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ABSTRACT
Cyber-Physical Systems (CPSs) are engineered systems that are built from, and depend upon, the seamless
integration of computational algorithms and physical components. CPSs are widely used in many safety-
critical domains, making it crucial to ensure that they operate safely without causing harm to people and
the environment. Therefore, their design should be robust enough to deal with unexpected conditions and
flexible to answer to the high scalability and complexity of systems. Nowadays, it is well-established
that formal verification has a great potential in reinforcing safety of critical systems, but nevertheless its
application in the development of industrial products may still be a challenging activity. In this paper, we
describe an approach based on Satisfiability Modulo Theories (SMT) to formally verify, at the design stage,
the consistency of the system design – expressed in a given domain-specific language, called QRML, which
is specifically designed for CPSs – with respect to some given property constraints, with the purpose to
reduce inconsistencies during the system development process. To this end, we propose an SMT-based
approach for checking the consistency of configuration based-components specifications and we report the
results of the experimental analysis using three different state-of-the-art SMT solvers. The main goal of the
experimental analysis is to test the scalability of the selected SMT solvers and thus to determine which SMT
solver is the best in checking the satisfiability of the properties.

INDEX TERMS Design verification, Application of formal methods, Satisfiability Modulo Theories

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are real-time embedded sys-
tems in which the software controllers continuously interact
with physical environments, possibly with humans in the
loop. These systems are often distributed with sensors and
actuators, which monitor and control physical processes,
usually with feedback loops where physical processes affect
computations and vice-versa [1]. Recently, CPSs are gath-
ering momentum and attracting massive attention from the
research communities and large investment from industry [2].
The emerging applications of CPSs can be found in a number
of large-scale and safety-critical domains, making it crucial
to ensure that they operate safely without causing harm
to people and the environment. Application areas include
healthcare, automotive, manufacturing, industry automation,
and critical infrastructure such as, electric power, energy, and
water resources, so CPSs design should be robust enough

to deal with unexpected conditions and, at the same time,
flexible to answer to the high scalability and complexity of
systems. Due to the critical nature of their applications and
the tight time-to-market constraints, the verification of the
CPSs design becomes an important issue in order to ensure
the correctness of these systems.

Since the 90’s, formal methods have been exploited to
improve complex automation systems (see, e.g., [3]), and cur-
rently they are often introduced in the verification of CPSs’
applications. Nowadays, it is well-established that the usage
of formal methods has a great potential in reinforcing safety
in the design of (critical) CPSs – see, e.g., the results obtained
in the context of the CERBERO EU H2020 project [4], [5]
about the application of formal methods in the design of
CPSs [6]–[8].

In this paper, we describe an approach based on Satis-
fiability Modulo Theories (SMT) [9] to formally verify, at
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the design stage, the consistency of the system design –
expressed in a given Domain Specific Language (DSL) – with
respect to some given property constraints, with the purpose
to reduce inconsistencies during the system development
process.

Such research has been developed in the context of the
ECSEL project entitled “From the cloud to the edge smart
IntegraTion and OPtimisation Technologies for highly effi-
cient Image and VIdeo processing Systems” (FitOptiVis
[10]) [11], which involves 30 partners from industry and
academia. The main objective of FitOptiVis is to develop
an integral approach for smart integration of image and video
processing pipelines for CPSs covering a reference archi-
tecture, supported by low-power, high-performance, smart
devices, and by methods and tools for combined design-
time and run-time multi-objective optimisation within system
and environment constraints. Thus, a DSL for the design of
CPSs, namely the Quality and Resource Management [12]
(QRML) has been developed by the authors of [13], [14]. It is
based on an interface-modeling framework, which eases the
dynamic reconfiguration and multi-objective optimization of
component-based systems for quality and resource manage-
ment purposes.

Checking the consistency of configuration-based compo-
nents specifications at design-time is an important task, in
order to formally ensure their correctness and satisfaction,
to avoid manual review which is time-consuming and error-
prone. Moreover, it is also crucial for reducing time-to-
market window in industrial applications use cases within
the project. In order to cope with this task, we present our
SMT-based approach implemented into a tool able to check
the consistency of configuration based-components design
expressed in QRML with the purpose to formally check by
means of an SMT solver whether the configurations guaran-
tee to satisfy all the properties.

