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ABSTRACT The 5G mobile network will rely on network slicing to provide a wide variety of services
with various quality of service (QoS) requirements. Network slicing is promoted by 3GPP and provides
a logical vertical partition of the network that is based on network virtualization technologies, namely,
network function virtualization (NFV), software-defined networking (SDN) and ETSI multi-access edge
computing (MEC). Despite the undisputed benefits in terms of flexibility and scalability that are pledged
by the paradigm, network slicing requires intelligent resource scheduling and allocation algorithms to
efficiently use the network resources, especially at the edge of the network, due to their scarcity. In this
paper, we propose an optimization algorithm for steering data traffic of multiple slices in the edge backhaul
network, which aims at maximizing the QoS. We extensively analyze the realizable grade of QoS by testing
various levels of MEC resources, demonstrate the beneficial impact of the approach for mobile operators,
and highlight the performance advantage that is realized versus a single-slice approach of undifferentiated
traffic.

INDEX TERMS Multi-access edge computing, network slices, mathematical optimization

I. INTRODUCTION
The next generation of mobile networks (5G) will support a
wide variety of vertical services, each with specified quality
of service (QoS) parameters. They will range from typical
end-user services, such as video streaming and augmented
and virtual reality (AR/VR), to Internet of things (IoT)
applications, e.g., Industry 4.0 and smart cities. To handle
such complexity and variety, Third-Generation Partnership
Project (3GPP) has introduced the concept of network slic-
ing, which refers to the creation of dynamic, logical and ver-
tical partitions of the network to satisfy the requirements of
specified service categories. Their implementation relies on
the advances of network virtualization technologies, namely,
network function virtualization (NFV) and software-defined
networking (SDN), [1]. At the same time, the European
Telecommunications Standards Institute (ETSI) has proposed
the multi-access edge computing (MEC) [2], which offers
cloud-computing capabilities at the edge of the network with
the objective of reducing the network latency between end-
users and the service.

The progressive softwarization of the network has led to
the development of tools and platforms, such as management
and orchestration (MANO), for managing the lifecycles of

the slices, together with the underlying virtual network func-
tions (VNFs) at the network levels; for example, ETSI stan-
dardizes the VNF architecture [3] and proposes the Open-
Source MANO (OSM) [4] platform. The availability of these
platforms significantly simplifies the sharing of resources
among slices, but it still calls for the design of intelligent
resource scheduling and allocation algorithms to enable a
specified slice to satisfy its service level agreement (SLA)
[5]. This problem is emphasized at the network edge, where
the available resources are limited and the spatiotemporal
dynamics of the traffic demand are high. According to the
network edge structure that is illustrated in Fig. 1, specified
actions must be taken in the radio access network (RAN) (see
[6] for a comprehensive survey of the solutions for managing
and orchestrating network slices in the access network) and
in the backhaul network, where the traffic must be steered
from/to the MEC layer without exhausting the limited MEC
resources.

This paper addresses the problem of providing an opti-
mized plan for managing the multi-slice traffic demand in
the backhaul network. The problem combines two critical
issues: the analysis of the spatiotemporal pattern of the traffic
demand with various QoS levels and the exploitation of
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the results to proactively plan the network configuration to
realize the optimal utilization of resources. The first issue has
been widely studied in the literature [7], whereas the second
remains an open problem for research. In the literature,
most of the contributions [8]–[14] address this problem by
attempting to minimize the network resources without vio-
lating the SLA. This paper address the problem via another
strategy: maximizing the QoS of each slice without violating
the available capacity. This approach has the advantages of
providing the mobile operator with valuable indicators of
the realizable performance for the specified level of capital
expenditure (CAPEX)/operational expenditure (OPEX) and
of issuing preemptive notifications that enable the prevention
of the rise of spatiotemporal criticalities across the infrastruc-
ture.

The main contributions of the paper are threefold:

i) We establish a combinatorial optimization model that
natively supports multiple network slices, which differ
in terms of QoS requirements. The model starts from
the single-slice model that is presented in [15] and
expands it to incorporate the multi-slice characteristic
of modern mobile networks. The algorithm addresses a
combinatorial problem that is a multi-period variant of
the generalized assignment problem.

ii) We extensively analyze the assignment plans by measur-
ing the QoS level that is realizable by both single- and
multi-slice optimization algorithms and by considering
various levels of available resources at the MEC layer.
We show that the network performance benefits from a
multi-sliced approach that is more suitable for capturing
the distinct spatiotemporal pattern of each slice than the
previous single-slice model.

iii) We provide the mobile operators with a methodological
framework for evaluating both the quality and resilience
of their network infrastructure from the intensity of the
CAPEX/OPEX investments. The proposed framework
leverages the aggregated traffic only, thereby preserving
the privacy of each subscriber.

To evaluate the performance of the multi-slice model,
we consider a scenario with two network slices: one that
has strict delay requirements, e.g., conversational voice, and
another that lacks specified delay requirements, e.g., TCP-
based traffic and text messages. To model the traffic demands
of both slices, we exploit an anonymized mobile phone
dataset that gathers the phone activities of approximately
one million subscribers. The results demonstrate that the
proposed model significantly improves the QoS and that the
obtained plans can be exploited by the network operator both
at a tactical level, to obtain valuable information about the
effective dimensioning of the facility’s capacity to realize a
target level of QoS, and at an operational level, to associate
base stations to facilities in new and unplanned network
settings.

The remainder of this paper is organized as follows. Sec-
tion II provides the background of this study. The multi-

slice optimization model is presented in Section III, while in
Section IV. we describe the simulation scenario. In Sections
V and VI, we present the numerical results on QoS. Section
VII presents the conclusions of the paper.

Acronyms
3GPP Third-Generation Partnership Project
AR augmented reality
BE best- effort
CAPEX capital expenditure
ETSI European Telecommunications Standards Institute
IoT Internet of things
MANO management and orchestration
MCC mobile cloud computing
MEC multi-access edge computing
NFV network function virtualization
OPEX operational expenditure
OTT over the top
QoS quality of service
RAN radio access network
RT real time
SDN software-defined networking
SFC service function chain
SLA service level agreement
V2X vehicle to everything
vAP virtual access point
vBS virtual base station
VNF virtual network function
VNF-RA VNF resource allocation
VR virtual reality

II. BACKGROUND
A. NETWORK SLICING
As a key feature of 5G networks, network slicing enables the
creation of logical vertical partitions of the network to satisfy
the requirements of specified service categories or even of a
single vertical service [16]. Each slice is composed of a set
of interconnected virtual network functions (VNFs), namely,
the service function chain (SFC) [17], that implement the
vertical service. Each component of the slice, namely, each
node or link, has its own specific requirements, e.g., computa-
tional/storage capacity for nodes and delay/capacity for links,
which must be satisfied for effective service provisioning.
Fig. 1 illustrates the conceptual architecture of the network
slices. In this example, we consider two autonomous network
slices, namely, Slice A and Slice B, each of which has
specified SFC and SLA requirements. As illustrated in the
figure, the slicing process affects the entire mobile network
infrastructure, from the core network down to the radio ac-
cess network (RAN). The mobile operator embeds the slices’
SFC into the physical infrastructure and guarantees both data
plane isolation and the satisfaction of the SLA requirements
[5].

The dynamics of the traffic that is associated with each
slice requires elastic resource allocation to either reserve
more resources or release them according to the traffic load.
As shown in [18], network slicing has deep implications with
respect to resource management; hence, network operators
are seeking a trade-off between offering a fully customized
network partition (that satisfies the service requirements
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FIGURE 1. Conceptual architecture of the network slices.

perfectly) and the efficient allocation of its own available
resources. The problem to be solved at this level is to ensure
elastic resource allocation by satisfying the specified SLA
while optimizing the placement of the VNFs within the
variety of slices. Various approaches for addressing VNF
resource allocation (VNF-RA) are presented in [19]. The
optimization can be conducted by using mixed-integer linear
programming models [8], [9], [15], heuristics algorithms
[10], [11], game theory [12], [13] or machine learning [14]
approaches.

