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Our starting point is the proof of the following property of a partic-

ular class ofmatrices. Let T = {Ti,j} be a n × m non-negativematrix

such that
∑

j Ti,j = 1 for each i. Suppose that for everypair of indices

(i, j), there exists an index l such that Ti,l /= Tj,l . Then, there exists

a real vector k = (k1, k2, . . . , km)T , ki /= kj, i /= j; 0 < ki � 1, such

that, (T k)i /= (T k)j if i /= j.

Then, we apply that property of matrices to probability the-

ory. Let us consider an infinite sequence of linear function-

als {Ti}i∈N, Tif = ∫
f (t) dμt(i), corresponding to an infinite se-

quence of probabilitymeasures {μ(·)(i)}i∈N, on the Borel σ -algebra

B([0, 1]) such that,μ(·)(i) /= μ(·)(j), i, j ∈ N, i /= j. The property of

matricesdescribedaboveallowsus to construct a real boundedone-

to-one piecewise continuous and continuous from the left function

f such that

Tif =
∫

f (t) dμt(i) /=
∫

f (t) dμt(j) = Tjf , i, j ∈ N, i /= j.

The relevance to quantum mechanics is showed.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper a n × m non-negative matrix such that the sum of the elements of each row is

onewill be called rectangular stochastic. A rectangular stochasticmatrix such thatn = m is a stochastic

matrix. In the first part of the present work we prove the following property of rectangular stochastic
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matrices. Let T = {Ti,j} be a n × m rectangular stochasticmatrix such that for every pair of indices (i, j),

there exists an index l such that Ti,l /= Tj,l . Then, there exists a real vector k = (k1, k2, . . . , kn)
T , ki /=

kj, i /= j; 0 < ki � 1, such that, (T k)i /= (T k)j if i /= j.

In the second part of the paper, we take into account an infinite sequence of real functionals {Ti}i∈N,

Tif =
∫

f (t) dμt(i) =: Gf (i),

corresponding toa sequenceofprobabilitymeasures {μ(·)(i)}i∈N, on theBorelσ -algebraB([0, 1]), such
thatμ(·)(i) /= μ(·)(j), i, j ∈ N, i /= j. Then, bymeansof thepropertyof rectangular stochasticmatrices

described above we prove constructively (Theorem 3) the existence of a real bounded one-to-one

function f such that, for every i, j ∈ N, i /= j,

Gf (i):=
∫

f (t) dμt(i) /=
∫

f (t) dμt(j) =: Gf (j). (1)

In other words, we construct a one-to-one function f such that

Tif /= Tjf , i, j ∈ N, i /= j.

Moreover, we prove that f is piecewise continuous and continuous from the left.

It is worth remarking that the existence of f is proved by construction.1 In particular we give an

algorithmic procedure for the construction of f .

Eq. (1) implies that the functionGf : N → R is one-to-one. The fact thatboth f andGf canbeone-to-one

plays a key role in the application of that result to quantum mechanics [7].

We note that both the property of rectangular stochastic matrices and the mathematical result on

the infinite sequences of linear functionals presented here could conceivably be of interest in other

areas of mathematics. For instance, they find relevant applications to the theory of positive operator

valuedmeasures and to quantummechanics [4–7]where, it is useful to have an algorithmic procedure

for the construction of the function f which can be used to get the sharp reconstruction of a given

positive operator valued measure [2,3,7]. A brief description of the applications of the results of the

present paper to the theory of positive operator valued measures and to quantum mechanics can be

found in Section 4.

Thework is organized as follows: Section 2 deals with rectangular stochasticmatrices. In particular

we prove Theorem 1. In Section 3, we prove constructively Theorem 3 which describes the properties

of the infinite sequences of linear functionals described above. In particular, the construction of the

function f is based on Theorem 1. In Section 4, we apply Theorem 3 to the theory of positive operator

valued measures and to quantummechanics. In the Appendix A we prove a lemma useful in the proof

of Theorem 3.

2. On a property of rectangular stochastic matrices

In what follows a n × m non-negative matrix {Ti,j} such that
∑m

j=1 Ti,j = 1, i = 1 . . . , n will be

called rectangular stochastic. Notice that a rectangular stochasticmatrix such thatn = m is a stochastic

matrix. Then, the class of stochasticmatrices is a subclass of the class of rectangular stochasticmatrices.

The following theorem on rectangular stochastic matrices is the starting point of the present work. In

Section 3 it will be applied in the framework of probability theory. In Section 4 it will be applied to

the theory of positive operator valuedmeasures and to quantummechanics. In Ref. [5] a more general

version of the theorem was applied to quantum mechanics.

Theorem 1. A matrix of non-negative real numbers:⎛⎜⎜⎝
λ1,1 λ1,2 . . . λ1,m

λ2,1 λ2,2 . . . λ2,m

. . . . . . . . . . . .
λN,1 λN,2 . . . λN,m

⎞⎟⎟⎠ (2)

1 It is possible to prove [7] the existence of a one-to-one function f such that, Tif /= Tjf , i /= j, by means of the Baire category

theorem but the aim of the present paper is the construction of that function.
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such that:
(i) for every pair of indices (i, j), i, j = 1, . . . , N, there exists an index l ∈ {1, . . . , m} such that λi, l /=

λj, l;
(ii) the matrix is rectangular stochastic, i.e.,

∑m
j=1 λi, j = 1, i = 1, . . . , N,

defines an operator T : C
m → C

N

Tk =

⎛⎜⎜⎜⎝
a1
a2
...
aN

⎞⎟⎟⎟⎠ :=
⎛⎜⎜⎝
λ1,1 λ1,2 . . . λ1,m

λ2,1 λ2,2 . . . λ2,m

. . . . . . . . . . . .
λN,1 λN,2 . . . λN,m

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
k1
k2
...
km

⎞⎟⎟⎟⎠ (3)

with the property that there exists a real vector k = (k1, k2, . . . , km)T ; ki /= kj, i /= j; 0 < ki � 1,

such that, (T k)i /= (T k)j if i /= j.

Proof. We proceed by steps.

Step 1: An arbitrary vector k(1) = (k
(1)
1 , . . . , k

(1)
m )T , 0 < k

(1)
i

� 1, k
(1)
i /= k

(1)
j , is chosen as the first

vector of the sequence.

Step 2: If (T k(1))2 /= (T k(1))1 we set k(2) = k(1) and proceed to the next step. If instead, (T k(1))2 =
(T k(1))1 then, by item (i), there exists an index q2 such that λ2, q2 /= λ1, q2 .

Wedefinek(2) =
(
k
(2)
1 = k

(1)
1 , . . . , k

(2)
q2 , k

(2)
q2+1 = k

(1)
q2+1, . . . , k

(2)
m = k

(1)
m

)T
, where k

(2)
q2 ∈ R is such that{

k
(2)
q2 /= k

(1)
j , 1� j �m

0 < k
(2)
q2 � 1

(4)

We have (T k(2))2 /= (T k(2))1. Indeed,

(T k(2))2 − (T k(2))1=(T k(1))2 − (T k(1))1 + (k(2)
q2

− k(1)
q2

)(λ2, q2 − λ1, q2)

=(k(2)
q2

− k(1)
q2

)(λ2, q2 − λ1, q2) /= 0.

