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Perceptual decisions are made not only during goal-directed behavior such as choice tasks, but also occur
spontaneously while multistable stimuli are being viewed. In both contexts, the formation of a perceptual
decision is best captured by noisy attractor dynamics. Noise-driven attractor transitions can accommodate a
wide range of timescales and a hierarchical arrangement with “nested attractors” harbors even more
dynamical possibilities. The attractor framework seems particularly promising for understanding higher-
level mental states that combine heterogeneous information from a distributed set of brain areas.
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Introduction

Brain activity is nothing if not dynamic. At whatever scale of
volume or time one cares to examine it, brain tissue ceaselessly
produces waves, bursts, oscillations, sudden transitions, spindles,
fluctuations, transients, and many other dynamic patterns of activity.
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So it seems mildly paradoxical that some aspects of brain function
may depend on the existence of decidedly “undynamic” states,
namely, on stable patterns of reverberating activity that sustain and
support themselves, at least for some time, against the relentless
onslaught from the rest of the brain. Starting from early seminal
intuitions (De No, 1938; Hebb, 1949), reverberating patterns of
activity, also called “attractor states,” have been considered as a
possible mechanism for various cognitive processes and functions,
among them working memory (Zipser et al., 1993; Amit and Brunel,
1997; Amit and Mongillo, 2003; Del Giudice et al., 2003), recall of
long-term memory (Hopfield, 1982; Amit, 1995; Hasselmo and
McClelland, 1999), attentional selection (Deco and Rolls, 2005a),
rule-based choice behavior (Vasilaki et al., 2009; Fusi et al., 2007) and,
most recently, the formation of perceptual states (Wong et al., 2007;
Furman and Wang, 2008).

Of course, “attractor states” are a theoretical notion, not an
empirical finding. When neuronal activity is described at an
appropriate level of abstraction, simulations of populations of spiking
neurons capture the collective dynamics that is generated by
recurrent interactions between such populations. The existence of
attractor states is revealed when a reduced version of the spiking
network is analyzed with so-called mean-field techniques (Amit and
Brunel, 1997; Brunel and Wang, 2001; Renart et al., 2003). These
methods are borrowed from statistical physics and, when applied to
networks of formal and spiking neuron models (Hopfield, 1982; Amit
and Brunel, 1997), identify sets of average activity levels at which the
various interactions between populations of neurons exactly balance
each other and thus create a collective steady-state. The charm of this
approach is that the properties of these models, and the conditions
needed to support such dynamical regimes, can be tested at very
different levels of experimental analysis: the biophysical parameters
of neurons and synapses, the spiking activity of single neurons and of
cell assemblies, the aggregate metabolic demand of neural tissue, the
timeevolution of cognitive processes and, indeed, the animal's
behavior (Deco et al., 2009).

What would attractor states “look like” in the brain? Their stability
is guaranteed only for idealized networks with infinitely many
neurons. In the brain, where neuron numbers are finite, spontaneous
activity fluctuations would destabilize and, sooner or later, overthrow
any self-sustaining pattern of activity. Accordingly, an attractor state
should remain stable up to the time-scale of cognitive processes and
should terminate due to spontaneous activity fluctuations. In addition,
neuronal populations participating in an attractor state should exhibit
stereotypical activity levels so that the trial-to-trial variability should
be significantly smaller than in other populations. Further, an
incomplete attractor state, in which only a subset of participating
populations exhibits steady-state activity levels, should tend to
complete itself and to impose steady-state activity levels also on the
remaining populations (Amit, 1995).

Of course, this overly simplistic picture offers only a starting point
for understanding complex dynamical representations (Destexhe and
Contreras, 2006; Durstewitz and Deco, 2008). Instead of approaching
and remaining in a steady-state, the population activity would follow
a complex trajectory, jumping from one attractor state to another, or
traversing entire sequences of attractor states (Sompolinsky and
Kanter, 1986; Kleinfeld, 1986; Amit, 1988; Tsuda, 2001). The impetus
for this movement would come from attractive and repulsive forces
within the network and each transition of the population activity
would in turn change these forces. As an analogy, let population
activity be represented by a ball that rolls downhill in an energy
landscape which is not static but which is overturned whenever the
ball reaches a new valley (Hopfield, 1982). In addition to these
deterministic effects, spontaneous activity fluctuations would drive
stochastic transitions and ensure that this rich landscape of
metastable states is widely explored (Hopfield, 1984; Buhmann and
Schulten, 1987).
Here, we summarize recent evidence suggesting that the dynamics
of perception may reflect transitions among attractor states. Indeed,
this notion has intuitive appeal, as perceptual states do seem to share
many characteristics of attractor states: they are self-completing in
the sense that missing evidence is “filled in” while conflicting
evidence is suppressed, they form in a probabilistic rather than in a
deterministic manner, and they often terminate spontaneously even
when the sensory input has remained unchanged.

