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ABSTRACT In modern power constrained applications, as with most of those belonging to the Internet-
of-Things world, custom hardware supports are ever more commonly adopted to deploy artificial intelligence
algorithms. In these operating environments, limiting the power dissipation asmuch as possible is mandatory,
even at the expense of reduced computational accuracy. In this paper we propose a novel prediction method
to identify potential predominant features in convolutional layers followed by down-sampling layers, thus
reducing the overall number of convolution calculations. This approximation down-sampling strategy has
been exploited to design a custom hardware architecture for the inference of Convolutional Neural Network
(CNN)models. The proposed approach has been applied to several benchmark CNNmodels andwe achieved
an overall energy saving of up to 70% with an accuracy loss lower than 3%, with respect to baseline designs.
Performed experiments demonstrate that, when adopted to infer the Visual Geometry Group-16 (VGG16)
network model, the proposed architecture implemented on a Xilinx Z-7045 chip and on the STM 28nm
process technology dissipates only 680 and 21.9 mJ/frame, respectively. In both cases, the novel design
overcomes several state-of-the-art competitors in terms of energy-accuracy drop product.

INDEX TERMS Approximate computing, convolutional neural networks, low-power hardware architec-
tures, pooling layers.

I. INTRODUCTION
In the last few years, the inference of intelligent systems
on low-end Internet-of-Things (IoT) mobile devices has
attracted a lot of attention. The possibility of performing
complex tasks ‘‘on the edge’’ offers significant advantages
in terms of response latency, security and energy, since there
is no need to transfer huge amounts of data to the backend
through energy-hungry wireless transmissions. The deploy-
ment of such intelligent systems most often relies on deep
learning and machine learning models, which have been
proved effective in many fields of application, such as smart
cities [1], Industry 4.0 [2] and cybersecurity [3].

Convolutional Neural Networks (CNNs) are a meaningful
example of deep learning algorithms suitable to solve com-
plex tasks, such as object detection and classification [4],
speech recognition [5] and other human activities
recognition [6]. State-of-the-art CNNs [7]–[9] exploit a high
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number of cascaded convolutional layers, interleaved by
auxiliary layers that implement non-linear activations and
down-sampling. Very deep models can require hundreds
of millions of operations and intensive memory accesses
that hinder their deployment on edge platforms. Therefore,
inspired by the observation that small inaccuracies can be tol-
erated in the aforementioned applications, significant efforts
have been focused in the recent past on conceiving methods
able to reduce overall computational complexity and energy
dissipation at the expense of achieved accuracy [10]–[24].
Table 1 provides a synthetic sketch of this scenario as given
by a few recent papers. In several cases, quite significant gains
are achieved with average accuracy penalties of about 6-7%.

Among the techniques summarized in Table 1, data quan-
tization [10]–[13] and pruning [14] are certainly the most
popular, since they allow approximating the input operands
without modifying the basic operations (i.e. multiplica-
tions and accumulations) involved in a convolutional layer.
As an example, the quantization strategy proposed in [13]
reduces the input data to a much smaller set of values that
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TABLE 1. Impact of approximation strategies on accuracy and
computational complexity over floating-point baseline.

can be easily processed by replacing the energy-hungry arith-
metic units with small and energy-efficient look-up-tables.

It is worth noting that, although quantizing 32-bit acti-
vations and filters to low precisions (e.g. 8-bit) is a com-
mon practice in designing CNN accelerators, the energy
saving-accuracy loss ratio achievable in large CNNs, like
VGG16, is typically lower than 30 [25]. Therefore, often,
alternative approaches, including data reuse [15] and approx-
imate computing [16]–[24], are adopted in conjunction with
data quantization to further expand the design space explo-
ration for the specific application.

Some of the referenced techniques [16]–[18] adopt
operation-level approximations, while others [19]–[24]
exploit data dependency across convolutional and auxiliary
layers. In particular, the strategies presented in [19] and [20]
are based on detection algorithms able to predict negative
feature map values. Taking into account that negative values
are zeroedwhen passing through a non-linear activation layer,
such as the Rectified Linear Unit (ReLU), the multiply-
and-accumulate (MAC) required to compute these values
are skipped, thus reducing the overall computational load.
A similar observation inspired the approaches proposed
in [21]–[24], which save energy by reducing the compu-
tational complexity of convolutional layers followed by a
pooling layer through partial computations of input operands.