Step n (n < N): If (T k(n−1))n /= (T k(n−1))l for every l < n, we set k(n) = k(n−1) and proceed to

the next step. If instead, there exists an index l < n such that (T k(n−1))n = (T k(n−1))l then, by

item (i), there exists an index qn such that, λn, qn /= λl, qn . Therefore, we define k(n) = (k
(n)
1 = k

(n−1)
1 ,

. . . , k
(n)
qn , k

(n)
qn+1 = k

(n−1)
qn+1 , . . . , k

(n)
m = k

(n−1)
m )T , where k

(n)
qn ∈ R is such that, for any i, j ∈ {1, . . . , m},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 0 < k
(n)
qn � 1

(2) k
(n)
qn /= k

(n−1)
j

(3) k
(n)
qn /= k

(n−1)
qn − (T k(n−1))j−(T k(n−1))n

(λj, qn−λn, qn )
, if λj, qn /= λn, qn , j /= l, j < n

(4) |k(n)
qn − k

(n−1)
qn | � minp=j,...,n−1{|(Tk(p))j−(Tk(p))i|}

8·2n , i < j < n

Notice that, by items (2), (3) and (4) in step n,

(k(n)
qn

− k(n−1)
qn

) /= − (T k(n−1))j − (T k(n−1))i

(λj, qn − λi, qn)
, (5)

for every i, j = 1, . . . , n, such that (λj, qn − λi, qn) /= 0.

Indeed, by items (2) and (3), Eq. (5) holds for every j = 1, . . . , n − 1, i = n and, by items (4), we

have:
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|k(n)
qn

− k(n−1)
qn

| �
|(Tk(n−1))j − (Tk(n−1))i|)

8 · 2n <
|(Tk(n−1))j − (Tk(n−1))i|

|λj, qn − λi, qn |
for all i, j < n, such that (λj, qn − λi, qn) /= 0.

By Eq. (5),

(T k(n))j /= (T k(n))i, i, j = 1, . . . , n.

Indeed,

(T k(n))i − (T k(n−1))i = (k(n)
qn

− k(n−1)
qn

)λi, qn (6)

and, by subtracting Eq. (6) from

(T k(n))j − (T k(n−1))j = (k(n)
qn

− k(n−1)
qn

)λj, qn ,

we get

(T k(n))j − (T k(n))i

= (k(n)
qn

− k(n−1)
qn

)(λj, qn − λi, qn) + (T k(n−1))j − (T k(n−1))i /= 0

for every i, j = 1, . . . , n. Therefore, the vector k(n) = (k
(n)
1 , . . . , k

(n)
m )T is such that (T k(n))j − (T k(n))i

/= 0, i, j ∈ {1, . . . , n}, i /= j.

At stepn=N,wegetavectork(N) = (k
(N)
1 , . . . , k

(N)
m )T such that0 < k

(N)
i

� 1,k
(N)
i /= k

(N)
j , i, j = 1 . . . , m,

and (T k(N))j − (T k(N))i /= 0, i, j ∈ {1, . . . , N}, i /= j. �

3. Stochastic matrices and infinite sequences of probability measures

In the present section, we apply Theorem 3 in the framework of probability theory.

In what follows, by a measurable function we mean a Borel measurable function [16] and by the

symbol {μ(·)(i)}i∈N we denote a sequence of probability measures on the Borel σ -algebra B([0, 1]). In
particular, we focus on sequences of probability measures such that for every non-ordered couple of

indexes (i, j) = (j, i), i, j ∈ N, i /= j, there exists a Borel setΔi,j such thatμΔi,j
(j) /= μΔi,j

(i). Moreover,

we choose a one-to-one correspondence n : (i, j) �→ n(i, j) from the set of the non-ordered couples

(i, j), i, j ∈ N, i /= j, to the set of natural numbers N, and we set Δi,j =: Δn, n = n(i, j).

Definition 1. A sequence of probability measures {μ(·)(i)}i∈N on B([0, 1]) such that, for every non-

ordered pair of indices (i, j), i, j ∈ N, i /= j, there exists a Borel set Δi,j such that μΔi,j
(j) /= μΔi,j

(i) is
called a sequence of distinct probability measures.

We briefly recall some results in the theory of family of sets.

Definition 2. A nonempty family D of subsets of a set X is said to be a Dynkin system or a σ -class if D
is closed under complements and countable disjoint unions.

It is worth remarking that σ -class of sets were introduced by Suppes [17] who showed that quantum

mechanical phenomena are suitably described by them. In the context of quantum mechanics they

are indeed known as quantum probability spaces. They are an interesting example of a non-classical

logic. Later, Gudder [10] began the study of the mathematical properties of these spaces.

Theorem 2 ([11,14,15,18]). Let D(Rn) and B(Rn) be, respectively, the Dynkin system and the Borel σ -

algebra generated by the open balls in R
n. Then D(Rn) = B(Rn). Let D(P1) and B(P1) be, respectively,

the Dynkin system and the Borel σ -algebra generated by the half-open intervals (a, b] in [0, 1]. Then,
D(P1) = B(P1).
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The importance of Theorem 2 derives from the fact that two probability measures μ(·)(1) and μ(·)(2)
which agree on each open ball must agree on D(Rn), so that if we know that D(Rn) = B(Rn) then,

we can conclude that the two probability measures are the same. In other words, if μ(·)(1) /= μ(·)(2)
then, theremust exist an open ballΔ such thatμ(Δ)(1) /= μ(Δ)(2). In the case of probabilitymeasures

defined on B([0, 1]), if μ(·)(1) /= μ(·)(2) then, there must exist a half-open interval Δ such that

μ(Δ)(1) /= μ(Δ)(2).
Now, let {μ(·)(i)}i∈N be a sequence of distinct probability measures on B([0, 1]). By Theorem 2,

for every non-ordered pair of indices (i, j), there exists a half-open interval Δn = (an, bn] such that

μΔn
(i) /= μΔn

(j) where, n = n(i, j). Let us denote by N the family {Δn}n∈N. Notice that such a family

is not generally unique. In the following we assume N to be chosen once and for all. Moreover,

we assume that to a partition σ = {γ1, . . . , γn} of [0, 1] there corresponds the family of intervals

{[0, γ1], (γ1, γ2], . . . , (γn−1, γn]}.
The following theorem is a consequence of Theorem 1 on stochastic matrices.

Theorem 3. Let {μ(·)(i)}i∈N be a sequence of distinct probability measures on B([0, 1]). Let us consider
the infinite system of linear functionals {Ti}i∈N defined as follows

Tif :=
∫

f (t) dμt(i) =: Gf (i), i ∈ N

where, f : [0, 1] → R, is a bounded measurable function and the integration is in the sense of Lebesgue–

Stieltjes.
There exists a one-to-one function f (t) such that Gf is one-to-one

Gf (i) =
∫

f (t) dμt(i) /=
∫

f (t) dμt(j) = Gf (j), i, j ∈ N, i /= j.

Moreover, f is piecewise continuous and continuous from the left.

Proof. In order to construct the one-to-one function f we proceed as follows.