B. MULTI-ACCESS EDGE COMPUTING
Cloud computing has been offering a successful compu-
tational model for many years because it ensures a large
amount of resources, high availability and service elasticity
through virtualization. Nevertheless, cloud computing is be-
coming increasingly unsuitable for many emerging applica-
tions, such as AR/VR, massive IoT deployment and ultra-
reliable communications. These new applications, which
utilize the 5G technology, all rely on various latency and
reliability constraints and, as in case of IoT, generate a huge
amount of uplink traffic that ultimately floods the backhaul
network. To support this new class of application scenarios,
ETSI proposed multi-access edge computing (MEC) [2],
which offers cloud-computing capabilities that are distributed
at the edge of the network. In addition to reducing the
communication delay, MEC is endowed with peculiar fea-
tures such as proximity- and context-awareness and geo-
localization, which are difficult to realize in a traditional
cloud environment. However, a few shortcomings offset these
advantages. They include, for instance, far lower availability
of computational and storage capabilities at each MEC node

compared to those that are offered by any cloud platform.
This limitation motivates the design of a radically new re-
source management strategy because the resource orchestra-
tion policies that are commonly adopted by cloud operators
are unsuitable in an MEC scenario, where the resources are
highly distributed and the traffic load at the edge is highly
dynamic and non-homogeneous.

Despite the recent introduction of MEC, many contribu-
tions have been produced by the research community over
the last few years. In the early literature, MEC was regarded
as an extension of mobile cloud computing (MCC) that
provides offloading capabilities at the edge of the network.
[20] presents a comprehensive survey of such use cases of
MEC. When MEC is employed to support IoT and smart
city scenarios, the literature on MEC overlaps with the con-
tributions on FOG computing, according to [21], where a
complete overview of the MEC/FOG literature is provided.
The convergence between 3GPP and ETSI-MEC has led
to the inclusion of MEC into the ecosystem of 5G as a
promising solution for bringing computation capacities to the
edge [22].

C. NETWORK SLICES AT THE EDGE
The management of the network slicing at the core layer
benefits from a large amount of computational resources,
accurate prediction of the traffic dynamics, and a highly cen-
tralized topology (few datacenters cover a vast geographical
area) and references the well-established literature on the
optimization of the placement of VNFs [23]. However, at the
edge of the network, such management becomes challenging.
As shown in [18], the sharing efficiency decreases at the edge
of the network. As shown in Fig. 1, the network edge is com-
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posed of three sub-layers: a RAN, an edge backhaul and an
MEC. At the RAN level, spectral, processing and scheduling
resources are shared among multiple autonomous slices that
differ in terms of QoS requirements and traffic load dynam-
ics. [6] provides a comprehensive survey of the challenges
in and approaches for managing and orchestrating network
slices in the access network. The edge backhaul steers the
downlink/uplink traffic to/from the RAN and must satisfy the
two following constraints: (i) all downlink/uplink data traffic
must be handled by the backhaul network, namely, offloading
onto other networks is not allowed; and (ii) the amount of the
traffic load that is steered to/from an MEC facility should not
exceed its limited amount of available resources. In Fig. 2a,
we present the case of two network slices that share resources
at the edge of the network and support different classes of ap-
plications. The blue slice handles a bundle of best-effort data
flows, e.g., buffered streaming and web browsing, whereas
the orange slice manages real-time data traffic, e.g., video
conferencing, online gaming, and V2X communications. The
distance between the RAN and the serving-edge facility must
be considered if the low latency requirements of the orange
slice must be satisfied. Thus, the QoS requirements of the
real-time slice would more likely be satisfied if the relevant
traffic to/from the RAN were managed by the closest MEC
facility, while the blue slice is almost independent of similar
distance constraints.

Nonetheless, the limited resources of MEC facilities are a
critical issue for the resource orchestration process. Unfor-
tunately, the straightforward assignment of real-time traffic
to the closest facility could lead to an exhaustion of the re-
sources at the facility, thereby hindering the realization of the
required SLA. Such a condition is described in Fig. 2b, where
the overload condition of facility A causes the diversion of
part of the real-time traffic - to/from base station 2 - from
facility A to facility B. This leads to a new design problem:
the identification of an assignment that satisfies the SLA
constraints without exceeding the facility’s capacity.

The variation in the traffic demand over time may render
appealing (to provide better QoS), or even necessary (to avoid
the exhaustion of resources at the facility), the modification
of the base station-facility assignments. [24] relies mainly
on the signalling traffic needed to reconfigure the network
path, the migration of state-full VNFs, and the reservation of
resources at the target facility. Therefore, the mobile operator
must identify the optimal trade-off between the pursuit of
QoS optimality, which may cause frequent migrations, and
the minimization of the number of switches, which leads to
sub-optimal assignments.

III. MULTI-SLICE EDGE ORCHESTRATOR
In this study, we assume a sliced network scenario, as illus-
trated in Fig. 1, and we focus on the optimization of QoS
at the edge backhaul level by managing and orchestrating
the virtual links between RAN and MEC VNFs of the slice.
We assume that the mobile operator is entirely responsible
for slice management and the provisioning of a set of slices

that differ in terms of QoS parameters. Over the top OTT
service providers are supposed to share slices according to
the service requirements. In such a scenario, each slice ag-
gregates different traffic flows that are rooted on a variety of
OTT services with similar QoS requirements and negotiated
SLAs.

A. REAL-TIME AND BEST-EFFORT SLICES
We consider two network slices, namely, real time (RT) and
best- effort (BE), which are designed to support opposite
service types. The RT slice is assumed to satisfy strict latency
constraints and to ensure a short response time. In [25],
3GPP clearly defines the packet delay budget for a variety of
applications with real-time constraints of variable strictness.
For instance, the delay budget is set to≤ 50 ms for hard real-
time traffic (AR/VR, V2X, or live interactive gaming) and to
100 ms for conversational voice traffic. In contrast, the BE
slice is assumed not to be constrained by strict requirements.

1) Slices at the RAN

At the RAN level, we adopt the notion of virtual access
point (vAP), which was introduced in [26], and we model
each slice as a VNF-based system. A vAP is a RAN VNF,
which manages the radio resources for a slice and is deployed
on a physical access point. Each vAP is managed by the
orchestrator and can be dynamically deployed/undeployed
according to the dynamics of the slice traffic. Likewise, we
model the RAN level of each slice as a set of virtual base
station (vBS), namely, a VNF that is deployed on a phys-
ical base station and is responsible for handling the users’
generated traffic load. The deployment of vBSs relies on the
Cloud-RAN architecture [27] and virtualization technology
[28] for the allocation of the necessary amount of resources
(spectral, processing and scheduling resources) for satisfying
the QoS requirements. We assume that an instance of vBS of
a network slice is deployed on a physical base station if at
least one user, who is connected to the physical base station,
uses the slice. Moreover, we assume that the amount of
resources that are allocated for managing the slice is directly
proportional to the amount of traffic load that is generated by
users who are currently using the slice.

2) Slices at the edge backhaul

According to Fig. 1, the physical edge backhaul is composed
of a set of interconnected SDN switches, which can deploy a
virtual path throughout a set of OpenFlow data plane rules,
namely, the mobile operator can map virtual links onto a
physical forwarding path to/from MEC facilities. To exploit
the distributed nature of the MEC layer and the horizontal
scaling of the VNFs, namely, the deployment of multiple
replicas of the same VNF on different MEC facilities, we as-
sume that a single virtual link of the slice SFC can be mapped
to multiple physical forwarding paths. As a consequence,
the uplink traffic that is issued by a vBS can be forwarded
to various MEC facilities, while the downlink traffic can
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FIGURE 2. Example of base station-facility association: (a) The real-time slice is always associated with the closest facility, and (b) the facility overload condition
causes part of traffic to be associated with another facility.

arrive from multiple MEC VNFs that are deployed in various
facilities.

3) Slices at MEC
In this study, we rely on the MEC paradigm that was pro-
posed by ETSI, which offers cloud-computing capabilities
at the edge of the network, thereby reducing the end-to-end
latency [2]. Some applications require special hardware for
proper operation, e.g., AR/VR applications utilize GPU. To
support this class of applications, MEC facilities should be
equipped with specialized hardware, the cost of which could
exceed the cost of general-purpose hardware. Consequently,
the network operator may decide to equip only a subset of
servers inside a facility with special hardware capabilities.
We model such a feature by assuming that only a fraction
of the capacity in each facility can be used by the RT slice.
These resources are not reserved for RT traffic only, but
priority is given to it: resources can be allocated to BE traffic
only if they are not being fully utilized by RT traffic. The
portion of the capacity on which the RT traffic has a priority
is a parameter of our model, and its value should depend on
the ratio between RT and BE traffic, namely, the higher the
ratio, the higher the value.