This paper presents a new approximation method con-
ceived to reduce the energy dissipation of CNNs inference
on low-end IoT mobile devices. The proposed methodology
is inspired by the observation that a certain number of values
in the feature maps outputted by a convolutional layer will
be discarded after down-sampling. The main contributions of
this research are as follows:

• A novel prediction algorithm is introduced to predict
potential predominant features, thus reducing the over-
all number of computations across the convolutional
layers.

• A custom hardware architecture suitable to perform
inference of CNNs with the proposed approximation
method is presented.

• For purposes of comparison, a baseline hardware archi-
tecture implementing the inference of accurate and
full-precision CNNs has been designed. Experimen-
tal results, obtained by Field-Programmable-Gate-Array
(FPGA) and Application Specific Integrated Cir-
cuit (ASIC) implementations, highlight that the novel
strategy achieves an overall energy saving of up
to∼70%, at the expense of 3%, 0.4% and 2.2% accuracy
loss for the LeNet-5, VGG16 and [26] CNN models,
respectively.

• A comparison between the proposed VGG16 accelerator
and state-of-the-art approximate designs is also pre-
sented. In this case, the new architecture experiences
an energy-accuracy drop product up to 13.6 times lower
than the competitors.

The remainder of this paper is structured as follows:
Section II provides a brief background and motivations;
Section III introduces the novel approximation method and
a hardware architecture purpose-designed to operate as pro-
posed here; results obtained from the comparison with prior
works, in terms of classification accuracy, energy consump-
tion, speed performances and area occupancy, are provided in
Section IV; finally, conclusions are drawn in Section V.

II. BACKGROUND AND MOTIVATIONS
CNNs are typically composed of three different layer topolo-
gies. The convolutional layer is the computational centric
element and massively performs multiply-and-accumulate
(MAC) operations on 3D input data. More in detail, a con-
volutional layer receives a set of M input feature maps
(ifmaps) with size Win × Hin and applies on them Mk × k
filters to extract features. The M results are summed-up
by a pixel-wise addition, thus obtaining the so-called out-
put feature map (ofmap). In order to extrapolate features at
different levels, each convolutional layer usually produces
multiple ofmaps that are transferred to the subsequent layer
implementing a non-linear activation function, such as the
Rectified Linear Unit (ReLU).

The depth of the model, the size of the input image to be
classified, the size and the number of filters to be processed,
can make the tasks of convolutional layers quite challenging.
For this reason, almost all the state-of-the-art CNN algo-
rithms use intermediate down-sampling layers that reduce
the spatial dimension of the ifmaps as going deeper in the
network. Among the several functions available for down-
sampling, max-pooling [27] is certainly the most common.
It is based on the criterion that only predominant features have
to be propagated along the layers. A max-pooling layer uses
a kP × kP sliding window that is moved across each feature
map, in both horizontal and vertical dimensions, with a stride
SP. From each kP × kP patch of a feature map, the highest
value is sent to the subsequent layer, whereas the remaining
values are discarded.
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FIGURE 1. Description of (a) a conventional stack convolution-pooling; (b) the proposed computational method.

Figure 1(a) illustrates the usual operating scenario for a
stack Convolution-Pooling, in whichMkP × kP convolutions
are first computed on as many k × k-sized windows and
pixel-wise accumulated over the M input channels to output
kP × kP values. The latter are then processed by the pooling
stage to extract the final result. The above-described opera-
tions are defined in (1), where s = (k-1)/2 is the radius of the
filter W .

ofmap (i, j)= max
r∈[0,kp−1]
c∈[0,kp−1]


M−1∑
ch=0

s∑
kx=−s

s∑
ky=−s

[ifmap (i+r+kx, j

+c+ ky, ch) ∗W (kx + s, ky+ s, ch)]

 (1)

From Figure 1(a) it can be observed that the convolutional
layer must also compute the values discarded by the pooling
layer, thus wasting both time and energy. If predominant
feature map values were predictable, many computations
could be avoided and the computational cost of a given
layer could be made kP × kP times lower. This strategy
is particularly advantageous for all the CNNs that adopt
Convolution-Pooling stacks. Apart from the well-known
models LeNet-5, AlexNet, VGG16, and GoogleNet, also
custom models oriented to specific applications, like smart
healthcare, home robotics and traffic monitoring [28]–[30],
can benefit from this improvement.