In three sections, we consider both experimental and theoretical
work bearing on the role of attractor states in perception. The first
section concerns spontaneous activity fluctuations in sensory cortices
and across the brain (Grinvald et al., 2003; Fox and Raichle, 2007;
Ringach, 2009). A second section considers perceptual decision
making, that is, situations in which a perceptual choice is made and
expressed with a stereotypical motor response (Gold and Shadlen,
2007; Romo and Salinas, 2003). A third section discusses multistable
perception, in other words, the spontaneous reversals of perceptual
experience that are often induced by ambiguous sensory situations
(Leopold and Logothetis, 1999; Blake and Logothetis, 2002).

Spontaneous activity

Our perceptions and actions vary slightly even under identical
conditions. This reflects the fact that brain activity fluctuates
independently of external factors. At the level of individual neurons,
the precise timing of spikes varies because of channel noise and
variability in the mechanisms of synaptic transmissions (Shadlen and
Newsome, 1998; Faisal et al., 2008). In addition, in neuronal
populations of finite size, the variability of individual spike times
will result in substantial activity fluctuations at the population level
(Brunel and Hakim, 1999; Spiridon and Gerstner, 1999; Mattia and
Del Giudice, 2002). This provides a “noisy background” in the synaptic
input received by each neuron which further varies spike timing. Of
course, this background activity may not be truly random and may
well conceal meaningful structure (Stevens and Zador, 1998; Stuart
and Hausser, 2001; Shu et al., 2003).

Even without sensory stimulation or a mental task, the brain is
remarkably active (Fox and Raichle, 2007; Kohn et al., 2009). This
spontaneous activity becomes apparent, at different spatial and
temporal scales, with optical imaging of voltage-sensitive dyes (Arieli
et al., 1996; Slovin et al., 2002; Kenet et al., 2003), electrical recordings
(Tsodyks et al., 1999; Petersen et al., 2003; Fiser et al., 2004; Freyer et
al., 2009), calcium-imaging of individual neurons (Ikegaya et al.,
2004; MacLean et al., 2005; Luczak et al., 2009), and magnetic-
resonance imaging (Biswal et al., 1995; Fox et al., 2005). Because it is
encountered in anaesthetized and in alert (but resting) animals as
well as in brain slices, spontaneous activity is thought to reflect
intrinsic properties of neural populations and networks.

Optical imaging

In visual cortex of cats, the spontaneous activity revealed by
optical imaging exhibits an intriguing spatial and temporal structure,
switching between patterns of activity that resemble the activity
patterns evoked by stimulation (Arieli et al., 1996; Tsodyks et al.,
1999; Kenet et al., 2003). Similar activity patterns have been observed
in anaesthetized monkeys (Slovin et al., 2002). Both spontaneous and
evoked patterns of activity seem to reflect the functional architecture
and connectivity of visual cortex, specifically, the excitatory (inhib-
itory) interaction between columns of similar (different) orientation
preference. The amplitude of spontaneous and evoked activity is
comparable, but spontaneous patterns are more correlated (i.e., less
noisy) than evoked patterns (Nir et al., 2006; Chen et al., 2006; Smith
and Kohn, 2008). With calcium imaging, similarly stereotypical
patterns of activity become visible even at the level of individual
neurons. In slices of visual, auditory, or somatosensory cortex,
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spontaneous activity and thalamic stimulation elicit precise spatio-
temporal patterns of neuronal spiking that are almost indistinguish-
able (Ikegaya et al., 2004;MacLean et al., 2005; Luczak et al., 2009). On
the basis of these observations, it has been suggested that the internal
connectivity of sensory cortices prescribes a fixed repertoire of
attractor states and that spontaneous activity comprises serial
transitions between these stereotypical states (Singh et al., 2008;
Ringach, 2009).