B. NOTATION AND MODELING
In the following, we fully formalize our modeling choices.
This mathematical formalization step is inspired by [15], in
which a single-slice MEC optimization problem is consid-
ered.

The main strategy behind our mathematical model is to
map input data (vBS demands, facility capacities, and assign-
ment and migration costs) to optimal decisions. We encode
both the assignment of vBSs to facilities and the migration
from facility to facility, which are decisions that an operator
must repeatedly take over time, as output solution variables,
both for BE and RT slices. The mapping is formalized by
using mathematical optimization notation [29], including

Notation Description
T set of time slots
ART set of the vBSs of the real-time slice
ABE set of the vBSs of the best-effort slice
A set of all vBSs, ABE ∪ART
K set of facilities
Ck overall capacity of facility k ∈ K, namely, the maxi-

mum amount of overall traffic that can be serviced by
k in each time slot

CRTk maximum capacity of facility k ∈ K that can be used
by the real-time slice in each time slot, CRTk ≤ Ck

wti demand of vBS i ∈ A during time slot t ∈ T , which
is the amount of traffic of users who are connecting
to i

mik assignment cost of vBS i to facility k
ljk migration cost from facility j to facility k
xtik decision variable ∈ [0, 1] that encodes assignment,

which represents the fraction of traffic from vBS i
that is assigned to facility k at time t

ytijk decision variable ∈ [0, 1] that encodes migration,
which represent the fraction of the traffic from vBS
i that must be switched from facility j to facility k at
time t

α parameter of the relative importance of migration
(default 1)

β parameter of the relative importance of assignment
(default 1)

TABLE 1. Notation table of the optimization model

both a set of requirements that any solution must satisfy and
an aspiration criterion. The requirements are as follows: no
facility can manage a vBS load that exceeds its capacity,
each vBS must be assigned to one facility, and assignment
and migration decisions must be consistent with each other.
The aspiration criterion minimizes a linear combination of
the assignment and migration costs.

Formally, we assume that the planning time horizon has
been discretized; in a practical scenario, the discretization
may match the granularity of the input data. Let T be the set
of time slots that arise in such a discretization. Let ABE and

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2986535, IEEE Access

Quadri et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ART be the sets of virtual base stations of the best-effort and
real-time slices, respectively. We define A = ABE ∪ART as
the set of all vBSs that are deployed on physical base stations.
Let K be the set of MEC facilities.

We suppose that the following data are available:
• wti : the demand of vBS i ∈ A during time slot t ∈ T ,

which is the amount of traffic of users who connect to i
• Ck (resp. CRTk ): the overall (respectively, RT) capacity

of facility k ∈ K, namely, the maximum amount of
overall (respectively, RT) traffic that can be serviced by
k in each time slot

• mik: the assignment cost of vBS i to facility k
• ljk: the migration cost from facility j to facility k.
Our goal is to identify effective resource allocation plans,

which are formally defined as follows:
• decision variable xtik ∈ [0, 1] encodes assignment,

which represents the fraction of traffic from vBS i that
is assigned to facility k at time t

• decision variable ytijk ∈ [0, 1] encodes migration, which
represents the fraction of the traffic from vBS i that must
be switched from facility j to facility k at time t.

Table 1 summarizes the notation that is adopted in the op-
timization model.In a resource allocation plan, the BE slice
structure is finally defined by considering only the xtik and
ytikl variables for which i ∈ ABE . Similarly, the RT slice
structure is defined by the xtik and ytikl variables for which
i ∈ ART .

The identification of optimal resource allocation plans
from data is not trivial: it requires the solution of an optimiza-
tion problem that is even more general than that approached
in [15]. The additional complexity arises from the necessity
of considering two overlapping types of traffic, while the
algorithms of [15] are suitable for a single traffic type only.
However, we managed to extend the models of [15] and to re-
design the optimization algorithms such that the additional
problem complexity is addressed with a minimal increase
in the algorithmic complexity. We formulate the problem of
optimally assigning vBSs to facilities over time as follows:

min
∑
t∈T

∑
i∈A

(
α
∑

(j,k)∈
K×K

wti ljky
t
ijk +β

∑
k∈K

wtimikx
t
ik

)
(1)

s.t.
∑
i∈A

wtix
t
ik ≤ Ck ∀t ∈ T,∀k ∈ K (2)∑

i∈ART
wtix

t
ik ≤ CRTk ∀t ∈ T,∀k ∈ K (3)

∑
k∈K

xtik = 1 ∀i ∈ A, ∀t ∈ T (4)

xtik =
∑
l∈K

ytilk
∀i∈A,∀k∈K
∀t∈T\{1} (5)

xtik =
∑
l∈K

yt+1
ikl

∀i∈A,∀k∈K
∀t∈T\{T} (6)

xti,k ∈ [0, 1], yti,k,k′ ∈ [0, 1] ∀i∈A,∀t∈T
∀k,k′∈K (7)

vSwitch j vSwitch i

Facilities

k l m

Physical BS

FIGURE 3. Multi-slice network model of a single physical BS in a specified
time slot t.

Formally, a logical connection is required at time t be-
tween each vBS i and each facility k such that xtik > 0,
whereas the actual value of xtik represents the fraction of
traffic to be sent from i to k. Variables yti,k,k′ have a similar
interpretation. The objective function (1) contains the sum
of two terms, which model the migration and the assignment
costs. Parameters α and β are assumed to be constants, which
must be set by the network planner to fine tune the relative
importance of assignment and migration in the final QoS
(we refer to Section IV for a general discussion on suitable
parameter settings for simulations). Conditions (7) define
the domain of each decision variable. Constraints (2) and
(3) ensure that the capacity of a facility is never exceeded:
(3) ensures that the amount of RT traffic that is assigned
to the facility does not exceed its RT capacity. In contrast,
constraints (2) consider both RT and BE traffic, namely, BE
traffic can use the residual resources of k up to its overall
capacity. Constraints (4) have two roles: First, together with
non-negativity conditions on xtik, they ensure that every
vBS is logically connected to at least one facility in every
time slot; second, they ensure that in each time slot, all the
traffic for each vBS is assigned to facilities, potentially by
splitting. Constraints (5) and (6) ensure that the assignment
and migration decisions are consistent.

The BE and RT decisions are defined by different sets of
variables, which are linked by capacity constraints (2).

In Fig. 3, we illustrated how the mathematical formulation
of the assignment problem leads to the orchestration of
multiple slices. We consider the case of a single time slot
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and two vBSs that are deployed on a physical base station.
Each vBS is associated with a virtual switch (vSwitch) VNF,
which handles the traffic demand of the vBS and steers
it toward distinct facilities according to the values of the
assignment decision variables (xtjk and xtim in the figure).
An analogous schema is defined for the migration among
MEC facilities, but it is based on the values of the migration
decision variables.

C. OPTIMIZATION ALGORITHMS
From a computational complexity perspective, the model is a
linear program (LP); therefore, according to classical linear
programming theory results, it is solvable in polynomial time
(we refer the reader to [29] and [30] for all formal results
on the subject). From a practical resolution perspective, how-
ever, its size renders it unmanageable for direct optimization
algorithms. Indeed, in a preliminary round of experiments,
we attempted to use state-of-the-art solvers such as [31],
which halted already in a preprocessing phase. This is in line
with computational experience that was reported in previous
studies, such as [15].

In a few cases, models from the literature encode combi-
natorial structures. For instance, the model of [15] is a mini-
mum cost flow problem, to which highly efficient algorithms
can be applied.

Unfortunately, this is not the case when multiple slices
are considered: constraints (2) and (3) render our structure
more complicated. Nevertheless, we managed to devise an
ad hoc algorithm by exploiting the so-called Dantzig-Wolfe
decomposition principle [32]. A similar approach has been
used in [15]. To keep the paper compact but self-contained, in
the following, we present only the essential technical details
that are novel and specific to our approach, and we refer to
[32] and [15] for general descriptions of the theoretical and
algorithmic frameworks that we employ.