Step1. Letus consider thefirsth > 1probabilitymeasures, {μ(·)(i)}i=1,...,h and the subfamilyD1 :={Δn= Δn(i,j) =: (αi,j ,βi,j]}i,j � h ⊂ N . The familyD1 is such that, for everynon-orderedcouple (i, j), i, j � h,

there exists an interval Δn = Δn(i,j) ∈ D1 such that μ(Δn)(i) /= μ(Δn)(j). Moreover, D1 defines a

partition σ (1) of [0, 1]. Indeed, if we arrange the numbers αi,j and βi,j in increasing order we get a

sequenceγ
(1)
1 < γ

(1)
2 < . . . < γ

(1)
s1−1 whichdecomposes the interval [0, 1] into the familyof setsA1 =

{Δ(1)
1 :=[0, γ (1)

1 ], Δ
(1)
2 :=(γ

(1)
1 , γ

(1)
2 ], . . . ,Δ(1)

s1 :=(γ
(1)
s1−1, 1]} where, s1 − 1 denotes the number of

distinct elements in the set {αi,j ,βi,j}i<j � h = {αi,j ,βi,j}i,j � h. Notice that, each interval (αi,j ,βi,j] ∈ D1

is the union of a finite number of half-open intervals in A1, so that, we write D1 ≺ A1. Now, let us

consider the rectangular stochastic matrix

T(1) :=

⎛⎜⎜⎜⎜⎝
λ

(1)
1, 1 λ

(1)
1, 2 . . . λ

(1)
1, s1

λ
(1)
2, 1 λ

(1)
2, 2 . . . λ

(1)
2, s1

. . . . . . . . . . . .

λ
(1)
h, 1 λ

(1)
h, 2 . . . λ

(1)
h, s1

⎞⎟⎟⎟⎟⎠ (7)

where λ
(1)
i,j :=μ

Δ
(1)
j

(i).

Since D1 ≺ A1, T
(1) satisfies item (i) in Lemma 1. Therefore, there exists a vector k(1) ∈ R

s1 such that

[T(1)k(1)]i /= [T(1)k(1)]j , if i /= j.Moreoverk(1) can be chosen such that 0 < k
(1)
i

� 1, k
(1)
i /= k

(1)
j , i =

1, . . . , s1, i /= j.

Step2. Let us set 2h :=h + 2 − 1, s2 :=s1[2(2h) + 1] andconsider theprobabilitymeasureμ(·)(h + 1),

and the h half-open intervals {(α(2)
j ,β

(2)
j ]:=Δh+1,j}j=1,...,h such that μ(Δh+1,j)(h + 1) /= μ(Δh+1,j))(j),

j = 1, . . . , h. Now, let us define an arbitrary partition σ (2) ⊃ σ (1) of [0, 1] which is obtained from σ (1)

by dividing each intervalΔ
(1)
i into 2(2h) + 1 intervals in such away that {α(2)

j ,β
(2)
j }j=1,...,h ⊂ σ (2). Let
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σ (2) = {γ (2)
1 , γ

(2)
2 , . . . , γ

(2)
s2−1} be such a partition. Then, the family of intervals corresponding to σ (2)

isA2 = {Δ(2)
1 :=[0, γ (2)

1 ], . . . ,Δ(2)
j+1 :=(γ

(2)
j , γ

(2)
j+1], . . . ,Δs2 :=(γ

(2)
s2−1, 1]}. Notice thatA2 decomposes

[0, 1] in such away that eachhalf-open interval inA1 is decomposed into 2(2h) + 1half-open intervals

in A2, so that, we write A1 ≺ A2.

Now, let us consider the rectangular stochastic matrix

T(2) :=

⎛⎜⎜⎜⎜⎝
λ

(2)
1, 1 λ

(2)
1, 2 . . . λ

(2)
1, s2

λ
(2)
2, 1 λ

(2)
2, 2 . . . λ

(2)
2, s2

. . . . . . . . . . . .

λ
(2)
h+1, 1 λ

(2)
h+1, 2 . . . λ

(2)
h+1, s2

⎞⎟⎟⎟⎟⎠ (8)

where λ
(2)
i,j :=μ

Δ
(2)
j

(i).

SinceA1 ≺ A2, T
(2) satisfies item (i) in Lemma1. Therefore, by Lemma1, there is a vectork(2) such that

[T(2)k(2)]i /= [T(2)k(2)]j , i, j ∈ {1, . . . , h + 1}, i /= j. Now, we show a particular construction of k(2):

Step 2.1.We start from the vector k(1,1) = (k
(1,1)
1 , k

(1,1)
2 , . . . , k

(1,1)
s2 )T , where k

(1,1)
i = k

(1)
l + a

(1)
i if (l −

1)[2(2h) + 1] < i � l[2(2h) + 1], l = 1, . . . , s1, and a
(1)
i are real numbers such that (see Lemma 1 in

Appendix B), for any l, q ∈ {1, . . . , s1},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) a
(1)
r = 0 r = d

(2)
l

(2) a
(1)
r (k

(1)
l+1 − k

(1)
l ) > 0, r ∈ (d

(2)
l , D

(2)
l ], l < s1

(3) |a(1)
r | � b

(2,r)
(i,j) , 1� i < j � 2

(4) |a(1)
r | � δ(2,r)

(5) a
(1)
r /= −k

(1)
l , r ∈ (d

(2)
l , D

(2)
l ]

(6) a
(1)
j − a

(1)
i /= −(k

(1)
q − k

(1)
l ), i ∈ (d

(2)
l , D

(2)
l ]

j ∈ (d
(2)
q , D

(2)
q ]

where,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
(2)
l :=(l − 1)[2(2h) + 1] + 1

D
(2)
l := l[2(2h) + 1]

b
(2,r)
(i,j) = |∑s1

l=1 k
(1)
l (λ

(1)
j,l −λ

(2)
i,l )|

32·22·2r

δ(2,r) = min
{
|k(1)

j −k
(1)
i |, |1−k

(1)
j |; i<j � s1

}
32·22·2r

In what followswewill use the expression item 2.1.n to denote item (n) in step 2.1 and, more generally,

we will use the expression item n.m.i to denote item (i) in step n.m.

Notice that (see item 2.1.5) k
(1,1)
i /= 0 and (see item 2.1.6) k

(1,1)
i /= k

(1,1)
j for every i, j = 1, . . . , s2.

Moreover (see items 2.1.2 and 2.1.4), 0 < k
(1,1)
j

� 1, j = 1, . . . , s2.

Step 2.2. if (T(2) k(1,1))2 /= (T(2) k(1,1))1, we set k(1,2) = k(1,1) and proceed to the next step. If instead,

(T(2) k(1,1))2 = (T(2) k(1,1))1 then, by item (i) in Lemma1, there exists an index q2,2 such that,λ
(2)
1, q2,2

/=
λ

(2)
2, q2,2

. Therefore, we define

k(1,2) = (k
(1,2)
1 = k

(1,1)
1 , . . . , k(1,2)

q2,2
, k

(1,2)
q2,2+1 = k

(1,1)
q2,2+1, . . . , k

(1,2)
s2

= k(1,1)
s2

)T ,

where, k
(1,2)
q2,2 ∈ R is such that, for any i, j ∈ {1, . . . , s2},
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 0 < k
(1,2)
q2,2 � 1

(2) k
(1,2)
q2,2 /= k

(1,1)
j

(3) |(k(1,2)
q2,2 − k

(1,1)
q2,2 )| � β

(2,2)
i,j , 1� i < j � s2

(4) (k
(1,2)
q2,2 − k

(1,1)
q2,2 )(k

(1,1)
q2,2+1 − k

(1,1)
q2,2 ) > 0, if q2,2 < s2

(5) (k
(1,2)
q2,2 − k

(1,1)
q2,2 )(k

(1,1)
q2,2 − k

(1,1)
q2,2−1) < 0, if q2,2 = s2

(6) |(k(1,2)
q2,2 − k

(1,1)
q2,2 )| � γ

(2,2)
i,j , 1� i < j � 2

(7) |(k(1,2)
q2,2 − k

(1,1)
q2,2 )| � |k(1)

j −k
(1)
i |

32·22·22 , 1� i < j � s1

where,⎧⎪⎪⎨⎪⎪⎩
β

(2,2)
i,j = |k(1,1)

j −k
(1,1)
i |

8·22 ,

γ
(2,2)
i,j =

∣∣∣∑s1
l=1 k

(1)
l

(
λ

(1)
j,l −λ

(1)
i,l

)∣∣∣
32·22·22·2q2,2 .