Magnetic-resonance imaging

At larger scales and lower frequencies, the resting brain exhibits
correlated fluctuations in the blood-oxygen-level dependent (BOLD)
signal (Biswal et al., 1995; Fox et al., 2005; Fox and Raichle, 2007),
which in turn may reflect fluctuations in the local field-potential
generated by neuronal activity (Logothetis and Wandell, 2004;
Shmuel et al., 2006; Nir et al., 2007; Goense and Logothetis, 2008;
Sirotin and Das, 2009; Angenstein et al., 2009). Typically, slow
fluctuations are correlated in groups of areas that are functionally
related, such as bilateral motor cortex, visual cortex, oculomotor
areas, attention-related areas, areas related to language, episodic
memory areas, and others (Vincent et al., 2006; Fox et al., 2006;
Vincent et al., 2007; Moeller et al., 2009). Interestingly, the pattern of
BOLD signal increases and decreases, which is typically associated
with certain cognitive tasks, is mirrored in a pattern of positive and
negative correlations in slow BOLD fluctuations (Laufs et al., 2003; Fox
et al., 2005). The areas negatively correlated with task performance
are thought to form a “default network” (Raichle et al., 2001; Buckner
et al., 2008). One study has compared slow fluctuations with
anatomical connectivity, finding that pairs of correlated areas are
often (though not always) linked by direct anatomical projections
(Vincent et al., 2007). This would seem to imply that either monoor
polysynaptic projections may underlie correlated fluctuations.

Avalanches

A particularly intriguing aspect of spontaneous activity are
“neuronal avalanches” (Plenz and Thiagarajan, 2007; Pajevic and
Plenz, 2009). Synchronous firing in upper cortical layers, which
negatively deflects the local field potential, propagates to other
cortical sites, triggering a chain reaction of such synchronization
episodes. With the help of multielectrode arrays, the statistics of such
“avalanches” has been studied in the cortex of rodents and monkeys,
both in culture and in vivo (Beggs and Plenz, 2003, 2004; Stewart and
Plenz, 2008; Gireesh and Plenz, 2008; Petermann et al., 2009). To a
good approximation, the probability of an avalanche of a given size
and duration follows a power law distribution, with an exponent of
-3/2 for size and of -2 for duration. This scale invariance suggests that
avalanches exhibit a fractal organization and that avalanche patterns
are maximally diverse in size and duration. Avalanche dynamics
appears to be at least partly deterministic, as complex avalanche
patterns recur with “millisecond precision” (Beggs and Plenz, 2004;
Stewart and Plenz, 2008). A possible theoretical explanation for the
empirically observed power law exponents is that cortical dynamics
corresponds to a “critical phase transition,” at which spatiotemporal
patterns are maximally diverse. There are a number of ways in which
critical dynamics could be maintained, among them short-term
plasticity and small-world connectivity (Bienenstock and Lehmann,
1998; Levina et al., 2007; Teramae and Fukai, 2007; Abbott and
Rohrkemper, 2007).

Summary

The nature and origin of spontaneous activity in the brain is only
partially understood. However, there is converging evidence that
spontaneous activity is not random but consists in part of correlated
patterns of activity. Similar correlated patterns are observed in
response to sensory stimulation in the context of mental activity. As
has been pointed out by several authors, these findings are highly
suggestive of attractor states (Plenz and Thiagarajan, 2007; Ringach,
2009). Particularly intriguing is the finding that correlated patterns
occur at different spatial and temporal scales, which would be
consistent with the notion of “nested attractors” (see below). The
most detailed observations in this regard concern patterns of
synchronization events that deflect the local field potential. However,
it remains to be seen how this particular type of activity relates to
other forms of spontaneous activity in the brain.