Let Si be the set of all possible sequences of assignments
and migrations of vBS i to facilities over time:

Si = {(xtik, ytilk) : (4), (5), (6), (7)}.

According to linear programming theory, such a set geomet-
rically corresponds to a polyhedron: each point in Si can be
represented as a linear convex combination of the extreme
points (and rays) of Si. Let us denote as (x̄stk, ȳ

s
tlk) these

extreme points and as σi the corresponding set. For each
i ∈ A:

(xtik, y
t
ilk) =

∑
s∈σi

(x̄stk, ȳ
s
tlk) · zs,

∑
s∈σi

zs = 1

where zs are new decision variables, which represent the
multipliers in the linear combination. For each extreme point
s ∈ σi, let:

cs =
∑
t∈T

(
α
∑

(j,k)∈
K×K

wti ljky
t
ijk + β

∑
k∈K

wtimikx
t
ik

)

After substitution according to these equations, model (1)–
(7) becomes:

min
∑
i∈A

∑
s∈σi

cszs (8)

s.t.
∑
i∈A

∑
s∈σi

wti x̄
s
tkz

s ≤ Ck ∀t ∈ T,∀k ∈ K (9)

∑
i∈ART

∑
s∈σi

wti x̄
s
tkz

s ≤ CRTk ∀t ∈ T,∀k ∈ K (10)

∑
s∈σi

zs = 1 ∀i ∈ A∀i ∈ A (11)

Model (8)–(11) is still a linear program, but now it contains
one variable for each element of σi, and these variables
grow combinatorially with respect to |K| and |T |. Although
each σi encodes sequences of assignments and migrations
and, therefore, a special shortest path structure, there is no
guarantee that a globally feasible solution to (8)–(11) can be
obtained by independently solving a shortest path problem
for each vBS i inA as the sequences interact with one another
due to constraints (9) and (10).

However, its optimization can be pursued iteratively via
dynamic variable generation techniques [32] [33]: we replace
each σi with an arbitrarily small σ̄i ⊂ σi, we solve the
restricted problem that is obtained via this approach, we
collect the corresponding dual solution and we determine
whether the variables with negative reduced cost exist, which
correspond to elements in σi \ σ̄i. If they do not, then the
solution of the restricted problem is optimal for the full
problem as well; otherwise, a few of these potentially useful
variables are added to the sets σ̄i, which grow incrementally,
and the whole process is iterated.

The search for new variables is conducted implicitly by
solving at each iteration an optimization (pricing) subprob-
lem and searching for the variable that has the most negative
reduced cost. In our case, such a search is conducted by
solving one shortest path problem for each i ∈ A in a directed
acyclic graph that has one layer for each t ∈ T that contains
one vertex for each k ∈ K. Arcs connect each vertex in layer
t to all vertices in layer t + 1. Its structure is illustrated in
Figure 4. Each arc from a vertex (j, t−1) to a vertex (k, t) has
an associated weight w̄j,t−1,k,t, which accounts for (a) the
cost of assigning i to j at time t− 1, (b) the cost of assigning
i to k at time t, (c) the migration cost between j and k at time
t, (d) the contribution of the dual variables that are associated
with constraints (9) and, only if i ∈ ART , (e) the contribution
of the dual variables that are associated with constraints (10).
Each shortest path problem is solved highly efficiently by
a dedicated dynamic programming algorithm, as outlined in
Algorithm 1. For each i ∈ A, when dynamic programming
has been completed, we consider the minimum c̄k,|T | value
and rebuild a corresponding path by recursively following
predk,t: it encodes the column of the most negative reduced
cost. In summary, our choice of formulation for the set of
vBSs and constraints (2) and (3) enables the complexity of
each shortest path subproblem to be maintained while simply
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FIGURE 4. Structure of the pricing subproblem graph.

requiring the solution of a potentially larger number of the
subproblems (possibly even in parallel, as they are disjoint).

Additionally, from a computational complexity perspec-
tive, even if |σi| is not polynomially bounded, such a pro-
cedure is still of polynomial time complexity. According to
classical linear programming duality results, generating new
variables in (8)–(11) is equivalent to finding violated cuts
in its dual; the separation problem in the dual is equivalent
to the pricing problem in the primal, which, in our case,
can be solved in polynomial time. The equivalence between
separation and optimization [29] implies that the full problem
(8)–(11) can be solved in polynomial time.

We also report that, experimentally, we identified that such
a procedure requires far fewer computing resources than
the direct optimization of (1)–(7), in terms of both memory
and CPU time. This accords with previous results from the
literature [15].

Finally, as discussed in Section VI, our extension trades
a minor increase in the algorithmic complexity for a major
increase in the solution quality.

D. QOS MODELING
In line with [15], the methodology that we propose involves
(a) population of the described model with estimates of the
traffic demand and capacities from historical data and (b)
optimization over a specified restricted time horizon that
represents a pattern of periodicity (e.g., over one week).
Therefore, the solutions that the model provides are patterns,
which are assumed to be subsequently and periodically ap-

Algorithm 1: Exact pricing algorithm
Result: Optimal planning over time for vBS i
init: for k ∈ K do

c̄k,0 ← 0;
end
solve: for t← 1 to |T | do

for k ∈ K do
c̄k,t ← minj∈K{c̄j,t−1 + w̄j,t−1,k,t};
predk,t ← argminj∈K{c̄j,t−1 + w̄j,t−1,k,t};

end
end

plied to new and unplanned network settings.
The quality of the pattern that is obtained by applying

the optimization algorithm still provides only an indirect
measure of the QoS that is offered by the network operator.
We assume that the performance a service can realize by
using a network slice is affected by two main factors: the load
of the facility and the network delay that is associated with
the physical path between the vBSs and the MEC VNFs. The
first factor accounts for the computational costs at the MEC
level, whereas the latter mainly depends on the path lengths
between the base stations and MEC facilities. Due to the
topology of the mobile operator backhaul network [34], the
longer the path, the more network devices (i.e., routers and
switches) to pass through, and the longer the related delay.
Thus, in the following, we focus on the delay between physi-
cal base stations and MEC facilities as the main performance
indicator of the MEC approach. This argument is emphasized
when addressing the real-time slice.

Formally, we define the QoS factor that is related to the
loads of the facilities (QoS-Load) as follows:

QoS-Loadti =
∑

k∈Kt
i⊆K

min{eCk−w
t
k , 1} · xti,k (12)

where Kt
i ⊆ K is the set of facilities to which the vBS is

assigned, wtk is the actual load of facility k at time slot t, and
Ck is capacity of facility k. According to this definition, when
the actual load reaches the warning threshold, performances
drop because the MEC facility becomes unable to provide
service of suitable quality. For example, users can experience
a long latency time due to congestion at the facility level.
Regarding the network delay, we define the network QoS
(QoS-Net) that is associated with vBS i at time t as follows:

QoS-Netti =
∑

k∈Kt
i⊆K

e−
mi,k−mi,k∗

i
δ · xti,k (13)

k∗i = argmin
k

mi,k (14)

where k∗i is the best facility for vBS i, namely, the facility
that is associated with the minimum latency, and δ is a scale
parameter. According to the definition, QoS-Net is optimal,
namely, is equal to 1, if and only if all the traffic load of the
vBS is assigned to the best facility.

According to the previous definitions, we defined the QoS
that is realized by the network operator from vBS i at time t
for the two network slices (RT and BE) as follows:

QoSti =

{
QoS-Loadti · QoS-Netti if RT slice
QoS-Loadti if BE slice

(15)

For the BE slice, the QoS is only affected by the load of the
facilities because the BE slice is not sensitive to the network
delay. Finally, a scale factor is added to express QoS in terms
of the mean opinion score (MOS), which ranges between 1
and 5.
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Field Description
Call record

caller anonymized identity of the customer who per-
formed the call

callee anonymized identity of the customer who re-
ceived the call

timestamp date and hour when the call was performed
duration duration of the call in seconds (0 seconds

correspond to no answer)
base station id base station identification number where the

caller was registered when starting the call
location area label that specifies the place in the city, e.g.,

street, square, or station, where the base sta-
tion is deployed.
Text message record

sender anonymized identity of the customer who sent
the text

destination anonymized identity of the customer who re-
ceived the text

timestamp date and hour when the text was sent
base station id identification number of the base station to

which the sender subscriber was registered
when the text was sent

location area label that specifies the place in the city, e.g.,
street, square, or station, where the base sta-
tion is deployed.