To predict the output of the max-pooling layer, previous
works [21]–[24] preliminarily compute MAC operations on
a sub-portion of the inputs bits; then, according to the adopted
strategy, they are able either to estimate [22], [23] or to
compute [21], [24] the exact result. In [22] and [23], the
output of the preliminary computations is used to perform the
exact convolution only on the useful ifmap values, which can
lead, in themost favorable scenario, to amisclassification rate
higher than 14% and an average power consumption just 14%
lower than the conventional approach shown in Figure 1(a).
Conversely, the techniques demonstrated in [21] and [24]
skip the MAC operations only when the partial preliminary
computations have exactly revealed the maximum. Owing to
this, they reduce the number of operations less than [22], [23]

and introduce a latency overhead, but they provide the exact
output feature values.

In [31], Kim et al. demonstrated an efficient accelerator
architecture for Binary CNNs (BCNNs) that reduces the
cycle count by skipping some redundant operations, without
penalizing the accuracy. This positive property is achieved
by exploiting the particular characteristics of BCNNs, where
fmaps and filters are binarized, and MAC operations can be
replaced by XNOR-popcounts. The results obtained in this
way are then compared with a threshold to identify redundant
elements that can be safely skipped. However, also in this
case, the process is not deterministic; therefore, the cycle
count reduction is not uniform along the layers.

III. THE PROPOSED METHOD
The strategy presented here is synthetically illustrated in
Figure 1(b): theMkP× kPk× k-sized windows are processed
by approximate operations to predict the pooling output in
the kP× kP patch; this prediction is then exploited to perform
just one accurate convolution. It is worth noting that, although
in the following we will refer to the max-pooling function,
the novel strategy can be applied to any kind of Convolution-
Pooling stack. The performed operations are analytically
described in (2), where (rm, cm) is the location of the max-
imum predicted element within the kP × kP patch, whereas
apConv is the novel function, defined in (3), introduced to
perform approximate convolutions. The latter process Pfmaps
and Pfilter obtained by encoding the ifmaps and the filters
coefficients, respectively, through the novel encoding process
summarized in Algorithm 1 and detailed in the following.

ofmapnew (i, j) =
M−1∑
ch=0

s∑
kx=−s

s∑
ky=−s

[if map (i+ rm + kx, j

+cm + ky, ch) ∗W (kx + s, ky+ s, ch)]
(2a)

(rm, cm) = argmax
r∈[0,kp−1]
c∈[0,kp−1]

{apConv (rm, cm)} (2b)

apConv (x, y) =
M−1∑
ch=0

s∑
kx=−s

s∑
ky=−s

[
Pfmaps (i+ kx, j+ ky, ch)

∗Pfilter (kx + s, ky+ s, ch)
]

(3)
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FIGURE 2. The novel method: (a) hardware architecture; (b) timing
diagram.

It can be noted that, differently from the conventional com-
putation described in (1), the new approach avoids redundant
operations and reduces the number of precise convolutions to
a quarter. Consequently, it can be expected that the energy
dissipation due to the MAC operations will be reduced by
at least ∼75%. At a parity of parallelism level and adopted
dataflow, this energy gain will be partially attenuated by the
consumption caused by the prediction operations. Differently
from [21]–[24], which exploit the straightforward truncation
of input operands to perform preliminary approximate MAC
operations, the novel prediction approach benefits from the
apConv function defined in (3).

To introduce the hardware architecture based on the novel
approach, let’s consider a convolutional max-pooling stack,
operating onMWin×Hin-sized ifmaps, and let’s suppose that
it can process TM ifmaps channels in parallel. In this case,
following a conventional computational scheme, to produce
NWout ×Hout -sized ofmaps, theM ifmaps have to be read N
times to perform convolutions with as manyM × k× k-sized
filters.