The core of our approach is based on an SMT encoding,
where system components expressed in QRML are translated
into an instance of a satisfiability problem. In order to evalu-
ate the effectiveness of the proposed SMT approach, we have
developed an automated generator of DSL specifications
and employed three different state-of-the-art SMT solvers to
check the satisfiability of the translated SMT properties. The
purpose of the experimental analysis here reported is mainly
to test the scalability of the selected SMT solvers and thus
to determine which SMT solver is the best in checking the
satisfiability of the properties. As it will be shown later in the
paper, we demonstrate the effectiveness of the proposed SMT
-based approach to verify configuration-based components
design of various sizes within a reasonable time.

The rest of the paper is organized as follows. Section II
provides some background of SMT as well as an overview
of QRML. In Section III we briefly report about the related
work. The process of consistency checking is presented
in Section IV. In Section V we provide details about the
instances and SMT solvers involved in the experimental
analysis, which results and related discussion are reported in

Section VI. We conclude the paper in Section VII with some
final remarks.

II. BACKGROUND
In this section, we introduce some concepts and terminology
that will be used in the rest of the paper. In particular, we
provide a big-picture overview of SMT, followed by a de-
scription of the key aspects of the formal interface-modeling
framework for Quality and Resource Management as well as
the language that derives from it.

A. SATISFIABILITY MODULO THEORIES
SMT is the problem of deciding the satisfiability of a first-
order formula with respect to some decidable theory T , while
an SMT instance is a formula in first-order logic where some
function and predicate symbols have additional interpreta-
tions.

Given a first-order formula φ in a decidable background
theory T , SMT problem consists in deciding whether there
exists a model, namely an assignment to the free variables in
φ, that satisfies φ. SMT generalizes the Boolean satisfiability
problem (SAT) by adding background theories such as the
theory of real numbers, the theory of integers, and the the-
ories of data structures. For example, a formula can contain
clauses like p ∨ q ∨ (x+ 2 ≤ y) ∨ (x > y + z), where p and
q are Boolean variables and x, y and z are integer variables.
Predicates over non-Boolean variables, such as linear integer
inequalities, are evaluated according to the rules of a back-
ground theory. In this respect, there exist several theories of
practical interests, such as the quantifier-free linear integer
arithmetic (QF_LIA), where atoms are linear inequalities
over integer variables, the quantifier-free non-linear integer
arithmetic (QF_NIA), where atoms are polynomial inequali-
ties over integer variables, and the quantifier-free linear real
arithmetic (QF_LRA), which is similar to QF_LIA but with
real variables.

The current general library for SMT is the Satisfiability
Modulo Theories Library (SMT-LIB) [15], which provides
standard descriptions of background theories used in SMT
systems, as well as collecting and making available a large
library of benchmarks for SMT solvers. An SMT solver is
a decision procedure which solves the satisfiability problem,
which is the problem – given a propositional formula – to de-
termine whether it is satisfiable or not. Given an unsatisfiable
SAT formula ϕ, a subset of clauses ϕC (i.e. ϕC ⊆ ϕ) whose
conjunction is still unsatisfiable is called an unsatisfiable
core of the original formula. Modern SAT solvers can be
instructed to generate an unsatisfiable core [16]. Current
state-of-the-art SMT solvers use the so-called lazy approach,
which consists on the integration of a SAT solver and a T -
solver, i.e., a decision procedure for the given theory T . In
order to decide the satisfiability of an input formula φ, the
SAT solver enumerates the truth assignments to the Boolean
abstraction of φ, while the T solver is invoked when the
SAT solver finds a satisfying assignment for the Boolean
abstraction in order to check whether the current Boolean
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assignment is consistent in the theory. If the conjunction
is satisfiable, then a satisfying solution (model) is found
for the input formula φ. Otherwise, the T -solver returns an
explanation for the conflict which identifies a reason for the
unsatisfiability. Then, the conflict explanation is learned by
the SAT solver in order to prune the search until either a
theory-consistent Boolean assignment is found, or no more
Boolean satisfying assignments exist. For a comprehensive
background on SMT, please refer to [9], [17].