By proceeding as in step 1 of the proof of Lemma 1, one can prove that

[T(2)k(1,2)]2 /= [T(2)k(1,2)]1.
Step2.n (n < 2h). If (T

(2) k(1,n−1))n /= (T(2) k(1,n−1))l for every l < n,we setk(1,n) = k(1,n−1) andpro-

ceed to the next step. If instead, there exists an index l < n such that (T(2) k(1,n−1))n = (T(2) k(1,n−1))l

then, by item (i) in Lemma 1, there exists an index q2,n such that, λ
(2)
l,q2,n

/= λ
(2)
n,q2,n . Therefore, we define

k(1,n) = (k
(1,n)
1 = k

(1,n−1)
1 , . . . , k(1,n)

q2,n
, k

(1,n)
q2,n+1 = k

(1,n−1)
q2,n+1 , . . . , k(1,n)

s2
= k(1,n−1)

s2
)T ,

where, k
(1,n)
q2,n ∈ R is such that, for any i, j ∈ {1, . . . , s2},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 0 < k
(1,n)
q2,n � 1

(2) k
(1,n)
q2,n /= k

(1,n−1)
j

(3) k
(1,n)
q2,n /= k

(1,n−1)
q2,n − (T(2) k(1,n−1))j−(T(2) k(1,n−1))n

λ
(2)
j, q2,n

−λ
(2)
n, q2,n

, λ
(2)
j, q2,n

/= λ
(2)
n, q2,n ,

j /= l, j < n

(4) |(k(1,n)
q2,n − k

(1,n−1)
q2,n )| � α

(2,n)
i,j , 1� i < j < n

(5) |(k(1,n)
q2,n − k

(1,n−1)
q2,n )| � β

(2,n)
i,j , 1� i < j � s2

(6) (k
(1,n)
q2,n − k

(1,n−1)
q2,n )(k

(1,n−1)
q2,n+1 − k

(1,n−1)
q2,n ) > 0, if q2,n < s2

(7) (k
(1,n)
q2,n − k

(1,n−1)
q2,n )(k

(1,n−1)
q2,n − k

(1,n−1)
q2,n−1 ) < 0, if q2,n = s2

(8) |(k(1,n)
q2,n − k

(1,n−1)
q2,n )| � γ

(2,n)
i,j , 1� i < j � 2

(9) |(k(1,n)
q2,n − k

(1,n−1)
q2,n )| � |k(1)

j −k
(1)
i |

32·2n·22 , 1� i < j � s1

where,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α

(2,n)
i,j = minp=j,...,n−1{|(T(2)k(1,p))j−(T(2)k(1,p))i|}

8·2n ,

β
(2,n)
i,j = minp=1,...,n−1{|k(1,p)

j −k
(1,p)
i |}

8·2n ,

γ
(2,n)
i,j =

∣∣∣∑s1
l=1 k

(1)
l

(
λ

(1)
j,l −λ

(1)
i,l

)∣∣∣
32·2n·22·2q2,n .
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By items 2.n.1 and 2.n.2, it follows that the vector k(1,n) is such that 0 < k
(1,n)
i

� 1, k
(1,n)
i /= k

(1,n)
j , i, j =

1, . . . , s2, i /= j. Moreover, by proceeding as in step n of the proof of Lemma 1 (see items 2.n.3 and 2.n.4

above), one can prove that [T(2)k(1,n)]j /= [T(2)k(1,n)]i, i, j ∈ {1, . . . , n}, i /= j.

Step 2.2h. For n = 2h = h + 1,we get a vectork(2) :=k(1,h+1) such that 0 < k
(2)
i

� 1, k
(2)
i /= k

(2)
j , i, j =

1, . . . , s2, i /= j. Moreover, [T(2)k(2)]j /= [T(2)k(2)]i, i, j ∈ {1, . . . , h + 1}, i /= j.

Step n (n > 1). Let us set nh :=h + n − 1, sn :=sn−1(2nh + 1), and consider the probability mea-

sure μ(·)(nh), and the nh − 1 open intervals {(α(n)
j ,β

(n)
j ):=Δnh,j}j=1,...,nh−1 such that μ(Δnh,j

)(nh) /=
μ(Δnh,j)

)(j), j = 1, . . . , nh − 1. Now, let us define an arbitrary partition σ (n) ⊃ σ (n−1) of [0, 1] which

is obtained from σ (n−1) by dividing each interval Δ
(n−1)
i into 2nh + 1 intervals in such a way that

{α(n)
j ,β

(n)
j }j=1,...,nh−1 ⊂ σ (n). Let σ (n) = {γ (n)

1 , γ
(n)
2 , . . . , γ

(n)
sn−1} be such a partition. Then, the family

of intervals corresponding to σ (n) is

An = {Δ(n)
1 :=[0, γ (n)

1 ], . . . ,Δ(n)
j+1 :=(γ

(n)
j , γ

(n)
j+1], . . . ,Δsn :=(γsn−1, 1]}.

Notice that An decomposes [0, 1] in such a way that each half-open interval in An−1 is decomposed

into 2nh + 1 half-open intervals.

Now, let us consider the rectangular stochastic matrix

T(n) :=

⎛⎜⎜⎜⎜⎝
λ

(n)
1, 1 λ

(n)
1, 2 . . . λ

(n)
1, sn

λ
(n)
2, 1 λ

(n)
2, 2 . . . λ

(n)
2, sn

. . . . . . . . . . . .

λ
(n)
nh, 1

λ
(n)
nh, 2

. . . λ
(n)
nh, sn

⎞⎟⎟⎟⎟⎠
where λ

(n)
i,j :=μ

Δ
(n)
j

(i).

Since An−1 ≺ An, T
(n) satisfies item (i) in Lemma 1. Therefore, by Lemma 1, there is a vector k(n) such

that [T(n)k(n)]i /= [T(n)k(n)]j , i, j ∈ {1, . . . , nh}, i /= j.

Now, we show a particular construction of k(n):

Step n.1. We start from the vector k(n−1,1) = (k
(n−1,1)
1 , k

(n−1,1)
2 , . . . , k

(n−1,1)
sn )T where,

k
(n−1,1)
i = k

(n−1)
l + a

(n−1)
i if (l − 1)(2nh + 1) < i � l(2nh + 1), l = 1, . . . , sn−1,

and a
(n−1)
i are real numbers such that (see Lemma 1 in Appendix B) for any q, l ∈ {1, . . . , sn−1},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) a
(n−1)
r = 0 r = d

(n)
l

(2) a
(n−1)
r (k

(n−1)
l+1 − k

(n−1)
l ) > 0, r ∈ (d

(n)
l , D

(n)
l ], l < sn−1

(3) |a(n−1)
r | � b

(n,r)
(i,j) , 1� i < j � n

(4) |a(n−1)
r | � δ(n,r)

(5) a
(n−1)
r /= −k

(n−1)
l , r ∈ (d

(n)
l , D

(n)
l ]

(6) a
(n−1)
j − a

(n−1)
i /= −(k

(n−1)
q − k

(n−1)
l ), i ∈ (d

(n)
l , D

(n)
l ]

j ∈ (d
(n)
q , D

(n)
q ]

where,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d
(n)
l :=(l − 1)(2nh + 1) + 1

D
(n)
l := l(2nh + 1)

b
(n,r)
i,j = minp=j−1,...,n−1

{∣∣∣∑sp
l=1 k

(p)
l (λ

(p)
j, l −λ

(p)
i, l

∣∣∣}
32·2n·2r

δ(n,r) = minp=1,...,n−1

{
|k(p)

j −k
(p)
i |, |1−k

(p)
j |; i<j � sp

}
32·2n·2r
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Notice that (item n.1.5) k
(n−1,1)
i /= 0, i = 1, . . . , sn, and (item n.1.6) k

(n−1,1)
i /= k

(n−1,1)
j , i /= j. Moreover,

(items n.1.2 and n.1.4) 0 < k
(n−1,1)
j

� 1, j = 1, . . . , sn.