The proposed method has been implemented by means
of the purpose-designed folded architecture schematized in
Figure 2(a). It is composed of two stages running concur-
rently, each one endowed with appropriate input and output
buffers. The upper stage deals with the prediction step and
selects the winner window in the kP × kP patch, whereas
the lower stage uses the MAC array to compute the only
convolution actually required on the selected window. It is
worth noting that both the Predictmodule and theMAC array
operate with the parallelism level TM , therefore they require
M/TM iterations to process the whole ifmaps volume. The
running of the proposed architecture is summarized in the
timing diagram reported in Figure 2(b). It can be observed
that the stages operate concurrently on different filters, thus,

Algorithm 1 The Proposed Encoding

1: INPUT: 2D IWin k × k, 2D FWin k × k
2: OUTPUT: approxConv
3: SizeSegFmap = Rfmaps/Dfmaps; SizeSegFilt
= Rfilter /Dfilter ;

4: apConv = 0;
5: for xwin = 0 to k-1 step 1 do
6: for ywin = 0 to k-1 step 1 do
7: w = FWin(xwin, ywin); act = IWin(xwin,

ywin);
8: if(w>0)do
9: sign = 2;
10: else
11: sign = 1;
12: for vRfmaps = 0 to Dfmaps do
13: if(act = 0)do
14: Pfmaps = 0;
15: break
16: else if (vRfmaps × SizeSegFmap ≤ act <

(vRfmaps+1) × SizeSegFmap) do
17: Pfmaps = vRfmaps+1;
18: break
19:
20: for vRfilt = 0 to dDfilter /2e−1 do
21: if(w = 0)do
22: Pfilter = 0;
23: break
24: else if (vRfilt× SizeSegFilt ≤ |w| <

(vRfilt+1)× SizeSegFilt) do
25: Pfilter = (−1)sign×

2vRfilt (−1)sign × 2c;
26: break
27:
28: apConv = apConv +(Pfmaps × Pfilter );

in order to produce the N ofmaps, the ifmaps are read N + 1
times, which is just one time more than the conventional pro-
cessing approach.Moreover, the proposed folded architecture
requires both original and coded filters to be transferred
in parallel from the external memory. The impact of such
memory-related overhead is discussed later.

During the M/TM iterations, the stages of the proposed
architecture need to store provisional results in the memory
banks Bank 0 and Bank 1. The former storesWin×Hin words
with a reduced word-length, according to the implemented
prediction logic, whereas the latter acts as an accumulation
buffer, but, with only temporary results related to the winner
window being stored, it is much smaller than a conventional
buffer. When all the M ifmaps have been elaborated, the
Predictmodule computes the maximum between the kP× kP
values and it generates the indexes (rm, cm) that identify the
window to be processed in the next stage.

The Predict module is structured as illustrated in Figure 3.
It receives TM × kP× kP windows and TMk × k-sized filters.
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FIGURE 3. The Predict module. Input windows and coded filters have
size k× k.

It is worth noting that, since the filters are known a priori,
their encoding process is performed offline. Conversely, the
ifmaps are encoded through the simple combinatorial circuit
illustrated in the inset of Figure 3. Such a circuit operates
in parallel on the TM × kP × kP windows through as many
identical instances.

The coded ifmaps are then left-shifted according to the
coded filter coefficients and the obtained results are accumu-
lated through the adder trees. The latter also receive provi-
sional data produced in the previous step and resumed from
the Bank 0 memory. When all the ifmaps are processed, the
indexes (rm, cm) are provided.
Algorithm 1 describes in detail the encoding process