TABLE 2. Description of the fields of the CDR dataset

IV. SIMULATION SCENARIO
A. DATASET
Our data source consists of call detail records (CDRs) that
describe the phone activities of approximately one million
subscribers to one of the largest Italian mobile operators in
the metropolitan area of Milan (surface of 235 km2 (15.9
km x 14.8 km)) for a time period of 67 days (9 weeks)
[35]. The dataset contains approximately 107 million calls
(VoIP) and 52 million text messages. Each record contains
the anonymized identities of the customers who were in-
volved in the phone activity, the timestamp, the base station
identification number where the subscriber was registered
when starting the activity and the location area to which the
base station belongs. The location area consists of a label
that specifies a place in the city, e.g., a street, square, or
station. Our dataset contains 224 location areas, which group
1663 base stations. In the call records, the duration of each
call in seconds is also specified; based on this attribute, we
can determine whether or not a call record corresponds to a
missed call. Our dataset contains approximately 41 million
(39%) missed call records. In Table 2, we describe in detail
each field of the records in the CDR dataset. Since the dataset
does not contain the MOS of the phone activities from a base
station, we use expression (15) to estimate the average QoS
that is provided to the users.

B. PHYSICAL NETWORK INFRASTRUCTURE
In this section, we define the network topology, and we
estimate the base station locations, the structure of the ag-
gregation rings and the locations of the MEC facilities.

1) Base stations positioning
Due to the sensitivity of the information on the positions of
the base stations, the mobile operator does not provide us
with the exact GPS coordinates of the base stations (BSs). To
estimate the GPS position of each BS, we exploit the location
area information that is associated with each BS. Each area
aggregates adjacent BSs into groups of size 4 to 25, where the
larger the group, the smaller the coverage radius of the BSs
that belong to it. By exploiting the Google geocoding service,
we obtain the approximated GPS position of the center of
each location area. Then, we conduct Voronoi tessellation to
determine the portion of the city that is occupied by each
location area. From the Voronoi area of a location area,
we generate a uniform grid of points with a distance of
250 meters, and we cluster these points via the K-means
clustering algorithm by setting the parameter k to the number
of BSs that belong to that location area. Finally, we select the
resulting centroid position as the GPS coordinates of the BSs
that belong to that location area. In Fig. 5a, we report the
results of this process, where the areas are determined via
Voronoi tessellation, while the red dots are the computed BS
GPS positions.

2) Aggregation rings and facility positioning
In accordance with [34], we assume that the infrastructure of
the backhaul network is organized into hierarchical rings and
divided into three segments: (i) access, (ii) aggregation, and
(iii) core. Each ring is associated with a gateway (or a set of
gateways for redundancy) that interconnects the upper/lower
layers of the hierarchy, and an MEC-point of presence (MEC-
PoP) (which satisfies the strict latency requirements of tactile
interactions in an urban environment) is suitably located
within the aggregation segment of the backhaul network. In
accordance with the delay budget that we assigned to the RT
slice, we assume that the facilities are directly connected to
an M2 MEC PoP [34].

Given the backhaul network topology, we must connect
the base stations to the aggregation rings where the facilities
are deployed without knowing the real backhaul network
topology that is deployed by the mobile operator. To conduct
the task, we construct a simplified backhaul network by
considering the trade-off between the distances between the
aggregation nodes (M2 [34]) and the number of base stations
that are connected to the same M2 node. We assume that
the backhaul network is composed of 20 aggregation rings
and 20 facilities; in accordance with [34], [36], this value
represents a suitable number that is based on the number
of the BSs that are connected to an aggregation ring. A
straightforward approach for organizing the BSs in rings is to
use the K-means algorithm to cluster the BSs in 20 clusters.
However, as shown in Fig. 5a, the distribution of the BSs
is not homogeneous; thus, the direct use of the clustering
algorithm leads to a biased distribution of the facilities that
overloads the facilities in the city center. To overcome this
problem, we do not conduct clustering on the original BS
positions but on a new set of coordinates that are obtained by
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FIGURE 5. (a) A map of the Voronoi tessellation of 224 city areas and GPS base station positions (red dots). (b) A map of the positions of the 20 facilities, along
with the areas of the clusters.

applying an RBF-kernel1. The result is reported in Fig. 5b,
where the circles represent the facilities (co-located with
the M2 nodes), the BS areas are determined via Voronoi
tessellation of the BS GPS positions, and the color of the area
indicates the aggregation ring to which the BS is connected.
The main implication of such a network topology is that the
traffic to/from a vBS that is associated with a facility in the
same aggregation ring (the centroid of the cluster in Fig. 5b)
experiences the shortest delay; by contrast, if a non-optimal
association is deployed, the traffic must be routed through the
ring hierarchy, thereby resulting in longer delays and poor
QoS-Net, as expressed by Eq. 13.

C. REAL-TIME AND BEST-EFFORT SLICE COST
MODELING
1) Physical path cost
Both the assignment and migration costs depend directly
on the network delay that derives from transmitting on the
links between physical base stations and facilities and on the
inter-facility communication path. These costs may increase
stepwise according to the number of hops in the communica-
tion path. From a modeling perspective, our formulation can
embed any cost function since these costs can be computed
from the data during preprocessing and encoded as numerical
coefficients in (1)–(7). From an experimental perspective, in
the absence of data on the physical network topology, we
make the probabilistic assumption that the expected number
of hops and, therefore, the expected network delay, increases
proportionally to the geographic distance among the commu-
nicating hosts (BSs and facilities). We assume that the longer
the distance, the higher the expected number of network
devices (i.e., routers and switches) to traverse, and the longer
the expected network delay. Therefore, given the location
of BSs and facilities, as in the previous section, we define

1We use a radial basis function kernel with the target number of compo-
nents set to 5.

di,f as the distance between physical BS i and facility f
of the aggregation ring to which the BS belongs. Similarly,
we define gf,h as the distance between facilities k and l. In
accordance with the topology of the backhaul network, we
define the cost of the physical path that connects physical BS
i to facility k, which is denoted as pi,f , as follows:

pi,f = di,f∗i + gf∗i ,f (16)

where f∗i is the facility on the aggregation ring of BS i. If
f = f∗i , then gf∗i ,f = 0; nonetheless, if the facilities differ,
gf∗i ,f makes a smaller contribution to the definition of the
value of pi,f .

2) Slice assignment cost
We consider three types of phone activities, namely, i.e.,
calls, missed calls and texts, in modeling the traffic of RT
and BE slices. We regard missed calls2 and text messages
as part of the BE slice, whereas voice calls are responsible
for RT slice traffic generation. According to [25], the delay
budget for conversational voice traffic is 100 ms3, while it is
up to 300 ms for TCP-based traffic4. To properly apportion
the delay budgets of both the RT and BE slices, we observe
that the figures that are provided by 3GPP for various types of
traffic originate from considering the entire mobile operator
network (RAN + backhaul + Core networks). In this study,
we assume that the facilities are within the backhaul network,
and we only aim at modeling the MEC part of the network
slices; consequently, only a fraction of the delay budget that

2Missed calls rely on a call setup phase that does not require stringent
delay constraints, as in the case of the session initiation protocol (SIP).

3The actual packet delays - especially for GBR traffic - should typically
be lower than the delay that is specified for a QCI if the UE has sufficient
radio channel quality [25].

4Conventionally, SMSs are delivered through an IP multimedia subsystem
(IMS) that sets a budget delay of 100 ms for its operations. Nevertheless, in
practice, the sensitivity of texts to the time delay is negligible; hence, we
assign a delay budget of 300 ms to text messages, which is in accordance
with TCP-based traffic.
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is reported by the standard should be considered. Therefore,
after subtracting the RAN part (approximately 20 ms [25]),
we obtain for the BE slice a delay budget that is approxi-
mately three/four times higher than that for the RT slice.