Step n.2. if (T(n) k(n,1))2 /= (T(n) k(n,1))1, we set k(n,2) = k(n,1) and proceed to the next step. If instead,

(T(n) k(n,1))2 = (T(n) k(n,1))1 then, by item (i) in Lemma1, there exists an index qn,2 such that,λ
(n)
1, qn,2

/=
λ

(n)
2, qn,2

. Therefore, we define,

k(n,2) = (k
(n,2)
1 = k

(n,1)
1 , . . . , k(n,2)

qn,2
, k

(n,2)
qn,2+1 = k

(n,1)
qn,2+1, . . . , k

(n,2)
sn

= k(n,1)
sn

)T ,

where, k
(n,2)
qn,2 ∈ R is such that, for any i, j ∈ {1, . . . , sn},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 0 < k
(n−1,2)
qn,2 � 1

(2) k
(n−1,2)
qn,2 /= k

(n−1,1)
j

(3) |(k(n−1,2)
qn,2 − k

(n−1,1)
qn,2 )| � β

(n,2)
i,j , 1� i < j � sn

(4) (k
(n−1,2)
qn,2 − k

(n−1,1)
qn,2 )(k

(n−1,1)
qn,2+1 − k

(n−1,1)
qn,2 ) > 0, if qn,2 < sn

(5) (k
(n−1,2)
qn,2 − k

(n−1,1)
qn,2 )(k

(n−1,1)
qn,2 − k

(n−1,1)
qn,2−1 ) < 0, if qn,2 = sn

(6) |(k(n−1,2)
qn,2 − k

(n−1,1)
qn,2 )| � γ

(n,2)
i,j , 1� i < j � n

(7) |(k(n−1,2)
qn,2 − k

(n−1,1)
qn,2 )| � δ̄(n,2)

where,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β
(n,2)
i,j = |k(n−1,1)

j −k
(n−1,1)
i |

8·22 ,

γ
(n,2)
i,j = minp=j−1,...,n−1

{∣∣∣∑sp
l=1 k

(p)
l (λ

(p)
j, l −λ

(p)
i, l )

∣∣∣}
32·2n·22·2qn,2 ,

δ̄(n,2) = minp=1,...,n−1{|k(p)
j −k

(p)
i |, i<j � sp}

32·2n·22 .

By proceeding as in step 1 of the proof of Lemma 1, one can prove that

[T(n)k(n−1,2)]2 /= [T(n)k(n−1,2)]1
Step n.m (m < nh). If (T(n) k(n−1,m−1))m /= (T(n) k(n−1,m−1))l , for every l < m, we set k(n−1,m) =
k(n−1,m−1) and proceed to the next step. If instead, there exists an index l < m such that

(T(n) k(n−1,m−1))m = (T(n) k(n−1,m−1))l then, by item (i), there exists an index qn,m such that,λ
(n)
l, qn,m

/=
λ

(n)
m, qn,m .

Hence, we define k(n−1,m) = (k
(n−1,m)
1 = k

(n−1,m−1)
1 , . . . , k

(n−1,m)
qn,m , k

(n−1,m)
qn,m+1 = k

(n−1,m−1)
qn,m+1 , . . . ,

k
(n−1,m)
sn = k

(n−1,m−1)
sn )T , with k

(n−1,m)
qn,m ∈ R such that, for any i, j ∈ {1, . . . , sn},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 0 < k
(n−1,m)
qn,m � 1

(2) k
(n−1,m)
qn,m /= k

(n−1,m−1)
j

(3) k
(n−1,m)
qn,m /= a

(n,m)
qn,m , μ

Δ
(n)
qn,m

(j) /= μ
Δ

(n)
qn,m

(m)

j /= l, j < m

(4) |(k(n−1,m)
qn,m − k

(n−1,m−1)
qn,m )| � α

(n,m)
i,j , 1� i < j < m

(5) |(k(n−1,m)
qn,m − k

(n−1,m−1)
qn,m )| � β

(n,m)
i,j , 1� i < j � sn

(6) (k
(n−1,m)
qn,m − k

(n−1,m−1)
qn,m ) · b(n,m)

qn,m > 0, if qn,m < sn

(7) (k
(n−1,m)
qn,m − k

(n−1,m−1)
qn,m ) · b(n,m)

qn,m−1 < 0, if qn,m = sn

(8) |(k(n−1,m)
qn,m − k

(n−1,m−1)
qn,m )| � γ

(n,m)
i,j , 1� i < j � n

(9) |(k(n−1,m)
qn,m − k

(n−1,m−1)
qn,m )| � δ̄(n,m)
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where,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(n,m)
qn,m = k

(n−1,m−1)
qn,m − (T(n) k(n−1,m−1))j−(T(n) k(n−1,m−1))m

λ
(n)
j, qn,m

−λ
(n)
m, qn,m

α
(n,m)
i,j = minp=j,...,m−1{|(T(n)k(n−1,p))j−(T(n)k(n−1,p))i|}

8·2m

β
(n,m)
i,j = minp=1,...,m−1{|k(n−1,p)

j −k
(n−1,p)
i |}

8·2m
b
(n,m)
qn,m = (k

(n−1,m−1)
qn,m+1 − k

(n−1,m−1)
qn,m )

γ
(n,m)
i,j = minp=j−1,...,n−1

{∣∣∣∑sp
l=1 k

(p)
l (λ

(p)
j, l −λ

(p)
i, l

∣∣∣}
32·2n·2m·2qn,m

δ̄(n,m) = minp=1,...,n−1{|k(p)
j −k

(p)
i |; i<j � sp}

32·2n·2m
By items n.m.1 and n.m.2, it follows that the vector k(n−1,m) is such that 0 < k

(n−1,m)
i

� 1, k
(n−1,m)
i /=

k
(n−1,m)
j , i, j = 1, . . . , sn, i /= j. Moreover, by proceeding as in step n of the proof of Lemma 1 (see items

n.m.3 and n.m.4 above), one can prove that [T(n)k(n−1,m)]j /= [T(n)k(n−1,m)]i, i, j ∈ {1, . . . , m}, i /= j.

Step n.nh. For m = nh, we get a vector k(n) :=k(n−1,nh) such that 0 /= k
(n)
i

� 1, k
(n)
i /= k

(n)
j , i, j =

1, . . . , sn, i /= j. Moreover, [T(n)k(n)]j /= [T(n)k(n)]i, i, j ∈ {1, . . . , nh}, i /= j.

The procedure outlined above defines inductively a sequence of real vectors {k(n)}n∈N. Now, let us

consider the sequence of uniformly bounded functions {fn(t)}n∈N defined as follows

fn(t):=
sn∑
i=1

k
(n)
i χ

Δ
(n)
i

(t) (9)

where, χΔ(t) denotes the characteristic function of the Borel set Δ.

