposite case

we have h2
inf = h2

U − δh2 and h2
sup = h2

U + δh2, where

δh2 = P −1(1 − ε)√
2

σoff (9)

and P −1(x) is the quantile of the underlying distribution p(hU), i.e. the inverse of its cumulative
distribution P(x) ≡ ∫ x

0 p(x) dx. This procedure defines a confidence belt for the measured
background with a statistical coverage greater or equal to the confidence level 1 − ε [13].

For the sake of clarity, we have classified into three groups (see table 1) the relevant
parameters of our search method, depending on their physical meaning and relevance:
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Table 1. Parameters entering the GRB–GWB time correlation search.

Detector noise τw , ω, �, σ

Statistical ε, Noff, Non, W

Averaged GWB signal hRMS

(i) characterization of the detector noise (correlation function and noise level); (ii) statistical
parameters; (iii) gw signal amplitude, averaged over the GWB source population.

The search method has been debugged through complete simulations of both the detector
noise and gw signals. The numerical algorithms have been thoroughly tested letting the
parameters listed in table 1 be unbounded. The method has been applied to real data, by
varying only ε, Noff and W in different Monte Carlo runs. One of the most appealing
aspects of the above outlined method is the complete scalability of both the physical and the
statistical parameters, which makes it directly applicable to gw detectors, either resonant or
interferometric, with different sensitivities and bandwidths.

3. Results

The AURIGA dataset used in the present analysis is relative to the years 1997–1999 and
to GRB triggers retrieved from the BATSE catalogue [1]. The selected γ -triggers have been
associated with the AURIGA data stretch falling into validated time spans. The data validation
procedure used for the IGEC analysis has been the same [8, 10]. This procedure tests the
separability of the events rising above the noise level and the Gaussianity of the detector output
once the events have been subtracted. This remarkably reduces the AURIGA duty cycle and
the number of GRBs available for the correlation analysis reduces to about ∼200 in three
years of data taking. We have shown that the AURIGA data within these time spans can be
locally modelled as a quasi-stationary Gaussian process [9]. Unfortunately, the variation of
the detector environment (seismic noise, level of electromagnetic interferences, stability of
the cryogenic point, etc) made the noise highly non-stationary over the total run, as clearly
shown in figure 1, which reports the mean squared noise of the Wiener filtered output. As
pointed out by the IGEC analysis [8, 10], the correlation search is affected by the presence,
even in the validated data, of background events with non-homogeneous rate (ranging from
100 to 400 events per day). Small background events give rise to the long tail in figure 1. The
occurrence of large (spurious) background events in concomitance with 11 GRB triggers has
been handled by excluding these GRBs from the present analysis.

3.1. Monte Carlo simulations

The Monte Carlo simulations of the AURIGA noise with superimposed GRB signals are
useful to test the search method under several working conditions and to study the dependence
of U on the window value. The parameters, τw, ω and �, have been kept close to the real
ones. The nominal confidence level for the calculation of the U critical value has been fixed
at 1 − ε = 0.95.

A run of Monte Carlo simulation consists of four steps: (i) choice of a poff probability
distribution with a given mean µoff and standard deviation σoff; (ii) build-up of the χoff set
with Noff elements using standard discrete distribution algorithms; (iii) addition of incoming
signals to form the on set χon (see equations (3) and (4)); (iv) computation of the U statistical
variable. It is worth noting that the gw signal affects the on population with its mean squared
value h2

RMS and that, due to statistical fluctuations, the sample variance σ differs from the
standard deviation σoff of the off distribution.
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Figure 1. Distribution of the AURIGA off data. The width of the time window is W = 3 s, starting
from 1 h before the GRB trigger to 1 h after, skipping 10 min around each trigger.
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Figure 2. Values of the U statistical variate obtained in Monte Carlo simulations, using two
different values of the time window amplitude, with Noff = 5000 and Non = 2000. The continuous
line represents the theoretical mean value of U (see equation (10)), and the one standard deviation
range from it. The dashed-dotted line U � 1.645 represents the critical value for 1 − ε = 0.95.

The effectiveness of the method is shown in figure 2, where the U outcomes obtained with
increasing values of h2

RMS are plotted. From a thorough inspection of the Monte Carlo result
we can conclude that the U statistical variable has the same distribution as Student’s t (which
holds for the normal distribution) with mean

〈U 〉 = 1

4

τw

2W

h2
RMS

σoff

√
NoffNon

Noff + Non
Gon(τw, ω,�) (10)

and unitary standard deviation. This result, which gives the sensitivity of the above
described procedure, is not a straightforward consequence of the central limit theorem as
the poff probability for the AURIGA detector is clearly non-Gaussian. The agreement of the
Monte Carlo simulations with equation (10) is the main result of this paper and confirms,
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Figure 3. Search applied to the AURIGA data, with W = 3 s and shift �Tgw from −300 to 300 s
with steps of 3 s, Noff = 47 000, Non � 190 (it depends on the shift value because of the vetoes).
The dashed line at U = Ucr � 1.645 represents the critical value for 1 − ε = 0.95.

a posteriori, the upper limit of our previous work [6], where we approximated the bulk parts
of the on and off probability distributions with the normal distribution.

In the absence of statistical evidence for time correlations between GRBs and GWBs, we
can estimate from equation (10) the minimal signal amplitude hcrRMS for a given statistical
significance:

h2
crRMS � Ucr

4σoff

Gon(τw, ω,�)

2W

τw

√
Noff + Non

NoffNon
, (11)

where Ucr � 1.645 is fixed by the confidence level 1 − ε = 0.95. Clearly, by increasing
the number of GRBs, we can reach sensitivities for h2

RMS below the standard deviation of the
detector noise (i.e., SNR < 1).