B. THE QUALITY AND RESOURCE MANAGEMENT
LANGUAGE
In [13], the authors present a formal interface-modeling
framework for quality and resource management that pro-
vides an abstract description of hardware and software com-
ponents in terms of resources, quality indicators and work-
ing configurations. From the Quality Resource Management
(QRM) framework derives the related language which aims
to support the configuration component-based design of
CPSs. In general, a DSL is a language designed to be useful
for describing a limited set of tasks in a specific domain, in
contrast to general-purpose languages that are supposed to be
useful for more generic tasks in crossing multiple application
domains [18]. DSLs usually have a concrete syntax and an
implicit or explicit semantics.

In the following we report some of the definitions given
in [13] that will be useful for the understanding of the
subsequent sections.

A configuration c is a set of parameters that capture the
configurable working points of the component. In particular,
the parameters are represented by an input, an output, a
required budget, a provided budget, and a quality.
Definition 1 (Configuration Space): A configuration space S
is the Cartesian productQ1×Q2×· · ·×Qn of a finite number
of partially-ordered sets (posets). A poset is a set Q with a
partial-order relation �Q. A configuration c is an element of
a configuration space c ∈ S . We define C ⊆ S to be the set
of possible configurations for a given component.
Definition 2 (Free Product): Let S1 and S2 be configuration
spaces, let C1 ⊆ S1 and let C2 ⊆ S2 . The free product of C1

and C2 is the Cartesian product C1×C2 in the configuration
space S1 × S2.
Definition 3 (QRM Interface): The QRM interface of a
component is a set of configurations from a six-dimensional
configuration space S ⊆ Qi × Qo × Qr × Qp × Qq × Qx
where:

• Qi models the inputs
• Qo models the outputs
• Qr models the required budget
• Qp models the provided budget
• Qq models the quality
• Qx models the parameters

In the framework, input and required budget specifications
capture the requirements of the component, while output,
provided budget and quality capture their promises.

The difference between qualities and parameters is that
the former is used by the quality and resource manager for
optimization, the latter is used by external actors, e.g., the
user, to control the selection of subsets of configurations.
In the following, we consider qualities and parameters to be
integer values and, when not otherwise specified, we use the
name properties to refer to both of them. Moreover, with a
slight abuse of notation, we use C (with C ⊆ S) to refer to
the component defined by that configuration space. Finally,
the elements of Qi and Qo are typed channel objects and the
elements of Qr and Qp are typed budget objects. Channels
model data that the components require in input or provide
in output, while budgets model resources or services that
the component provides or requires. For example, a camera
can have a power source as required budget and a video
stream as output channel. The distinction of channels and
budgets also makes it impossible to connect the output of a
component with a required budget and vice versa. A new type
is defined with a unique name, a list of properties and a set
of constraints on such properties. When we refer to a generic
element, either channel or budget, we use the term interface
element.

In addition, the framework describes three different kinds
of components composition: free, horizontal and vertical.
Definition 4 (Free Composition): Given two components C1

and C2, the free composition is computed by first applying
the free product C1 × C2 and then by applying a group-
ing derivation for each of the six dimensions of the QRM
interface. A grouping derivation puts two posets Qa and
Qb in a single new multi-dimensional poset Qa,b where
(pa, pb) �Qa,b

(qa, qb) iff pa �Qa
qa and pb �Qb

qb. The
result is a new component Ccomp ⊆ Qi ×Qo ×Qr ×Qp ×
Qq × Qx composed of all the possible combinations of the
configurations in C1 and C2.

Using Definition 4, we can construct a component C made
by many sub-components. We define subcomp(C) to be a set
of such sub-components.
Definition 5 (Horizontal Composition): The horizontal com-
position of two components C1 and C2 is similar to the
free composition, but the set of configurations is constrained
to the ones for which the output of the former component
matches with the input of the latter. Moreover, the resulting
component does not provide the output and does not require
the satisfied input anymore.
Definition 6 (Vertical Composition): The vertical composi-
tion of two components C1 and C2 is similar to the free com-
position, but the set of configurations is constrained to the
ones for which the provided budget of the former component
matches with the required budget of the latter. Moreover, the
resulting component does not provide the budget and does
not require the satisfied budget anymore.