Perceptual decisions

It has long been apparent that perceptual performance is
probabilistic. When observers try to distinguish between sensory
events, they do not succeed or fail consistently. Instead, they succeed
with a probability that increases with the physical difference between
the events. This probabilistic performance is thought to reflect the
presence of “internal noise,” which forms a basic ingredient of
quantitative models of perceptual decisions (Green and Swets, 1966).
A systematic analysis of response times reveals further particulars
about the probabilistic processes that lead to perceptual decisions
(Smith and Ratcliff, 2004; Bogacz, 2007). Typically, response times
lengthen with perceptual difficulty and are distributed with a positive
skew. In addition, response times increase when the observer tries to
decide with a higher degree of confidence (“speed-accuracy trade-
off”). These observations suggest that noisy perceptual information
accumulates gradually until it reaches a criterion level, at which point
a response can be initiated with the desired degree of confidence.
Indeed, integration-to-bound of a noisy sensory signal affords an
excellent phenomenological account of behavioral observations such
as response time distributions and their dependence on task variables
(Ratcliff and McKoon, 2008; Ratcliff and Starns, 2009).

Over the last several decades, single-unit recording studies in
monkeys have identified several brain structures where neuronal
activity relates to perceptual decision making. This has revealed much
about the nature of sensory representations and sensory working
memory, and about the role of motor structures in perceptual
decisions. In addition, this neurophysiological work has spurred
theoretical studies that have formulated plausible mechanistic
accounts of perceptual decision making. Our brief summary of this
experimental and theoretical work will focus on two series of
groundbreaking studies of visual and somatosensory perception in
monkeys. The principal findings of these studies with monkeys are
likely to apply equally to perceptual decision making by humans
(Heekeren et al., 2008).

Two choice tasks

To trace the neural correlates of visual decision making, Newsome,
Shadlen and colleagues have trained macaques to discriminate the
predominant direction-of-motion of a field of moving dots (Newsome
et al., 1989; Gold and Shadlen, 2007). While viewing the dot field, the
animals maintained eye fixation, but afterwards shifted their eyes to
an appropriate response target, thereby indicating which direction-
of-motion they had perceived. The perceptual difficulty of the task
depended on how many moved in the predominant direction (as
opposed to random directions). Regardless of difficulty, however,
every perceptual decision culminated in a stereotypical motor action
(i.e., an eye movement).

Pursuing a similar research programme for somatosensory
decisions, Romo and colleagues have trained macaques to discrimi-
nate vibrotactile frequency (Romo et al., 2000; Romo and Salinas,
2003). In this behavioral paradigm, the animals sensed two sequential
mechanical vibrations with a restrained hand, before indicatingwhich
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vibration they had perceived as the higher frequency by pressing an
appropriate button with their free hand. Perceptual difficulty
depended on the difference between the two stimulus frequencies.
Note that this task also engaged working memory, as the animals had
to compare the remembered frequency of the first stimulus with the
perceived frequency of the second. Once again, every perceptual
decision was expressed through a stereotypical action (i.e., a button
press).

Neural correlates

In both the visual and the somatosensory domain, it was possible
to link neuronal activity in sensory cortical areas to the perceptual
decision reached by the animal. For example, when the activity of
single neurons in visual area MT was recorded while the monkey
performed the direction-of-motion discrimination described above,
this activity was as informative about the physical stimulus as the
monkey's response (Newsome et al., 1989; Britten et al., 1992). When
neurons in area MT were stimulated electrically while the monkey
performs this task, the animal was more likely to report the direction-
of-motion to which the stimulated neurons were tuned, suggesting
that the activity of these neuronswere causally linked to themonkey's
perception of visual motion (Salzman et al., 1990, 1992). Similarly, the
activity of single neurons in somatosensory cortex (S1) correlated
trial-by-trial with the monkeys' discrimination of vibrotactile fre-
quency (Salinas et al., 2000). When one of the two sequential
mechanical vibrations was replaced by direct microstimulation of S1
neurons, the animals continued to perform normally, as if the direct
brain stimulation had elicited a comparable perceptual experience to
skin vibration (Romo et al., 1998, 2000). Thus there can be little doubt
that activity in visual or somatosensory cortex directly informs the
corresponding perceptual decisions.

In both behavioral paradigms in question, the animals withheld
their motor response until sufficient sensory information had
accumulated or sensory stimulation had ceased. Presumably, the
animals' decision matured during this period of temporary inactivity,
which was terminated by a stereotypical motor response. Indeed, it
proved possible in both paradigms to trace the process of “decision
formation” to neuronal activity of motor planning areas.