Clearly, ‖fn‖∞ � 1, ∀n ∈ N. Now, we prove that

(a) {fn(t)}n∈N is point-wise convergent

In order to prove item (a), we prove that, for any t ∈ [0, 1], the sequence fn(t) is Cauchy. We proceed

as follows. For every t ∈ [0, 1] and i ∈ N, let us denote by Δ
(i)
i(t) the set in Ai such that t ∈ Δ

(i)
i(t). We

have (see items n.1.4 and n.m.9),

|fl(t) − fl−1(t)|=
∣∣∣∣∣∣

sl∑
i=1

k
(l)
i χ

Δ
(l)
i

(t) −
sl−1∑
i=1

k
(l−1)
i χ

Δ
(l−1)
i

(t)

∣∣∣∣∣∣
=
∣∣∣∣∣∣

sl∑
i=1

(k
(l)
i − k̃

(l−1)
i )χ

Δ
(l)
i

(t)

∣∣∣∣∣∣ =
∣∣∣k(l)

l(t) − k̃
(l−1)
l(t)

∣∣∣
=
∣∣∣k(l−1,lh)

l(t) − k
(l−1,1)
l(t) + k

(l−1,1)
l(t) − k̃

(l−1)
l(t)

∣∣∣
�
∣∣∣k(l−1,lh)

l(t) − k
(l−1,1)
l(t)

∣∣∣+ ∣∣∣k(l−1,1)
l(t) − k̃

(l−1)
l(t)

∣∣∣
=
∣∣∣∣∣∣

lh∑
r=2

(k
(l−1,r)
l(t) − k

(l−1,r−1)
l(t) )

∣∣∣∣∣∣+
∣∣∣k(l−1,1)

l(t) − k̃
(l−1)
l(t)

∣∣∣
�
∑lh

r=2

∣∣∣(k(l−1,r)
l(t) − k

(l−1,r−1)
l(t) )

∣∣∣+ ∣∣∣a(l−1)
l(t)

∣∣∣ < 1

8 · 2l (10)

where, for every, i ∈ [d(l)
j , D

(l)
j ], j = 1, . . . , lh, we have defined

k̃
(l−1)
i = k

(l−1)
j
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so that,

fl−1(t) =
sl−1∑
i

k
(l−1)
i χ

Δ
(l−1)
i

(t) =
sl∑

i=1

k̃
(l−1)
i χ

Δ
(l)
i

(t).

By Eq. (10) the sequence fn(t) is Cauchy and then convergent for any t ∈ [0, 1]. Indeed, for any ε > 0

there exists an index n̄ such that
∑∞

i=n̄
1

2i
� ε so that, for any pair of indices n, mwith, n > m > n̄, one

has

|fn(t) − fm(t)| =
∣∣∣∣∣∣

n∑
i=m+1

fi(t) − fi−1(t)

∣∣∣∣∣∣�
n∑

i=m+1

|fi(t) − fi−1(t)| �
∞∑
i=n̄

1

2i
� ε. (11)

Therefore, there exists a function f (t) such that limn→∞ fn(t) = f (t). Notice that f is Borelmeasurable

because it is the limit of a sequence of Borel measurable functions [16].We can saymore. Indeed, since

the inequality in (11) does not depend on t, fn(t) converges uniformly to f (t). This implies that f is

piecewise continuous and continuous from the left since the space of left continuous step functions

with the uniform norm is dense in the space of piecewise continuous functions which are continuous

from the left [16]. It remains to prove that

(b) f is one-to-one

(c) Gf is one-to-one

In order to prove item (b) we proceed as follows. For every t, t̄ ∈ [0, 1], there exists an index s such that

t ∈ Δ
(s)
s(t), t̄ ∈ Δ

(s)

s(t̄)
,Δ

(s)
s(t) ∩ Δ

(s)

s(t̄)
= ∅. Let j be the smallest index such that t ∈ Δ

(j)
j(t), t̄ ∈ Δ

(j)

j(t̄)
,Δ

(j)
j(t) ∩

Δ
(j)

j(t̄)
= ∅. Moreover, let us suppose, without loss of generality, j(t) > j(t̄) (notice that, for every s >

j, s(t) > s(t̄), s(t) > j(t), s(t̄) > j(t̄)).
For every n > j, j(t), j(t̄),

|fn(t) − fn(t̄)|=
∣∣∣∣∣∣fj(t) − fj(t̄) +

n∑
l=j+1

[fl(t) − fl(t̄)] − [fl−1(t) − fl−1(t̄)]
∣∣∣∣∣∣

=
∣∣∣∣∣∣fj(t) − fj(t̄) +

n∑
l=j+1

[fl(t) − fl−1(t)] − [fl(t̄) − fl−1(t̄)]
∣∣∣∣∣∣

=
∣∣∣∣∣∣(k(j)

j(t) − k
(j)

j(t̄)
) +

n∑
l=j+1

[k(l)
l(t) − k̃

(l−1)
l(t) ] − [k(l)

l(t̄)
− k̃

(l−1)

l(t̄)
]
∣∣∣∣∣∣

Moreover (see items n.1.4 and n.m.9),∣∣∣k(l)
l(t) − k̃

(l−1)
l(t)

∣∣∣= ∣∣∣k(l−1,lh)
l(t) − k

(l−1,1)
l(t) + k

(l−1,1)
l(t) − k̃

(l−1)
l(t)

∣∣∣
�
∣∣∣k(l−1,lh)

l(t) − k
(l−1,1)
l(t)

∣∣∣+ ∣∣∣k(l−1,1)
l(t) − k̃

(l−1)
l(t)

∣∣∣
=
∣∣∣∣∣∣

lh∑
r=2

(k
(l−1,r)
l(t) − k

(l−1,r−1)
l(t) )

∣∣∣∣∣∣+
∣∣∣k(l−1,1)

l(t) − k̃
(l−1)
l(t)

∣∣∣
�
∑lh

r=2

∣∣∣(k(l−1,r)
l(t) − k

(l−1,r−1)
l(t) )

∣∣∣+ ∣∣∣a(l−1)
l(t)

∣∣∣ < |(k(j)
j(t) − k

(j)

j(t̄)
)|

8 · 2l
By the same reasoning applied to the case t̄ we get

∣∣∣k(l)

l(t̄)
− k̃

(l−1)

l(t̄)

∣∣∣ <
∣∣∣(k(j)

j(t) − k
(j)

j(t̄)
)
∣∣∣

8 · 2l
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Therefore,∣∣∣∣∣∣ limn→∞
n∑

l=j+1

[k(l)
l(t) − k̃

(l−1)
l(t) ] − [k(l)

l(t̄)
− k̃

(l−1)

l(t̄)
]
∣∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣∣
n∑

l=j+1

[k(l)
l(t) − k̃

(l−1)
l(t) ] − [k(l)

l(t̄)
− k̃

(l−1)

l(t̄)
]
∣∣∣∣∣∣

< lim
n→∞

n∑
l=1

∣∣∣(k(j)
j(t) − k

(j)

j(t̄)
)
∣∣∣

4 · 2l <

∣∣∣(k(j)
j(t) − k

(j)

j(t̄)
)
∣∣∣

2
(12)

Then,

lim
n→∞ |fn(t) − fn(t̄)| /= 0

which proves that f is one-to-one.

Now, we proceed to prove item (c).

First we show that limn→∞
(
T(n)k(n)

)
j

/= limn→∞
(
T(n)k(n)

)
i
.