Figure 1 shows an example of a system expressed using
QRML [14], a domain-specific language that implements
the QRM interface. Looking at the figure, we can see the
definition of component SmartCamera, composed of the
components Camera and CPU connected together, and it
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system S {
component SmartCamera sm;

}

component SmartCamera {
configuration low_frequency {
component Camera camera;
component CPU cpu;
quality power;
camera.comp runs on cpu.comp;
cpu.comp.frequency = 100;
camera.framerate = 30;
power = 10;
}

configuration high_frequency {
component Camera camera;
component CPU cpu;
quality power;
camera.comp runs on cpu.comp;
cpu.comp.frequency = 200;
camera.framerate = 60;
power = 100;
}
}

component Camera {
outputs VideoStream video;
requires ComputationalCapability comp;
property framerate;
}

component CPU {
supports ComputationalCapability comp;
}

budget ComputationalCapability {
property frequency;
}

channel VideoStream { }

FIGURE 1. Example of system expressed in QRML.

is available in two configurations: low_frequency and
high_frequency. In the first configuration, the framerate
of the camera is set to 30 and the frequency of the com-
putational capability provided by the CPU is 100, while in
the second configurations the values are 60 and 200, respec-
tively. Moreover, SmartCamera makes available also the
quality power that can be used at runtime to choose
which configuration to run. Notice also that Camera and
CPU do not have the configuration because they only
implement a single default configuration. The specification
also defines a budget (ComputationalCapability)
and a channel (VideoStream). Finally, at the system level,
only an instance of SmartCamera is instantiated, but the
same component declaration can be instantiated multiple
times with different values.

To make a parallel with the QRM framework described
before, given a configuration c = (Qi, Qo, Qr, Qp, Qq , Qx)
let us suppose to have three possible configurations for the

CPU component

c1 = (⊥,⊥,⊥, CC(100),⊥,⊥)
c2 = (⊥,⊥,⊥, CC(150),⊥,⊥)
c3 = (⊥,⊥,⊥, CC(200),⊥,⊥)

and two possible configurations for the Camera

c4 = (⊥, V S(30), CC(100),⊥,⊥,⊥)
c5 = (⊥, V S(60), CC(200),⊥,⊥,⊥)

where⊥ is the void poset, while CC and VS are shorthands
for the ComputationalCapability budget and the
VideoStream channel, respectively. For example, VS(30)
is a VideoStream channel with a framerate of 30. The free
composition of the two components is simply:

c1,4 = (⊥, V S(30), CC(100), CC(100),⊥,⊥)
c1,5 = (⊥, V S(60), CC(200), CC(100),⊥,⊥)
c2,4 = (⊥, V S(30), CC(100), CC(150),⊥,⊥)
c2,5 = (⊥, V S(60), CC(200), CC(150),⊥,⊥)
c3,4 = (⊥, V S(30), CC(100), CC(200),⊥,⊥)
c3,5 = (⊥, V S(60), CC(200), CC(200),⊥,⊥).

However, if we apply a vertical composition, as in the
example in Figure 1, not all of these configurations are feasi-
ble. Moreover, we have to remove the required and provided
budgets, because they cancel each other out. Therefore, the
result of the vertical composition is:

c1,4 = (⊥, V S(30),⊥,⊥,⊥)
c3,5 = (⊥, V S(60),⊥,⊥,⊥).

III. RELATED WORK
In this section, we report on the most relevant and recent
contributions in the field. Considering that our approach has
the QRM framework as a starting point, the purpose of this
section is not to compare our approach to others but rather
to present some important related works in order to increase
awareness about the context in which our contribution can be
collocated in the scientific literature.

Several approaches that investigate ways to provide early
fault detection when developing safety-critical industrial sys-
tems using DSLs have been proposed in the scientific litera-
ture. For instance, in [19], the authors have extended a DSL
tailored to model heterogeneous robots swarm with a deno-
tational semantics that supports both automatic and semi-
automatic verification in the form of model checking and
theorem proving. Several works in this field have often used
logic solver approaches, namely mapping a model generation
problem into a logic problem, which is usually solved by
SMT or SAT solvers. Some techniques that validate a wide
range of properties related to the semantics of the DSL have
been proposed in [20], [21], where the authors translated
the DSL instances and properties into SMT problems, and
then the model is analysed using the SMT solver Z3. If the
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property does not hold, delta debugging is used to identify
the rules in the DSL instance that contribute to the failure.