For example, visual decisions were evident in areas known to be
involved in the planning and execution of eye movements, most
particularly in the lateral intraparietal cortex (LIP), but also in
dorsolateral prefrontal cortex (Kim and Shadlen, 1999), frontal eye
fields (FEF) (Hanes and Schall, 1996) and superior colliculus (SC)
(Thevarajah et al., 2009). While a decision was being formed, activity
increased ramp-like in LIP neurons selective for the eye movement
that was eventually executed (Roitman and Shadlen, 2002). The rate
of increase depended on the quality of visual evidence, becoming
steeper for “easier” discriminations. When the visual evidence was
transiently enhanced or degraded, the activity of LIP neurons
appeared to reflect the time integral of visual information (Huk and
Shadlen, 2005). That this LIP activity was linked causally to decision
formation was confirmed by microstimulation (Hanks et al., 2006).
The accumulation of visual information in LIP clearly concerned
neurons involved in saccade planning: when a conflicting eye
movement was evoked by microstimulation of frontal eye fields
(FEF), the evoked movement was deflected in the direction of the
visual decision (Gold and Shadlen, 2000, 2003). Even when the
animals maintained the decision in working memory before
performing an eye movement, some neurons in superior colliculus
(SC) continued to reflected the perceptual decision (Horwitz et al.,
2004).

Animals tended to initiate the eye movement when LIP activity
reached a certain criterion level, suggesting that this level marked the
completion of the decision process (Roitman and Shadlen, 2002; Huk
and Shadlen, 2005). This was true even when animals were permitted
to respond prematurely (Kiani et al., 2008). Interestingly, the criterion
level appeared to remain similar when task difficulty was varied by
degrading the visual evidence or by introducing additional response
choices (Huk and Shadlen, 2005; Churchland et al., 2008). Criterion
activity remained constant also in the FEF in a countermanding
context, in which the animal decided to suppress a response (Hanes
and Schall, 1996). A fascinating hint as to what LIP activity may
contribute to the animals' subjective experience is offered by the
observation that LIP activity correlates trial-by-trial with the animals'
subjective confidence in a particular visual decision, as indexed by a
post-decision wagering behavior (Kiani and Shadlen, 2009).

In the case of the vibrotactile frequency discrimination, the
decision emerged in the activity of areas involved in planning hand
and finger movements. During the delay period following the first
mechanical vibration, neuronal activity in inferior prefrontal, medial
premotor, and ventral premotor cortex represented the frequency of
this remembered stimulus (Romo et al., 1999; Hernandez et al., 2002;
Romo et al., 2004). With the onset of the secondmechanical vibration,
the activity initially reflected in a graded fashion the difference
between remembered and current frequencies, but then appeared to
approach one of two categorical levels corresponding to the binary
decision outcome. This comparison and decision process was also
evident, albeit to a lesser degree, in somatosensory cortex S2 (Romo et
al., 2002). In primary motor cortex, neuronal activity presaged the
decision outcome, but did not seem to participate in the comparison
of remembered and current stimuli (Romo et al., 2004). In summary,
the decision process during this task reached its culmination almost
simultaneously in distributed network of sensory and premotor areas.

To better distinguish sensory and decision processing, Romo and
colleagues modified the behavioral task and trained animals to report
the presence or absence of a single mechanical vibration of varying
intensity (de Lafuente and Romo, 2005, 2006). Whereas neural
activity in somatosensory area S1 followed vibration intensity in a
graded fashion, activity in medial premotor cortex reflected the
categorical decision (presence or absence) reached in each trial,
largely independently of stimulus intensity. Comparing decision-
related activity across eight cortical areas, the authors could show that
covariance with stimulus intensity decreased, and covariance with
decision outcome increased, gradually from sensory, to premotor, to
motor areas (de Lafuente and Romo, 2006). In premotor areas,
decision-related activity increased steadily during stimulus presen-
tation, consistent with a gradual accumulation of evidence, and trial-
by-trial fluctuations predicted the decision outcome. Interestingly, the
decision-related activity in premotor areas remained largely unaf-
fected when the animal was not required to produce a response.

Attractor models

What computational machinery could underlie this behavioral and
neurophysiological evidence? A plausible decision circuit must
combine several features. Firstly, it must categorize perceptual
information by choosing a stereotypical response from a discrete
number of options. Such winner-take-all behavior implies the
reduction of a high-dimensional stimulus space to the task-relevant
dimensions. Secondly, a decision circuit must accumulate sensory
evidence over time and must allow decision speed to be traded for
decision accuracy. Finally, it must feature some intrinsic variability
such as to respond to weak evidence in a stochastic manner and to
account for psychometric functions.