adopted for k × k-sized ifmaps windows (IWin) and fil-
ters (FWin). To simplify the estimation process, the feature
map values and the filter coefficients are properly coded
by dividing their numeric ranges, namely Rfmaps and Rfilter ,
into sub-ranges associated with progressive integer codes.
The sub-ranges related to the unsigned ifmaps values are
associated to the codes Pfmaps = 0, 1, . . . , Dfmaps, with the
code Pfmaps = 0 being reserved for zero value (lines 12-
18). To this purpose, the combinatorial circuit, reported in
the inset of Fig.3 for the case Dfmaps = 4, assigns the
appropriate code to the ifmap value depending on its most
significant bits. Conversely, the range Rfilter of the signed
filters coefficients is halved to spread the number of coded
sub-ranges symmetrically between positive and negative val-
ues and to code the generic coefficient as the power-of-
two integer number Pfilter = (-1)sign × 2c (lines 20-27),
with sign = 2 (sign = 1) for positive (negative) coefficients,
and c = 0, . . . , dDfilter /2e − 1. Then, coded ifmaps and
filters coefficients are multiplied by simple shift operations.
These products are summed up to compute the approximate
k × k convolution.

In order to better explain the proposed approach,
Figure 4 provides an example of convolution between a 4×4
ifmap and the 3 × 3 filter FWin. As shown in Figure 4(a),
when the conventional computation is performed, the four
exact convolutions are computed on the 3 × 3 windows
IWin0, . . . , Iwin3 picked up from the ifmap. Supposing that
the four exact convolution results are processed through a
max-pooling stage with kP = 2, the final output (i.e., 136.4)
is given by Iwin1. Figure 4(b) illustrates the result of the

encoding process described in Algorithm 1 for Fwin and
Iwin0, . . . , Iwin3 when Rfilters = 2, Dfilters = 8 and Rfmaps =
255, Dfmaps = 4. In that case, being SizeSegFilt = 0.25
and SizeSegFmap = 64, the inputs are encoded as reported
in Pfilter and Pfmaps0, . . . , Pfmaps3 respectively. Then, the
generic approximate convolution apConvi is computed by
accumulating the nine element-wise products between Pfilter
and Pfmapsi. The approximate results obtained in this way are
compared to find the maximum value and to predict for which
window the accurate convolution has to be performed. In the
example of Figure 4, the proposed method correctly predicts
the winner window (i.e. Iwin1), thus allowing the number of
accurate convolutions to be effectively reduced by 75%.

It is worth noting that the proposed architecture is able to
perform also pure convolutional layers without the pooling.
In this case, the prediction step is simply by-passed, while,
as shown in Figure 2(a), the ifmaps Buffer directly feeds the
MAC array with TMk × k windows.

IV. EVALUATION AND DISCUSSION
To evaluate benefits and drawbacks of the proposed method,
several experiments were performed on different CNNs.
LeNet-5, VGG16 and the model in [26] were selected to
process the benchmarks from the Modified National Institute
of Standards and Technology (MNIST), Canadian Institute
for Advanced Research (CIFAR10) and Street View House
number (SVHN) [32] datasets. To perform a fair comparison,
a set of baseline references were built up. The compared
32-bit architectures were implemented by using both the Xil-
inx XC7Z045 FPGA SoC and the STMicroelectronics 28nm
Ultra-Thin Body and Buried oxide (UTBB) Fully-Depleted
SOI (FDSOI) 1V process technology standard-cells library.
Power analysis was performed considering both leakage and
dynamic dissipation. For a realistic energy evaluation, which
takes into account the actual switching activities, the com-
plete system depicted in Figure 2(a) was fed with sample
images from the benchmark datasets. The activity gener-
ated from post-implementation simulations was then used to
output SAIF (Switching Activity Interchange Format) and
VCD (Value Change Dump) data.

A. COMPARISON WITH THE BASELINE
The baseline designs accomplish the conventional stack
depicted in Figure 1(a). For the purpose of a fair comparison
in terms of throughput, their computational engines were
made able to operate on kP × kP sub-windows in parallel
with the circuit implementing the max-pooling function able
to process one kP× kP-sized patch at a time. To this purpose,
all the baseline circuits characterized with kP = 2 exploit four
replicas of the sameMAC array used in the new architecture.
Tables 2 and 3 summarize the results obtained by comparing
the proposed design, with Dfilter = 8 and Dfmaps = 4, to the
correspondent baseline system, at a parity of the parallelism
level TM and arithmetic precision (i.e., 32-bit fixed-point).
It is worth noting that the architectures inferring the LeNet-5
and [26] models are tailored to support the same parallelism

VOLUME 10, 2022 7077



F. Spagnolo et al.: Approximate Down-Sampling Strategy for Power-Constrained Intelligent Systems

FIGURE 4. Example of 3× 3 convolution between FWin and ifmap: (a) exact computations; (b) computations performed by Algorithm 1.