Complete frameworks with standalone specification lan-
guages have been presented in [22] and in [23], which use the
SMT solver Z3 and the SAT solver Sat4j [24], respectively.
One more complete tool is presented in [25], where the
authors describe Clafer, a class modeling language with first-
class support for feature modeling. The language is supported
by tools for model analysis, which is performed by trans-
lating the models into the input language of the underlying
back-end solvers Alloy [23], Z3, and Choco 3 [26]. Finally,
another interesting work is presented in [27], where the au-
thors propose an automated validation framework to formally
check the specification of DSLs in the avionics domain by
using Z3 and Alloy as back-end reasoners.

IV. CONSISTENCY CHECKING
The goal of this section is to describe the process of checking
the consistency of a given specification. The consistency
checking aims to automatically verifying if each component
of the system can be instantiated in at least one configuration,
and if there exists a feasible assignment for each property
satisfying all constraints. To achieve this goal, we encode a
system described in QRML into an instance of a satisfiability
problem in Quantifier Free Linear Arithmetic over Integers
(QF_LIA in [15]).

As illustrated in Section II, a component C is defined by
the QRM interface, namely a set of configurations in which
such component can be instantiated. As shown in the example
reported in Figure 1, in QRML a configuration is described
by a set of statements defining:
• the elements composing the interface of the component:

inputs, outputs, required budgets, provided budgets,
quality and properties;

• the sub-components subcomp(C) that are part of C and
their connections;

• a set of arithmetic constraints that limit the possi-
ble values of properties of the component, its sub-
components and the elements composing its interface.
We call exp(c) the list of such constraints.

The first step of the process consists in sorting the compo-
nents in topological order, considering the sub-components
as dependencies. In the example in Figure 1 a possible
topological order could be [CPU, Camera, SmartCamera,
S]. If the topological sort fails, it means that there is a circular
dependency and the process stops.

If there are no circular dependencies, each component
is built in the given order, namely all its dependencies are
resolved and replaced by their definitions. If an element is
not defined or has a wrong type (e.g., a channel is defined as
required budget), an error is reported.

If the building step succeeds, the resulting model is a tree
composed of components, configurations, channels, budgets,
qualities and properties. We define a function id(.) which
assigns an identifier to each element of the tree, which will
be useful during the encoding stage.

The next step is the binding of the components interface
in order to achieve a horizontal or vertical composition. For
the horizontal composition, we consider the inputs i ∈ Qi
and outputs o ∈ Qo involved in the composition and we
constraint their id (and the ids of their properties) to be the
same, i.e., id(i) = id(o). In this way the constraints applied
to them actually refer to the same object. If there is a type
mismatched an error is returned. In a similar way, the same
is done for the vertical composition with budgets r ∈ Qr
and p ∈ Qp. Figure 2 shows the result of the whole process
considering the example in Figure 1 as input.

Given the tree obtained by the previous steps, the encoding
procedure works as follows. First, for each node of the tree
a new variable is created, using the id as variable name:
properties and qualities are defined as integer variables, while
the remaining ones are defined as Boolean variables. The
latter variables are used to indicate if a particular component,
configuration or interface element is instantiated or not.

Secondly, starting from the root component C, we build
the following assertion:

id(C)→
∨
c∈C

id(c) (1)

and for each configuration c ∈ C:

id(c)→
( ∧
e∈exp(c)

e
)
∧
( ∧
x∈subcomp(C)

id(x)
)

(2)

Assertion (1) states that if a component is instantiated, then
at least one of the configurations must be true. In practice,
only one of them should be true at a given time, but since we
are only interested in checking if at least one configuration
is feasible, the disjunctive clause is sufficient. Assertion (2)
states that if a particular configuration c is selected, then the
constraints exp(c) declared in cmust hold and the subcompo-
nents subcomp(C) defined into the configuration must exist.