3.2. The AURIGA data

We have calculated the U values for the AURIGA data, using a window W = 3 s and
Noff = 47 000; the results are reported in figure 3. With respect to each GRB trigger, the tested
mean delays range from −300 to +300 s with a step of 3 s. It is clear that the experimental
U lies below the critical value of 1.645 supporting the null hypothesis H0. The upper limit
hRMS = 1.37 × 10−18 can be set using equation (11), with σoff = 6.5 × 10−37, τw = 1.0 s and
Non = 190. To achieve a minimum statistical coverage of 95% we have corrected the upper
limit, as given by equation (9). With the help of Monte Carlo simulations we have obtained
δh2 = 1.3 × 10−36 and so the upper limit hRMS = 1.8 × 10−18 ensures 95% coverage.

We have refined our search taking into account the duration T50 of GRB which could be
the imprinting of two different production mechanisms [1, 3] and probably of GWB emission.
According to some models of the GRB central engine [3], short GRBs should be less energetic
(two orders of magnitude) in GW emission than the latter. The duration T50 is taken from
the BATSE data, and it measures the time interval in which 50% of the total observed counts
have been detected. The T50 interval (defined in [1]) is not available for all the GRB triggers,
therefore about 50 GRBs have not been included in this refined analysis. We have separated the
remaining GRBs into short and long GRB sets defined by T50 < 5 and T50 � 5 s respectively;
we found N short

on = 65 and N
long
on = 85. The scatter plots and histograms of the U variate
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Figure 4. Search applied to the AURIGA data, separating the GRBs depending on their duration:
short (T50 < 5 s) and long. The dashed line at U = Ucr � 1.645 represents the critical value for
1 − ε = 0.95.

for short and long GRBs are reported in figure 4 for a time span of ±300 s around the GRB
triggers. For short and long GRBs we can estimate the corresponding upper limits, following
the already mentioned procedure: hshort = 2.1 × 10−18 and hlong = 2.0 × 10−18.

4. Discussion

The effectiveness of our correlation method becomes troublesome and its sensitivity
dramatically decreases when GWB delays have jitters σTgw larger than the integration window
W . This requirement suggests the choice of a large window. Unfortunately, in order to obtain
the maximum sensitivity, W cannot be lower than the bound value, Wb = 3 s, set by the
AURIGA bandwidth. These two criteria make diametrically opposite demands: referring
to figure 2, for example, one can see the effect of a factor two in the window amplitude in
terms of the critical value of h. In this paper, we have maximized the sensitivity of the time
correlation search by choosing the narrowest window Wb and also covered larger mean delays
by extending the time correlation search in the ±300 s time span around each GRB. On the
other hand, ‘naif’ approaches to overcome the delay problems would spoil completely the
statistical significance of the results. If the GWB–GRB delay is completely random, the only
reasonable approach is the cross-correlation of the output of two or more different gw detectors
[14–16]. In fact, as the GRB position in the sky is known, the relative phase of the GWB
signal in the two detectors can be inferred and cumulative cross-correlation techniques can be
used. However, our analysis is much simpler and works effectively if σTgw � Wb; it seems to
be reasonable for many inner engine models as general relativity at event horizon formation
is invoked to account for GWB emission. Due to the larger dataset, the better performance of
the AURIGA detector in 1999 and the improved search method, the upper limit turns out to
be more robust than the previous one [6], covering, in addition, a larger part of possible mean
GRB–GWB delays.

5. Conclusions

We have proposed a novel method to find statistical association between GWB and GRB, by
means of the Mann–Whitney test. Monte Carlo simulations using the AURIGA data have
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been performed and compared to the algorithm sensitivity estimations. The effectiveness of
the proposed method relies on the assumption that the jitter of the GWB delays is smaller
than the integration window. We found no evidence of concurrent emission of GWB and
GRB. In addition, we were able to set the upper limit on the averaged gw energy released
in ±300 s around the GRB triggers, obtaining hRMS = 1.8 × 10−18 at 95% confidence level
with a statistical coverage greater than the confidence level. This value is an improvement on
our previous result [6]. We made use of the classification of short and long GRBs and the
corresponding upper limits have been evaluated as hshort = 2.1×10−18 and hlong = 2.0×10−18.
The level of sensitivity we have obtained could be of astrophysical interest but much work has
still to be devoted for operating gw detectors with better sensitivity and with enhancement of
noise stationarity. The most appealing feature of GWB searches triggered by a GRB emission
is represented by the relation h2

RMS ∝ h2
min

/√
Non (see equation (11)) which implies that

correlation methods can reach sensitivities below the noise variance of a gw detector. The
almost daily detection of GRBs suggests that, after a year of data taking, we can increase the
sensitivity by a factor ∼√

400 = 20, i.e. we can gain a factor ∼4.5 in the survey distance of
a gw detector. However, further improvements of the upper limit or the claim of a correlation
of GWBs and GRBs, can be achieved with a substantial increase of the detector sensitivity
and bandwidth. For instance, an increase of two orders of magnitude of the sensitivity of our
method could be achieved in the next run of the AURIGA detector [7], where a noise power
spectral density better than S

1/2
h ∼ 10−22 (Hz)−1/2 is expected over a bandwidth of ∼80 Hz.
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