For every n > j > i,∣∣∣∣(T(n)k(n)
)
j
−
(
T(n)k(n)

)
i

∣∣∣∣ = ∣∣∣∣(T(j)k(j)
)
j
−
(
T(j)k(j)

)
i

+
n∑

l=j+1

{[(
T(l)k(l)

)
j
−
(
T(l)k(l)

)
i

]
−
[(

T(l−1)k(l−1)
)
j
−
(
T(l−1)k(l−1)

)
i

]}∣∣∣∣∣∣
=
∣∣∣∣∣∣

sj∑
r=1

k(j)
r [λ(j)

j, r − λ
(j)
i, r ] +

n∑
l=j+1

⎛⎝ sl∑
q=1

k(l)
q (λ

(l)
j, q − λ

(l)
i, q) −

sl−1∑
q=1

k(l−1)
q [λ(l−1)

j, q − λ
(l−1)
i, q ]

⎞⎠∣∣∣∣∣∣ .
Notice that,

λ
(l−1)
j, q = μ

Δ
(l−1)
q

(j) = ∑
p∈[dlq,Dl

q]
μ

Δ
(l)
p

(j) = ∑
p∈[dlq,Dl

q]
λ

(l)
j, p, j = 1, . . . , lh − 1

hence, ∣∣∣∣(T(n)k(n)
)
j
−
(
T(n)k(n)

)
i

∣∣∣∣
=
∣∣∣∣∣∣∣

sj∑
r=1

k(j)
r [λ(j)

j, r − λ
(j)
i, r ] +

n∑
l=j+1

⎡⎢⎣ sl∑
q=1

k(l)
q [λ(l)

j, q − λ
(l)
i, q] −

sl−1∑
q=1

k(l−1)
q

∑
p∈[dlq,Dl

q]
(λ

(l)
j, p − λ

(l)
i, p)

⎤⎥⎦
∣∣∣∣∣∣∣

=
∣∣∣∣∣∣

sj∑
r=1

k(j)
r [λ(j)

j, r − λ
(j)
i, r ] +

n∑
l=j+1

⎛⎝ sl∑
q=1

k(l)
q [λ(l)

j, q − λ
(l)
i, q] −

sl∑
q=1

k̃(l−1)
q [λ(l)

j, q − λ
(l)
i, q]
⎞⎠∣∣∣∣∣∣

=
∣∣∣∣∣∣

sj∑
r=1

k(j)
r [λ(j)

j, r − λ
(j)
i, r ] +

n∑
l=j+1

⎛⎝ sl∑
q=1

(k(l)
q − k̃(l−1)

q )[λ(l)
j, q − λ

(l)
i, q]
⎞⎠∣∣∣∣∣∣ .

Moreover (see items n.m.8 and n.1.3),∣∣∣k(l)
q − k̃(l−1)

q

∣∣∣= ∣∣∣k(l−1,lh)
q − k(l−1,1)

q + k(l−1,1)
q − k̃(l−1)

q

∣∣∣
�
∣∣∣k(l−1,lh)

q − k(l−1,1)
q

∣∣∣+ ∣∣∣k(l−1,1)
q − k̃(l−1)

q

∣∣∣
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=
∣∣∣∣∣∣

lh∑
r=2

(k(l−1,r)
q − k(l−1,r−1)

q )

∣∣∣∣∣∣+
∣∣∣k(l−1,1)

q − k̃(l−1)
q

∣∣∣
�
∑lh

r=2

∣∣∣k(l−1,r)
q − k(l−1,r−1)

q

∣∣∣+ ∣∣∣a(l−1)
q

∣∣∣
�

|∑sj
s=1 k

(j)
s (λ

(j)
j, s − λ

(j)
i, s)|

8 · 2l · 2q .

Therefore,∣∣∣∣∣∣ limn→∞
n∑

l=j+1

⎛⎝ sl∑
q=1

(k(l)
q − k̃(l−1)

q )[λ(l)
j, q − λ

(l)
i, q]
⎞⎠∣∣∣∣∣∣

� lim
n→∞

n∑
l=j+1

sl∑
q=1

∣∣∣∑sj
s=1 k

(j)
s (λ

(j)
j, s − λ

(j)
i, s)
∣∣∣

8 · 2l · 2q

= lim
n→∞

n∑
l=j+1

∣∣∣∑sj
s=1 k

(j)
s (λ

(j)
j, s − λ

(j)
i, s)
∣∣∣

4 · 2l

<

∣∣∣∑sj
s=1 k

(j)
s (λ

(j)
j, s − λ

(j)
i, s)
∣∣∣

2

which implies,

sj∑
r=1

k(j)
r [λ(j)

j, r − λ
(j)
i, r ] /= lim

n→∞
n∑

l=j+1

⎛⎝ sl∑
q=1

(k(l)
q − k̃(l−1)

q )[λ(l)
j, q − λ

(l)
i, q]
⎞⎠

and then,

lim
n→∞

(
T(n)k(n)

)
j

/= lim
n→∞

(
T(n)k(n)

)
i
.

By the dominated convergence Theorem [12], we get

Gf (i)=
∫
f (t) dμt(i) = lim

n→∞
∫

fn(t) dμt(i)

= lim
n→∞

(
T(n)k(n)

)
i

/= lim
n→∞

(
T(n)k(n)

)
j

= lim
n→∞

∫
fn(t) dμt(j) =

∫
f (t) dμt(j) = Gf (j)

which proves item (c) and ends the proof of the theorem. �

4. Applications to the theory of positive operator valued measures and to quantummechanics

In the present section we show how Theorem 3 can be fruitfully applied to the theory of positive

operator valuedmeasures which are used in quantummechanics in order to generalize the concept of

observable and which are a powerful tool in quantum computation. But before we need to introduce

some preliminaries.

In the following, we denote by B(R) the Borel σ -algebra of R, by 0 and 1 the null and the identity

operators respectively, by Ls(H) the space of all bounded self-adjoint linear operators acting in a

Hilbert space H with scalar product 〈·, ·〉, and by F(H) ⊂ Ls(H) the subspace of all positive, bounded
self-adjoint operators on H.
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Definition 3. A positive operator valued measure on R (in short, a POV measure (on R)) is a map

F : B(R) → F(H) such that:

F

( ∞⋃
n=1

Δn

)
=

∞∑
n=1

F(Δn)

where, {Δn} is a countable family of disjoint sets inB(R) and the series converges in theweak operator

topology. It is said to be normalized if F(R) = 1. It is said to be commutative if [F(Δ1), F(Δ2)] = 0 for

all Δ1 ,Δ2 ∈ B(R).

Definition 4. A projection valuedmeasure E (in short, PVmeasure) is a normalized POVmeasure such

that E(Δ) is a projection operator for each Δ.

In quantum mechanics, non-orthogonal normalized POV measures are also called generalised or

unsharp observables and PV measures standard or sharp observables.

An important question in quantum mechanics is to look for the relationships between standard

observables and generalized observables. Theorem 3 of the present work will be used to give some

answers to that problem.

In what follows, we focus on the following two characterizations of POV measures. The first one,

due to Naimark, applies both to commutative and non-commutative POV measures while the second

one applies to commutative POV measures.

Theorem4 (Naimark [13]). Let F be a POVmeasure of the Hilbert spaceH. Then, there exist a Hilbert space
H+ ⊃ H and a PV measure E+ of the space H+ such that

F(Δ) = P+E+(Δ)|H
where P+ is the operator of projection onto H.