Regarding the horizontal composition, let consider a con-
straint that connects an output o, identified by id(o), with
an input i identified by id(i). We have already seen that
having id(o) = id(i) = id∗ forces the encoding to apply
the constraints on both i and o, on the same object, as the
semantics of the language implies. However, the binding
between i and o also says something else, that is not enforced
yet: for a connection between i and o to hold, i and o
must exist in some configuration. For example, if we want
to connect the output o of a sub-component C1, and this
component can exist in three possible configurations, but
only one of them expose the output o, we want to restrict the
configuration space of C1 to only that specific configuration.
Moreover, we can extend this idea to sub-sub-components
and so on, involving more levels of the tree described before.
Therefore, defining input(c) and output(c) as the sets of all
possible inputs and outputs, respectively, that are part of the
sub-tree originating from c and defining path(c, n) as the
set containing the configurations crossed to reach the node
n of the same sub-tree, we have the Assertion (3) for each
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FIGURE 2. Tree Structure of the specification.

configuration c and each horizontal composition between i
and o, such that id(i) = id∗ and id(o) = id∗.

id(c)→
( ∨

i∈input(c)
id(i)=id∗

∧
ci∈path(c,i)

id(ci)
)

∧
( ∨

o∈output(c)
id(i)=id∗

∧
co∈path(c,o)

id(co)
) (3)

The vertical composition works in a similar way, but we
have required budgets instead of inputs, and provided budgets
rather than outputs.

We recursively build assertions (1), (2) and (3) for each
sub-component x ∈ subcomp(C). The procedure terminates
because we previously checked that there is no circular
dependency. Finally, we have to assert that the root id(C)
must be true, otherwise the formula is trivially satisfied by
setting all boolean variables to false.

Following the steps described above, the specification
shown in Figure 1 is translated into the set of SMT constraints
depicted in Figure 3.

The tool implementing the translation here described is
available for download at [34].

V. INSTANCES AND SOLVERS
In order to evaluate the scalability of a set of SMT solvers, we
have implemented an automated generator (available at [34])
of QRML specifications and employed three state-of-the-art
SMT solvers to check the satisfiability of the translated SMT
constraints.

The generator can produce a specification according to a
large series of parameters, such:

• components: the number of components C to define;
• interface_elements: the number of channels (Qi, Qo)

or budgets (Qr, Qp) to define (randomly picked accord-
ing to a uniform distribution);

(set-logic QF_LIA)

(declare-const S.sc.camera.framerate Int)
(declare-const S.sc.power Int)
(declare-const _b4.frequency Int)
(declare-const S Bool)
(declare-const S.sc Bool)
(declare-const S.sc.low_frequency Bool)
(declare-const S.sc.high_frequency Bool)
(declare-const S.sc.cpu Bool)
(declare-const S.sc.camera Bool)

(assert (=> S S.sc))

(assert (=> S.sc (or S.sc.low_frequency
S.sc.high_frequency)))

(assert (=> S.sc.low_frequency
(and (= _b4.frequency 100)
(and (= S.sc.camera.framerate 30)
(and (= S.sc.power 10)
(and S.sc.cpu S.sc.camera)))))))

(assert (=> S.sc.high_frequency
(and (= _b4.frequency 200)
(and (= S.sc.camera.framerate 60)
(and (= S.sc.power 100)
(and S.sc.cpu S.sc.camera)))))))

(assert S)

(check-sat)

FIGURE 3. SMT encoding example.

• properties: the number of properties to define for each
component, channel and budget;

• configs: the number of configurations c ∈ S per com-
ponent;

• depth (δ): the depth of component/sub-component hier-
archy;
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• subcomps: the number of sub-components per compo-
nent (|subcomp(C)|), except for components at depth 0,
which do not have any further dependency;

• expressions: the number of expressions (randomly
generated, considering a set of arithmetic operators and
the set of accessible properties) for each configuration;

• interface_elements_per_component: the number of
channels and/or budgets composing the interface of each
component. The type and direction (i.e., if they are
required or provided) is chosen randomly;

• connection_rate: the rate of generated feasible connec-
tions between compatible inputs and outputs or required
and provided budgets.

The generator works as follows: first, it generates the
specified number of interface elements, randomly choosing
the type (channel or budget) and assigning unique names to
them. For each interface element, a number properties of
properties is generated, assigning a name to each of them.
It starts generating d componentsδ e components with δ = 1,
which do not have any subcomponent, then b componentsδ c
components with δ = 2 and so on, so that the depths of
components are evenly distributed from 1 to δ. For example,
if the generation starts with components = 7 and δ = 3,
the generator will produce 3 components with δ = 1, 2
components with δ = 2 and 2 components with δ = 3. For
components with δ > 1 the subcomponents are computed
as follows: 1 component is randomly chosen in the set of
components with (δ − 1), while all the other (subcomp - 1)
subcomponents are randomly chosen from the components
with depth ranging from 1 to (δ − 1). Moreover, for each
component C:
• a number properties of properties is generated;
• a number interface_elements_per_component of in-

terface elements are randomly selected from the set of
budgets and channels previously generated;