We exploit this result to generate an input instance of
the optimization model that prioritizes the RT slice with
respect to the BE slice and considers the network delay of
the virtual links that are mapped onto the physical ones. Let
us consider two virtual base stations, namely, iRT and iBE ,
that are deployed on physical base station i. We define their
assignment costs to facility k, namely, miRT ,k and miBE ,k,
respectively, as follows:miBE ,k = pi,k andmiRT ,k = 4·pi,k.

3) Migration cost
As discussed previously, changing the assignment of a vBS
to a facility generates additional signaling traffic for recon-
figuring the virtual link and for migrating the state-full MEC
VNFs from the old to the new facility. In addition, the transfer
of the VNF state from one facility to another increases the
network delay. Accordingly, we approximate the migration
cost between two facilities, namely, f and h, as the cost of
the physical path that connects the two facilities: lf,h = gf,h.

In our experiments, the parameters α and β, which repre-
sent the relative importance of the assignment and migration
costs, are fixed to 1.

D. REAL-TIME AND BEST-EFFORT TRAFFIC DEMAND
To create an input instance for the optimization model, we
use a 1-hour time slot, which is a satisfactory compromise
between a too-fine-grained sample (which could lead to many
network reconfigurations) and a large time slot (which might
lose the dynamics of the slice’s traffic). For the traffic load of
each slice, we compute the typical weekly median demand by
aggregating the number of phone activities that are conducted
in the same time slot of the week, in accordance with [36].
For each base station and for each slice, we compute the
median load of the traffic that is generated in the same time
slot by the phone activities that occurred in that base station.
As a result, we obtain two time series for each base station,
which represent the typical load patterns of the two slices
across our dataset. In Fig. 6a, we report the load pattern
of the typical weekly median demand; the lines represent
the medians over all the base stations, whereas the areas
represent the 99th percentile of the load distribution in each
time slot. Both slices exhibit the typical aggregated pattern
[37] with two peaks during the daytime, namely, at 12 p.m.
and 6 p.m., and a limited amount of traffic during the night,
with slight increases on Friday and Saturday nights. For
completeness, in Fig. 6b, we present the load pattern of
the single-slice case. Comparing the two patterns, they are
similar in almost all time slots except for the two daily peaks;
the highest peak always occurs at approximately 6 p.m. for
the RT slice, while it occurs mainly at 12 p.m. for the other
slice. Fig. 6c shows the percentage of the overall RT slice
traffic with respect to the BE slice traffic. The line is the
median of the percentage of RT traffic over time, while the

area represents the 99th percentile of the distribution in each
time slot. The peak of the median percentage of the RT slice
is approximately 46% at 6 p.m. almost every day of the week.
We use this information to set the percentage of the facility
capacity that can be allocated to the traffic of the RT slice:
CRTk = 0.46 · Ck.

E. CAPACITY PARAMETER OF THE FACILITIES
The capacity of the facilities is a critical parameter of the
optimization model. Its value may affect the capability of a
facility to tolerate the traffic dynamics, which is henceforth
referred to as the resilience, and the quality of the assignment
plans. As described in Section III-B, the capacity of the
facility is a constraint of the model; thus, the optimization
algorithm tends toward using the entire available capacity of
a facility if such a choice improves the value of the objective
function. Inevitably, a slight increase in the traffic demand
at a base station for which the associated facility exhausted
its capacity will overload the facility and reduce the QoS.
To overcome the problem, we consider two phases: In the
first phase, namely, the optimization phase, we assess the
level of QoS-net by using the traffic demand pattern that
was computed in Section IV-D and adopting various capacity
level settings Ck. Under these conditions, when a large
capacity setting is utilized, more base stations are associated
with their optimal facility. In contrast, a small capacity setting
forces the optimization algorithm to provide less optimal but
more robust assignments. In the second phase, namely, the
evaluation phase, we assess the network resilience under
practical traffic conditions for each slice. In this phase, the
capacity values represent the levels that the operators wish
to evaluate. They are assumed to be equal to or greater than
the settings that were applied during the optimization phase.
The gap between the two levels of capacity corresponds to
the additional traffic that the facilities can tolerate without
reducing the QoS-load. The choice of which capacity pair
to adopt should be guided by three factors: (i) the suitable
trade-off between the two components of QoS, (ii) the degree
of resilience to traffic dynamics and (iii) the CAPEX/OPEX
budget, which limits the maximum value of the capacity in
the evaluation phase.

We compute the minimum required capacity for managing
all the traffic in each time slot for the optimization instance;
this capacity value represents the minimum capacity that
renders the optimized solution feasible. In the following,
we will denote it as MIN. This setting is not suitable for a
practical deployment because it is too sensitive to traffic vari-
ations; however, it is a satisfactory indicator of the minimum
required investment and of the basic performance to pursue.
In addition, we set another capacity value, which is denoted
as MAX and corresponds to the capacity that is required by
each facility for dealing with the maximum traffic load the
network can experience. This latter value leads to an over-
provisioning of resources, but it will protect the mobile oper-
ator against service disruptions. In accordance with the data
in our dataset, the MAX value is approximately 50% higher
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FIGURE 6. Input instance: (a) the traffic profile for RT and BE slices, (b) the traffic profile for the single-slice case and (c) the pattern of the percentage of the RT
slices traffic.

than the MIN value. The large distance between the two
values is mainly due to the occurrence, within the time frame
that is covered by our dataset, of an extraordinary event (an
earthquake in the north of Italy) that caused an exceptional
increase in the traffic demand. If excluding this event, the
gap falls to approximately 12.5%. In our analysis, we identify
five additional intermediate values of the additional capacity
up to the maximum of 25%, namely, MIN+5%, MIN+10%,
MIN+15%, MIN+20%, and MIN+25%, for tolerating an ad-
ditional demand of up to twice that observed in the dataset.

The next sections will present a thorough analysis of a
wide set of parameter combinations and will highlight the
benefits and drawbacks of the choices.

V. ASSIGNMENT PLAN EVALUATION
In the following, the label Baseline denotes the model that is
described in [15], which does not consider the slice organi-
zation, whereas the label Multislice denotes the new model.

A. TEMPORAL ANALYSIS
During the optimization phase, the network operator aims at
realizing the optimal trade-off between two highly interwo-
ven objectives, namely, the maximization of QoS – for the RT
slice – and the maximization of the additional capacity that
will be available during the evaluation phase. In accordance
with the arguments in Section IV-E, an effective balance
between the expected QoS and the marginal available capac-
ity gap at the facilities should be pursued. For a specified
capacity value, a basic indicator of the suitability of QoS-
net is the number of vBSs that are assigned to the optimal
facility in each time slot. In Fig. 7, we report the percentage
of vBSs that are associated with the optimal facility (on the
left side) and the differences between the two models (on the
right) for the RT slice. The Multislice model outperforms the
Baseline for various capacity values. This is more evident

when small capacities are used, e.g., MIN and MIN +5%,
while the difference is less pronounced in the case of large
capacities. Furthermore, the gain is not uniform throughout
the time frame of a week; four separate levels of performance
are clearly identified according to the day of the week and the
part of the day: (i) In the morning (6 - 10 a.m.) and at night (8
p.m. - 12 a.m.) on weekdays, the gain is large. In these time
periods, the Multislice model assigns an additional 20% of
the vBSs to their best facility; (ii) the gain is slightly reduced,
but still remarkable, during the peak hours (excluding 6 p.m.)
on weekdays; (iii) the two models perform almost equally
during the weekend due to the reduced amount of traffic;
and (iv) the gain is slightly negative at 6 p.m. on working
days, when a peak in the RT traffic demand regularly occurs
(see Fig. 6a), which is followed by a significant decrease in
the traffic demand in the next time slot. This represents a
challenging combination for the model because the search for
the best trade-off between the assignment and migration costs
is pushed to the limit, and this becomes especially critical
for the Multislice model, which prioritizes the RT traffic. To
explain this, in Fig. 8a, we report the number of planned
migrations5 for the RT slice between each pair of consecutive
time slots for both models (we only report the case with
MIN+5% as the optimization phase capacity). The number of
planned migrations remains almost comparable throughout
the time slots of all workdays, except for the time slot of 6
p.m., when the number of migrations for the Multislice model
is almost twice the number that are planned by the other
model. The trade-off produces a slight penalization in terms
of association costs at 6 p.m. (see Fig. 8b); however, this leads
to a global benefit in terms of the total number of migrations.