TABLE 2. Comparison with the baseline on FPGA.

TABLE 3. Comparison with the baseline on ASIC (FMAX = 500MHz).

level and kernel size. Therefore, they differ from each other
just for the size of the memory banks and the ifmaps Buffer.
At a glance, it is quite evident that the adopted approxi-
mate strategy leads to significant improvements in terms of
power consumptions and area occupancy for both FPGA- and
ASIC-based implementations. As an example, in the former
case, the new circuit saves more than 71% of LUTs and
FFs and reduces the energy consumption by at least 70%.
These results are intrinsically due to the novel computational
paradigm, which allows reducing the number of exact MAC
operations by the kP × kP factor. The slightly more complex
ifmaps buffer structure and the additional memory banks,
above discussed, account for only 5% of the global energy
consumed by the proposed system. It is worth noting that,
in these first experiments, to make the results more general,
DSP slices were not used in the FPGA synthesis.

The inference times reported in Tables 2 and 3 take
into account the additional ifmaps read round, consisting of
(M/TM ) × Win × Hin clock cycles. Estimating the energy

TABLE 4. Extra energy estimation.

TABLE 5. Top-1and Top-5 accuracy (%).

dissipation overhead caused by these extra external memory
accesses is not an easy task. Indeed, the DRAM energy
consumption depends on the memory micro-architecture, its
physical floorplan, the process characteristics and the toggle
data rate [33]. Nevertheless, considering the behavior of the
latest low-power High Bandwidth Memory (HBM2), we esti-
mated the overheads reported in Table 4. The latter clearly
shows that the extra energy due to the additional memory
accesses is negligible for all the FPGA-based and most of the
ASIC-based implementations. It is worth noting that, due to
the larger ifmap volume involved in each layer, the energy
consumed by the VGG16 network for memory data transfers
becomes much more significant. However, also in this case,
the energy saving achieved by the proposed design is higher
than the overhead caused by the extra memory activities.

Moreover, it is worth noting that the need to upload also
the encoded filters from the external memory increases the
memory bandwidth by just 6%, thus keeping the overall
requirement well below the effective performances of com-
mercial memories.

Classification accuracies and energy requirements can be
traded-off exploiting different coding ranges for filters and
ifmaps. Since the former are encoded offline, Dfilter can be
chosen efficiently examining the statistic distribution of the
filter coefficients. Conversely, Dfmaps could be runtime con-
figured moving deep into the CNN model. However, in the
following, the proposed architecture has been characterized
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TABLE 6. Comparison with prior works on VGG16 (FPGA).

TABLE 7. Comparison with prior works on VGG16 (ASIC- in brackets results scaled to 28 nm).

considering Dfilter = 8 and Dfmaps ranging between 4 and
64. Table 5 reports the accuracy results, in term of Top-1 and
Top-5 percentages, for the Full-precision (i.e., 32-bit floating-
point) and the New x (with Dfmaps = x) implementations of
the benchmark networks. It must be noted that, due to the
limited dynamic range on RGB components observable in the
SVHN benchmark images, the Dfmaps = 4 configuration is
not applicable. The obtained accuracy penalties, which are
coherent with data reported in Table 1 for alternative approx-
imation approaches, are the more than reasonable price to
pay for reducing the energy requirements by up to 71% with
respect to the baseline counterparts. It is worth noting that
when applied to the VGG16, the energy saving-accuracy loss
ratio achieved by the proposed approximate methodology is
up to 4 times higher also than a conventional architecture
using a more aggressive 8-bit quantization on both weights
and activations [25].

Finally, Figure 5 illustrates the percentage improvements
achieved for the ASIC implementations in terms of area and
power saving versus Dfmaps. While Dfmaps does not signifi-
cantly affects the silicon area, the smaller Dfmaps the more
power dissipation benefits. Table 5 and Figure 5 show that
the best trade-off between the accuracy and the energy saving
is achieved with Dfmaps = 32, 8, 64 for LeNet-5, [26] and
VGG16, respectively.