• a number config of configurations is generated.
Notice that the subcomponents and properties are defined in
all components configurations, while the interface elements
are evenly distributed among the defined configurations. At
this point, for each configuration ci ∈ C the generator:
• generates a number expressions of expressions, ran-

domly combining some constraints, arithmetic operators
and accessible properties (i.e., the properties of the com-
ponent, its subcomponents and of the defined interface
elements);

• computes all possible feasible connections between ac-
cessible interface elements (e.g. if a subcomponent C1

provides a budget of type X and another subcomponent
C2 requires the same type of budget, the connection
is considered feasible) and a feasible connection is
randomly selected with probability connection_rate.
If a connection is selected, a connection constraint is
defined in the configuration.

The procedure is repeated for each component and finally, at
the system level, one of the components with maximum depth

is instantiated, so that the specification is feasible only if there
exists at least a configuration for the selected component and
its subcomponents that satisfy all the generated constraints.
Finally, the QRML specification is automatically translated
into SMT using the encoding described in the previous sec-
tion.

For our analysis, we generate 5 benchmarks for each com-
bination of the following parameters values: components
∈ {8, 16, 32, 64, 128}, configs ∈ {2, 4, 8, 16, 32, 64, 128},
depth ∈ {2, 4, 8} and properties ∈ {0, 2, 4, 8}. We keep
the value of some parameters fixed: interface_elements
= components, subcomps = 5, expressions = 2, in-
terface_elements_per_component = 3, and connec-
tion_rate = 0.5. In such settings, we therefore generate 2100
different benchmarks.

The three SMT solvers involved in our experimentation
were selected from among participants to the QF_LIA divi-
sion in the Single Query Track of the SMT Competition 2019
[28], namely Z3 (version 4.8.8) [29], CVC4 (version 1.7) [30]
and SMTInterpol (version 2.5) [31]. The brief characteristics
of these systems are listed below.

• Z3 is state-of-the-art SMT solver developed and main-
tained by Microsoft Research, which is focused at solv-
ing problems arising in software analysis and verifica-
tion. It can be used to check the satisfiability of logical
formulas over one or more theories. Z3 provides a com-
pelling match for verification components and software
analysis since several similar software constructs map
directly into its supported theories.

• CVC4 is an efficient open-source automatic theorem
prover for SMT problems. It can be used to prove
the validity (or, dually, the satisfiability) of first-order
formulas in a large number of built-in logical theories
and their combination, including rational and integer
linear arithmetic, arrays, bitvectors and a subset of non-
linear arithmetic. CVC4 is intended to be an open and
extensible SMT engine, and it can be used as a stand-
alone tool or as a library, with essentially no limit on its
use for research or commercial purposes.

• SMTInterpol is an SMT solver written in Java which
supports the quantifier-free combination of the theories
of uninterpreted functions, linear arithmetic over inte-
gers and reals, and arrays. Furthermore, SMTInterpol
can produce models, proofs, unsatisfiable cores, and
interpolants.

VI. EXPERIMENTAL ANALYSIS
In this section, we present the results of the experiments
involving solvers and instances presented in Section V. All
the experiments here reported ran on a workstation equipped
with an Intel Xeon E31245 @ 3.30GHz CPU and 32GB
RAM running Lubuntu 18.10 64bits. For all the experiments,
we granted a time limit of 600 CPU seconds (10 minutes) and
a memory limit of 30GBs. The source code and data used in
the experiments are available at [34].
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FIGURE 4. Performance of SMT solvers involved in the experiments on the
whole dataset (top) and considering the median time value computed on the
set of samples for each instance (bottom). Figures are organized as follows: in
the x-axis is depicted the total amount of instance, while in the y-axis the CPU
time in seconds.

Our first experiment aims to test the scalability of selected
SMT solvers on generated instances. The results of such
experiments are reported in Figure 4 (top). Looking at the
figure, we can see that CVC4 outperforms SMTInterpol and
Z3, solving 2098 instances (out of 2100), while the remaining
solvers were able to solve 1849 and 1795 instances, respec-
tively. It is worth to notice that no discrepancies have been
reported in the satisfiability result returned by the solvers.