5In this analysis, we consider a case of vBS migration in which a vBS is
associated with a disjoint set of facilities in two consecutive time slots.
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FIGURE 7. Percentage of vBSs that are associated with the optimal facility in each time slot for the RT slice (on the left) and the percentage difference between the
two models (on the right).

(b)(a)

FIGURE 8. (a) The number of planned migrations in each time slot for the RT slice. (b) A boxplot of the additional association cost (mi,k −mi,k∗
i

) between 8 a.m.
and 8 p.m. on Thursday using MIN+5% as the optimization phase capacity.

B. SPATIAL ANALYSIS

Additional information for a mobile operator is the identi-
fication of the base station and the time slots in which a
poor QoS-net is provided. During the optimization phase,
the analysis of the map of vBS-facility assignment provides
insights regarding the occurrence of critical conditions in
various areas of a city. We conduct this analysis for three time
slots, namely, 8 a.m., 12 p.m., and 6 p.m., and we present
the results for Thursday (the results for other weekdays are
similar). These time slots are all significant from the traffic
perspective. Fig. 9 shows maps of the traffic load for the
RT slice in the three time slots, where the brighter the color,

the higher the traffic load. Fig. 10 shows maps of the mean6

difference between mi,k (the assignment cost between the
vBS and the assigned facility) and mi,k∗ (the assignment
cost between the vBS and the optimal facility) and enables
the comparison of the two models under various capacity
settings. The color of the area varies from a vivid green, when
the vBS is optimally assigned to a facility, to a dark red, when
the vBS is poorly assigned to a facility or a set of facilities.

At first glance, the Multislice model outperforms the Base-
line model. This is especially evident in conditions of mid
and low traffic, namely, at 8 a.m.. As shown in Fig. 10,
the Multislice model can associate almost all vBSs to their

6Each difference is weighted by the percentage of traffic that is assigned
to each vBS-facility pair by the fractional assignment.
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FIGURE 9. Map of the RT load from each vBS at 8 a.m., 12 p.m. and 6 p.m.; the brighter the color, the higher the traffic demand (the colors are not distinguishable
in a grayscale print).

FIGURE 10. Comparison of the maps of the QoS-net for the RT slice at 8 a.m., 12 p.m. and 6 p.m. for each optimization phase capacity. Vivid green indicates that
the vBS is optimally assigned, while full red indicates that the vBS is poorly assigned to a facility or a set of facilities (the colors are not distinguishable in a grayscale
print).

best facility regardless of the optimization phase capacity
level, whereas the Baseline model encounters minor diffi-
culties when limited capacities are available (i.e., MIN and

MIN+5%), for example, in sectors C4 and D4. As the avail-
able capacity at the facilities increases, the gap between the
two models decreases, but the Multislice model consistently
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provides the best assignments in the considered optimization
phase scenarios.

As shown in Fig. 6a, the 12 p.m. and 6 p.m. time slots
correspond to the daily peaks of RT traffic. The obtained
assignments at 12 p.m. show that the Multislice model can
avoid critical assignments, even when limited resources are
available at the facilities (MIN and MIN+5%). Although the
Baseline model can provide fair assignments for vBSs with
the highest load of traffic (E2, D4 and D5 in Fig. 9), it fails
to guarantee sufficient QoS-net to vBSs with mid/mid-high
traffic load (the dark red areas in sectors C3, D3, E3 and
D4 of Fig. 10). Starting from a MIN+10% capacity level, the
Baseline model can provide a fair QoS-net level to the vBSs.

The resulting assignments at 6 p.m. show that both models
encounter difficulties in ensuring fair vBS-facility association
when the available capacity is highly limited, namely, MIN.
When the smallest optimization phase capacity is used, the
Multislice model is unable to offer a fair QoS to most vBSs
in sectors E3, F3, D3, and C4 and to the large and heavily
loaded cell in sector A7. In contrast, the Baseline model
encounters more difficulties in sector C5, where a large
set of vBSs are poorly assigned. However, even though the
overall number of unfairly associated vBSs exceeds that for
the Multislice model, they are scattered across the city. This
enables the adoption of traditional load balancing algorithms
to relocate users with poor QoS to their neighboring vBSs.

C. FACILITY LOAD
From a facility perspective, it is interesting to analyze the
planned use of resources with the objective of providing the
mobile operator with valuable temporal and spatial informa-
tion regarding the potential criticality of the infrastructure.
For the Multislice model, we compute the utilization of the
RT capacity7 of each facility, whereas for the Baseline model,
we consider the entire facility capacity. In Fig. 11, we present
a boxplot of the distribution of the used capacity between 8
a.m. and 8 p.m. on Thursday of the optimization input week
(similar results are obtained on other weekdays) by choosing
two capacity levels: MIN+5% and MIN+15%. The two mod-
els use the facility capacity differently. The Baseline model
produces assignments that lead to a more homogeneous
usage of all the facilities compared to the Multislice model. In
contrast, the Multislice model, due to the higher assignment
cost of the RT slice traffic, tends to change the balance of
the facility utilization in favor of a better assignment. These
observations are supported by the descriptive statistics that
are reported in Table 3, according to which the mean of the
percentage of the used capacities between 8 a.m. and 8 p.m.
is lower for the Multislice model, while both the standard
deviation and median are higher. These results demonstrate
that the Multislice model provides a better assignment by
exploiting all the available capacity of a small subset of
facilities, while it substantially underutilizes the others.

7Recall that 46% of the capacity of each facility is preemptively allocated
to the RT slice traffic.
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FIGURE 11. Facility load between 8 a.m. and 8 p.m. on Thursday of the
optimization input week.

Model Median Mean Std.
Baseline MIN +5% 95.87 80.84 26.08

Multislice MIN +5% 99.91 77.68 30.50
Baseline MIN +15% 88.72 73.82 29.65

Multislice MIN +15% 89.51 70.94 32.80

TABLE 3. Descriptive statistics of the percentage of the used capacity.

D. BE SLICE
The priority that is granted to the RT slice should not neg-
atively affect the BE slice. In Fig. 12, for the BE slice with
capacity level MIN+5%, we report the percentage of vBSs
that are assigned to their optimal facility (top curve) and
the difference between the two models (bottom). The figure
clearly shows similar results for both models.

VI. QOS EVALUATION
Mobile operators can use the evaluation phase to obtain
precise insights regarding the realizable level of QoS for
specified infrastructure expenditures (i.e., CAPEX/OPEX).
In our analysis, the CAPEX/OPEX is assumed to be a func-
tion of the facilities’ capacity, namely, the larger the capacity,
the larger the investments.

In the following, we consider various combinations of
evaluation/optimization phase capacities. We consider only
the pairs in which the evaluation phase capacity is larger
than or equal to the optimization phase capacity. In addi-
tion, we consider only the capacity levels between MIN 5%
and MIN 25%, and we exclude the MIN and MAX levels
because the former is too restrictive and unfeasible in a
practical deployment and the latter is not interesting from
the optimization perspective. In the following, we specify the
pairs of capacities using the ordered pair notation (Copt,
Cev), where Copt is the level of the capacity that is used
in the optimization phase, whereas Cev is adopted in the
evaluation phase, e.g., (MIN +5%, MIN +20%). Finally,
in this section, we focus only on the results regarding the RT
slice, as both models perform similarly on the BE slice.

A. GENERAL QOS COMPARISON
The evaluation of QoS is conducted throughout the nine
weeks that are covered by our dataset. For each pair of op-
timization and evaluation phase capacities and for each time
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percentage difference between the two models.
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FIGURE 13. Mean and standard deviation of the MOS index of the QoS for all
evaluation phase scenarios.

slot, we compute the QoS. In Fig. 13, we report the mean and
the standard deviation of the QoSs (by using the MOS index)
that are realized by the two models in all the considered
scenarios. The Multislice model can always ensure a higher
and more stable QoS. The mean QoS value ranges between
4.62 and 4.84 in the Multislice model, while it is between
4.36 and 4.68 in the Baseline model. Moreover, the values of
the standard deviation are lower for the Multislice model (be-
tween 0.22 and 0.50) than for the Baseline model (between
0.31 and 0.75).