B. COMPARISON WITH PRIOR WORKS ON VGG16
To further validate the proposed approach, the architecture
for accelerating the VGG16 model has been compared with
several state-of-the-art accelerators adopting some of the
approximate strategies listed in Table 1. Tables 6 and 7 col-
lect the results related to FPGA and ASIC implementations,

FIGURE 5. Power and area saving for the proposed ASIC-based
architectures at different Dfmaps configurations.

respectively. Data reported in the tables are extracted from
original papers. For the sake of comparison, in this case, the
novel architecture has been synthesized to process 224×224
input images. Moreover, to perform the arithmetic compu-
tations efficiently, the FPGA design has been made able
to exploit the DSP units available within the device. From
Table 6, it can be seen that, despite the higher precision, the
proposed technique leads to the lowest energy dissipation per
frame and the best energy efficiency expressed in terms of
Giga operations per second per watt (GOPS/W). Indeed, the
proposed architecture consumes up to ∼42% and ∼25% less
energy than the 16b fixed quantization approaches demon-
strated in [35] and [36]. Moreover, the strategy proposed here
achieves an energy efficiency∼49% higher than that reached
by the architecture in [34]. This energy saving is obtained
without penalizing the achieved accuracy: the improvement
reached by the New64 implementation over its corresponding
baselines in terms of the product between the consumed
energy and the accuracy drop is up to 13.6 times higher than
state-of-the-art competitors.
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Table 7 shows results for ASIC implementations. Perfor-
mance parameters scaled using the method presented in [37]
are also reported in brackets. At a parity of the process
technology, the technique proposed here achieves an energy
per frame ∼41% lower than [38]. From scaled results, it is
clear that both [19] and [24] span over a silicon area ∼3×
larger than that required by the proposed architecture. Amore
interesting consideration arises from the comparison with the
approach proposed in [24]. The latter skips redundant MAC
operations by recursively applying approximate computing,
until the output of themax pooling layer is identified.With the
number of skipped MAC operations being not deterministic
(indeed it is pattern dependent), such a technique can lead to
latency overheads, which obviously affect the speed perfor-
mances. As reported in Table 7, the energy consumed by [24]
is only ∼6% lower than the proposed design at 32b fixed-
point, but it achieves a maximum clock frequency ∼12%
lower. Moreover, since [24] experiences a Top-1 accuracy
drop doubled with respect to the proposed New64 implemen-
tation, its Energy-Accuracy drop product is ∼47% higher.

V. CONCLUSION
In this paper we demonstrated a novel approximate
down-samplingmethod for the efficient design of CNN accel-
erators in energy-constrained systems. It adopts a quite sim-
ple yet effective encoding process on the ifmaps and the filters
coefficients to reduce the number of computations wherever
a convolutional layer is followed by a down-sampling layer.
The proposed approach has been characterized by using both
FPGA and ASIC technologies. In the former case, it has
been proved that this strategy allows the energy-per-frame to
be reduced up to ∼71%, with a Top-1 accuracy penalty of
only 0.4%. ASIC prototypes achieved an energy-per-frame
reduction up to ∼58%, maintaining the original inference
time. Specific architectures based on the proposed approach
have been implemented for comparison purpose with several
state-of-the-art competitors. They infer the VGG16 CNN
with 224 × 224 input image size. The FPGA-based pro-
totype running at 62 MHz clock frequency dissipates only
680 mJ/frame, reaches 45.8 GOPS/W and shows the low-
est Energy-accuracy drop product. Among compared ASIC
accelerators, the proposed structure spans over 1.07 mm2 of
silicon area and consumes 21.9 mJ/frame, which is only∼7%
more than [24], but with an energy accuracy drop product
∼47% lower. Overall, obtained results demonstrated that
the proposed strategy achieves an energy/accuracy trade-off
more favorable than most of the state-of-the-art approaches
referenced in Table 1. A framework for automated run-time
re-configuration of Dfilter and Dfmaps could be an interesting
future extension of this research work.
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