We recall that, for each vector x ∈ H, 〈F(·)x, x〉 is a Lebesgue–Stieltjesmeasure [12] andwewill use

the symbol d〈Ftx, x〉 to denote integration with respect to the measure 〈F(·)x, x〉. For each bounded

and measurable function f , there exists [8] a unique self-adjoint operator B such that

〈Bx, x〉 =
∫

f (λ)d〈Ftx, x〉, ∀x ∈ H. (13)

If Eq. (13) is satisfied we write B = ∫
f (t)dFt .

Definition 5 (see Ref. [4]). Each operator
∫
f (λ) dE+

λ , where f is a real, one-to-one,measurable function,

is said to be a Naimark operator corresponding to F . The Naimark operator
∫

λ dE
+
λ is denoted by A+.

Commutative operator valued measures are characterized as follows.

Theorem 5 (see Ref. [2]). A POVmeasure F : B(R) → F(H) is commutative if and only if: i) there exist a
self-adjoint operator A and, for everyλ in the spectrumof A, a probabilitymeasureμA

(·)(λ) : B(R) → [0, 1]
such thatμA

Δ(A) = F(Δ), ii) if B andμB
(·)(λ) are such thatμB

Δ(B) = F(Δ) then, there exists a measurable

function g such that A = g(B). A is called the sharp reconstruction of F and is unique up to bijections.

It is worth remarking that both Theorems 4 and 5 establish a relationship between a POV measure

and a PV measure. In Theorem 4, the PV measure corresponding to the POV measure F acts on an

extended Hilbert space while, in Theorem 5, the PV measure corresponding to F acts on the same

Hilbert space on which F acts. Moreover, Theorem 5 allows us to interpret a commutative unsharp

observable as a randomization of a sharp observable [1,2]. All that raises the question of what are the

relationships between the PVmeasure introduced by the Naimark theorem and the one introduced by

Theorem 5.
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An answer to that question can be given by using the main result of the present paper (Theorem

3). In particular we will establish a relationship between the sharp reconstruction A and the Naimark

operator A+ corresponding to a commutative POVmeasure F such that the operators in the range of F

are discrete (an operator is discrete if there exists a basis of eigenvectors of the operator). The following

theorem is a consequence of Theorem 3.

Definition 6. Two bounded self-adjoint operators A and B are said to be equivalent if there exists a

bounded, one-to-one, measurable function f such that A = f (B).

Theorem 6. Let F : B(R) → F(H) be a commutative POV measure such that the operators in the range

of F are discrete. Let A be the sharp reconstruction of F, E+ an extension of F whose existence is asserted

by Naimark’s theorem and A+ the Naimark operator
∫

λ dE
+
λ . Then, A is equivalent to the projection of a

Naimark operator f (A+). Moreover, A = ∫
f (t)dFt up to bijections.

Proof. By Theorem 10 in [4], we can restrict ourselves, without loss of generality, to the case of POV

measures with spectrum in [0, 1]. Therefore, let F be a POV measure with spectrum in [0, 1] and such

that F(Δ) is discrete for everyΔ ∈ B([0, 1]). ByTheorem3.5 inRef. [7],A is discrete so thatwecanwrite

A = ∑∞
i=1 λiE

A
i . Let {μ(·)(λi)}i∈N be the sequence of probabilitymeasures such that F(Δ) = μΔ(A). By

Lemma 3.6 in Ref. [7], {μ(·)(λi)}i∈N is a sequence of distinct probability measures. Theorem 3 ensures

the existence of a measurable, one-to-one function f (t) such that the function

Gf (λi) =
∫

f (t) dμt(λi)

is one-to-one. Theorem4 inRef. [5] and the fact that the sharp reconstruction is definedup to bijections

end the proof. �

Theorem 6, which is a consequence of Theorem 3, establishes the equivalence between sharp recon-

structions and projections of Naimark operators and generalizes some previous results [4,5].

Moreover, Theorem3 can be used to reverse theNaimark extension process described in Theorem4

and therefore to go back from the Naimark operator A+ acting in the extended Hilbert space H+ to

the sharp reconstruction A acting on H. And this can be done concretely since we have a procedure for

the construction of the function f .

Finally, we want to further remark the importance of the fact that in the present paper we give a

constructive proof of Theorem 3. Indeed, the construction in Theorem 3 can be used to get a repre-

sentation of the sharp reconstruction A of F as an integral with respect to F (see the ends of Theorem

6). It is also worth remarking that there exists a procedure [9,2] for the construction of the functions

μΔ(λ).

Appendix A. A useful lemma

Lemma 1. Let us consider step n.1 in the proof of Theorem3. There exists a sequence of real numbers a
(n−1)
i

which satisfies the items from n.1.1 to n.1.6.

Proof. We set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(n,r) = minp=j−1,...,n−1

{∣∣∣∑sp
l=1 k

(p)
l (λ

(p)
j, l −λ

(p)
i, l )

∣∣∣; i<j � n
}

32·2n·2r

δ(n,r) = minp=1,...,n−1{|k(p)
j −k

(p)
i |, |1−k

(p)
j |; i<j � sp}

32·2n·2r
B(n,r) := min{b(n,r), δ(n,r)}
C(n,l) := (k

(n−1)
l+1 −k

(n−1)
l )

|k(n−1)
l+1 −k

(n−1)
l |
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In order to prove the Lemma, we set, for every l ∈ {1, . . . , sn−1},

a(n−1)
r =

⎧⎪⎪⎨⎪⎪⎩
0, r = d

(n)
l

C(n,l)B(n,r)k
(n−1)
l , r ∈ (d

(n)
l , D

(n)
l ], l < sn−1

B(n,r)k
(n−1)
sn−1 , r ∈ (d

(n)
sn−1 , D

(n)
sn−1 ].

Then, items n.1.1, n.1.2, n.1.3, n.1.4, n.1.5 are obviously satisfied. It remains to prove item n.1.6.

We have, for every q, l ∈ {1, . . . , sn−1}, l, q /= sn−1, q /= l,

∣∣∣a(n−1)
r − a

(n−1)
j

∣∣∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|C(n,l)k
(n−1)
l (B(n,r) − B(n,j))| /= 0, j, r ∈ (d

(n)
l , D

(n)
l ]

|C(n,l)B(n,r)k
(n−1)
l − C(n,q)B(n,j)k

(n−1)
q |

< |k(n−1)
l − k

(n−1)
q |, r ∈ (d

(n)
l , D

(n)
l ]

j ∈ (d
(n)
q , D

(n)
q ]

|B(n,r)k
(n−1)
sn−1 − C(n,l)B(n,j)k

(n−1)
l |

< |k(n−1)
sn−1 − k

(n−1)
l |, r ∈ (d

(n)
sn−1 , D

(n)
sn−1 ]

j ∈ (d
(n)
l , D

(n)
l ]

|B(n,r)k
(n−1)
sn−1 − B(n,j)k

(n−1)
sn−1 |

= k
(n−1)
sn−1 |B(n,r) − B(n,j)| /= 0, r, j ∈ (d

(n)
sn−1 , D

(n)
sn−1 ]

(A1)

In order to explain the second and the third inequalities in (A1), let us assume r > j. Then (see the

definition of B(n,r)),

∣∣∣C(n,l)B(n,r)k
(n−1)
l − C(n,q)B(n,j)k(n−1)

q

∣∣∣�
∣∣∣k(n−1)

l − k
(n−1)
q

∣∣∣
32 · 2j · 2n

⎛⎝k
(n−1)
l

2r−j
+ k(n−1)

q

⎞⎠
<
∣∣∣k(n−1)

l − k(n−1)
q

∣∣∣ .
An analogous reasoning can be used to prove the third inequality in A1. �
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