In Fig. 14, we report the percentage difference of the QoSs
that are realized by the two models in various capacity sce-
narios. The rows correspond to the optimization/evaluation
phase capacity pairs for the Multislice model, while the
columns correspond to those for the Baseline model. Each
cell contains the average QoS percentage gain that is realized
in the Multislice scenario with respect to the Baseline one.
The diagonal provides a comparison of the two models in the
same scenario. By reading the rows of the matrix, we assess
the gain that the Multislice model can realize in a scenario
with respect to various scenarios of the Baseline approach.
The upper-triangular part of the matrix provides insights
regarding the capacity settings in which the Multislice model
has fewer resources available than the Baseline model. When
evaluating the two models under the same evaluation sce-
nario (the diagonal), the larger the gap between the op-
timization and evaluation phase capacities, the larger the
gain. The scenarios with the largest gain, e.g., (MIN +5%,
MIN +20%) and (MIN +5%, MIN +25%), represent the
conditions in which the operator has been conservative (in

terms of capacity) during the optimization phase and liberal
in the deployment. In such a condition, the Multislice model
benefits from the prioritization of the RT slice, which pro-
vides higher QoS-net without degradation of QoS-load.

Fig. 14 clearly shows that the Multislice model ensures
higher QoS even when the Baseline model has more re-
sources. For example, the Multislice model in scenario (MIN
+5%, MIN +5%) performs as well as the Baseline model in
scenario (MIN +10%, MIN +25%). When the optimiza-
tion and evaluation phase capacities are equal, the gain of the
Multislice model decreases as the facilities are overloaded,
thereby causing a degradation of the QoS-load.

B. WEEKLY QOS PATTERN
The previous section provides an overview of the perfor-
mances of the two models throughout the time period that is
covered by the dataset. Here, we focus on the QoS that can be
realized at each time slot. The analysis is conducted by con-
sidering a single week and two scenarios: (MIN +5%, MIN
+10%) and (MIN +15%, MIN +25%). The former com-
bines a conservative choice during the optimization phase
and a limited amount of resources during the deployment,
while the latter corresponds to a less cautious optimization
phase and high resource availability during the evaluation
phase.

To conduct the analysis, we select the traffic load of the last
week in the dataset, as its temporal pattern is highly similar
to those of the other evaluation phase weeks. In Fig. 15a, we
report the median and the 99th percentile of the base station’s
traffic demand in the case of a single slice, while in Fig. 15b,
we report the traffic demand for the scenario with two slices.
The single-slice traffic pattern shows a peak of traffic on
Thursday at 1 p.m.; however, if we consider the two slices
separately, we observe that this is the peak of the BE slice,
while the peak of the RT slice remains at 6 p.m., as in the
optimization input week.

In Fig. 16, we report the weekly mean level of QoS (on
the left), together with the percentage of the gain between
the two models (on the right). The results demonstrate that
the Multislice model provides a higher QoS level in almost
every time slot and under the highest traffic conditions (the
Baseline model performs slightly better only late at night).
In scenario (MIN +5%, MIN +10%), the gain increases
up to 25-30% around the peak traffic demand in the single-
slice setting (see Fig. 15a). Due to the compromise between
the migration and the assignment costs (see Section V-A),
every day at 6 p.m., we observe a slight decrease in the gain
in scenario (MIN +15%, MIN +25%); however, this is a
negligible issue because the loss is highly marginal and it is
highly predictable even during the optimization phase.

C. FACILITY LOAD
The capacity at the facilities is never exceeded during the
optimization phase due to the model constraint. As shown in
Section V-C, both models exploit the entire available capacity
to improve the QoS-net. This aspect is emphasized in the case
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FIGURE 14. Comparison between the two models in various scenarios. The rows correspond to the Multislice model scenarios; the columns correspond to the
Baseline model scenarios. Each cell of the matrix contains the average QoS percentage gain of the Multislice scenario with respect to the Baseline model.
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FIGURE 15. Evaluation phase week: (a) the traffic profile for the single-slice case and (b) the traffic profile for the RT and BE slices.

of the Multislice model, which tends to use all the available
capacity in a small subset of facilities. Consequently, during
the evaluation phase, a change in the traffic demand with
respect to the optimization input week could lead to a degra-
dation of the QoS-load due to capacity violation. We analyze
the condition of facility overload by measuring the mean
additional capacity for each facility that is used throughout
the nine weeks. Formally, we measure the capacity violation
using the following index:∑

t∈T max{
∑
i∈A w

t
ix
t
i,k − Ck, 0}

Ck · |T |
(17)

where T is the set of the time slots, Ck is the capacity of
facility k, wti is the traffic demand of vBS i at time t, and

xti,k is the percentage of the traffic demand of vBS i that is
assigned to facility k. We use the max operator to ensure that
the numerator always non-negative since we are interested in
capacity violation only.

In Fig. 17, we present a boxplot of the distributions
of the capacity violation index for both models in every
evaluation phase scenario. The results demonstrate that the
Multislice model is more resilient than the Baseline approach
in all scenarios, especially in those with no or limited ca-
pacity gap between the optimization and evaluation phase
capacity levels. The larger the gap, the smaller the percentage
by which the capacity is exceeded, e.g., (MIN +5%, MIN
+25%) and (MIN +10%, MIN +25%), because the avail-
able capacity is sufficiently large for handling the increase in
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FIGURE 17. Boxplot of the distributions of the capacity violation index for both
models in every evaluation phase scenario.

the traffic demand throughout the evaluation phase weeks.
The above results provide a broad outline of the facility

overload. Now, we deepen the analysis by evaluating the
capacity use on an hourly basis with the objective of iden-
tifying the most critical time slots. In Fig. 18, we report
the percentages of the used capacity between 8 a.m. and 8
p.m. on Thursday for two evaluation phase scenarios: (MIN
+5%, MIN +10%) and (MIN +15%, MIN +25%). In
both scenarios, the two models exhibit the same patterns
(see Fig. 11). The Baseline model distributes the load more
fairly across the facilities, while the Multislice model assigns
most of the traffic to a small set of facilities. Nevertheless,
due to the differences in the temporal dynamics of traffic
demand between the two slices (see Fig. 15a and 15b),
the Baseline model must deal with the peak of the single-
slice traffic demand approximately 12 p.m., which causes the
overload of many facilities (almost 50% in the (MIN +5%,
MIN +10%) scenario). In contrast, the Multislice model
can mitigate the overload conditions, e.g., only 25% of the
facilities are overloaded at 6 p.m. in the (MIN +5%, MIN
+10%) scenario. The differences in the results are also due

to the differences in the traffic dynamics of the two network
slices during the evaluation phase week. We observed that
the BE slice traffic demand increases by up to 17-18% with
respect to the optimization input week, while the traffic
demand increases by up to 12-14% in the case of the RT
slice. The Baseline model is unable to distinguish between
these two flow characteristics and suffers from poor QoS-
load, especially with a limited amount of resources.

VII. CONCLUSIONS
In this paper, we address the problem of proactively planning
the BS – MEC facility associations in multi-slice scenarios.
We consider two slices, namely, RT and BE, which are
modeled by using an anonymized mobile phone dataset. The
results demonstrate that by decoupling the RT and BE traffic
demands, the mobile operator can improve the base station-
facility assignments and ensure superior quality of service
provisioning, even when limited resources are available. The
results demonstrate that there is only one critical condition,
namely, at 6 p.m. on weekdays and with a highly limited ca-
pacity level, in which the Multislice model performs slightly
worse than the Baseline model. Nevertheless, this condition
does not represent a critical issue for operators since (i)
the bottom line capacity is unlikely to be used in practical
deployments, (ii) the event is highly predictable, thereby
enabling the adoption of a tailored network configuration
in those time slots, and (iii) the performance substantially
improves when a slightly larger capacity is adopted. Inter-
estingly, the Multislice model realizes higher QoS even when
it operates with fewer resources than those assigned to the
Baseline model.
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