Despite the fact that CVC4 is able to solve almost all
the instances in the whole dataset, looking in detail at the
results, we can see that there are parameters settings for
which CVC4 did not report the best CPU time. In order
to investigate this point, we compute a dataset considering
the median performance for each instance, i.e., for each pair
solver/instance, we consider the median value obtained from
the 5 random generated samples of the given instance. Notice
that the median is computed separately for each solver, so the
reported performance can be related to a different sample;
this process can help us to make our analysis more robust.

Regarding the performance of the involved solvers in this

dataset, we report that CVC4 is again the best solver; it was
able to solve all the instances (420) in 5332.15 CPU seconds
(s). The picture does not change with respect to the previous
one, because the second best solver was SMTInterpol, which
was able to solve 375 instances in 12456.92 s, while Z3 tops
to 359 solved instances in 7117.58 s. Their performance is
depicted in the cactus plot in Figure 4 (bottom).

Looking in details at the results, we can report a picture
similar to the one obtained considering the whole set of
instances: CVC4 is the best solver in general, but is not
the best one for each instance. This consideration lets us
introduce our second experiment, that consists in the analysis
of the Virtual Best Solver (VBS), i.e., considering a problem
instance, the oracle that always fares the best among available
solvers. Looking again at the bottom of Figure 4, we can
see that VBS solves the same amount of instances solved
by CVC4 but spending 5014.30 CPU seconds. This different
amount of time is due to the fact that CVC4 contributed to
the VBS with 220 (out of 420) instances, while the second
contributor was Z3 with 200 instances. Notice that, despite
SMTInterpol solved 16 instances more than Z3, it did not
contribute to the composition of the VBS.

The mapping for each instance between its parameters – in
terms of feature described in Section V – and the best solver
can help us to understand which is the best solver for a given
setting. In our last experiment we investigate this point, and
we compare the structure of the encodings related to the pool
of instances in which CVC4 was the best solver against the
pool in which Z3 was the best one. In order to refine our
analysis, we discard all instances solved in less than 1 s and
the ones for which the CPU time difference was less than 5%.
At the end, we obtained a pool of 173 instances; for 139 of
them the best solver was CVC4.

Concerning the analysis of the encoding related to this
pool of instances, we report that we did not obtain a clear
picture considering one feature at time. This is the motivation
for which we introduce in our analysis a Machine Learning
classifier, namely J48, the WEKA [32] implementation of the
C4.5 [33] decision tree algorithm. We employed this algo-
rithm (with WEKA default configuration) for data mining
purposes, setting up a multinomial classification problem,
which is structured as follows. Given a set of patterns, i.e.,
input vectors X = {x1, . . . , xk} with xi ∈ Rn, and a cor-
responding set of labels, i.e., output values Y ∈ {1, . . . ,m},
where Y is composed of values representing the m classes of
the multinomial classification problem, in our modeling, the
n features are the parameters described in Section V, while
the m classes are m SMT solvers (m = 2, namely CVC4 and
Z3). Given a set of patterns X and a corresponding set of
labels Y , the task of a multinomial classifier c is to construct
c from X and Y so that when we are given some x? ∈ X we
should ensure that c(x?) is equal to f(x?).

Considering the dataset composed as described before,
we report that the model obtained after a run of J48 shows
that CVC4 is the best choice when the total amount of
components is less or equal to 64, but excluding the cases
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in which the number of properties are equal to 0 and the total
amount of configurations is greater than 16; in these cases,
the best choice is Z3. Z3 is also the best choice when the
total number of components is greater than 64 and the total
amount of configurations in smaller or equal to 4.

VII. CONCLUSION
In this paper, we have proposed an SMT-based approach for
checking the consistency of configuration based-components
design expressed in QRML in order to reduce faults and risks
during the development process. Such an approach has been
implemented into a tool which is available at [34]. Further-
more, to evaluate the scalability of the proposed approach,
we developed an automated generator of DSL specifications
and employed three different state-of-the-art SMT solvers to
check the satisfiability of the encoded SMT properties. As we
have shown in the experimental analysis, we demonstrated
the effectiveness of the proposed SMT-based approach to ver-
ify configuration-based components design of various sizes
within a reasonable time.
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