Attractor models of spiking neuron networks fulfill the above
requirements and reproduce much of the available psychophysical
and neurophysiological experimental evidence (Wang, 2002; Deco et
al., 2007; Wang, 2008), as shown in Fig. 1. In these models, separate
pools of excitatory neurons drive each response and interact
competitively via inhibitory interneurons (Amit and Brunel, 1997).
When recurrent couplings are strong, local reverberation can amplify



Fig. 1. Perceptual decision in amultistable network of spiking neurons. (a) Effective “energy landscape” of a neuronal network with two competing populations, whose firing rates rA
and rB represent perceptual choices A and B, respectively. With adequate recurrent excitation and sensory input, a plateau appears, separating the stable states. This may be narrow
(dashed curve) or broad (solid curve), depending on criterion level. (b) Firing rates rA (red) and rB (blue) for three simulations of perceptual decisions as in (Martì et al., 2008).
Networks have 20,000 excitatory and inhibitory integrate-and-fire neurons. The dashed line at 15 Hz is the threshold activity that determines the winning choice. Intrinsic
fluctuations of spiking activity are responsible for the different reaction times. (c) System trajectories in the phase plane (rA , rB ) for different choices A and B (red and blue
respectively). The histogram shows the frequency of various activity states rB–rA and illustrates the bistable nature of the dynamics.
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activity in any pool that is slightly favored by sensory input. As its
activity grows, the activity of other pools is suppressed, ensuring a
single winner. A criterion level can be set by providing additional,
symmetric input to all pools.

The attractor decision is well described by the energy landscape
metaphor. Stimulus onset destabilizes the low-activity state and
forces the system to choose between two high-activity decision
states. The ball starts on a plateau between two valleys and rolls in
random directions, propelled by intrinsic fluctuations. On a broad
and gently sloping plateau, the ball's noisy trajectory gradually
reveals the input bias (high criterion). On a narrow plateau, the
outcome is determined largely by fluctuations (low criterion).
Strength of sensory input is reflected in the incline of the plateau.
An unambiguous input creates a steep slope and ensures a fast
descent and deterministic outcome (Deco et al., 2007; Wang, 2008).
Interestingly, even a weak stimulus, which fails to destabilize the
resting state, can result in a decision, provided there is sufficient time
for an escape driven by activity fluctuations (Martì et al., 2008;
Durstewitz and Deco, 2008).

The attractor framework is general and can readily be extended to
more complex situations, such as decisions involving more than two
choices (Furman and Wang, 2008; Albantakis and Deco, 2009). Even
the comparison of two sequential stimuli (i.e., vibrotactile frequency
discrimination) can be achieved. To this end, Machens et al. (2005)
introduced a multi-modular network forming a “line attractor,”which
could hold a first stimulus in working memory. When the second
stimulus appeared, the energy landscape changed into bistable
configuration, in which the system was driven by the difference
between the two stimuli (Brody et al., 2003).

Clearly, the attractor framework closely parallels phenomenolog-
ical models (“integration-to-bound”) of perceptual decisions (Usher
and McClelland, 2001; Ratcliff and McKoon, 2008). Indeed, the
attractor account is formally equivalent to a unidimensional nonlinear
diffusion with threshold (Roxin and Ledberg, 2008), provided the
dynamic regime remains close to the critical point at which the resting
state is destabilized.

Summary

In summary, the remarkable body of work on perceptual decisions
seamlessly integrates behavioral evidence, single-unit activity, and
theory of spiking neuron populations. Interacting neural populations
in cortical areas related to motor planning exhibit distinct steady-
states of activity that correspond to alternative decision outcomes.
The integration of noisy sensory information is accomplished by a
stochastic transition to one of these attractor states. Importantly, the
decision-related activity is observed even when the response is
delayed or suppressed (de Lafuente and Romo, 2006). It should be
kept inmind, however, that the evidence for attractor-based decisions
draws on behavioral situations in which each perceptual choice is
associated consistently with a specific motor response. When animals
are taught a response rule that varies from trial to trial, decision-
related activity is no longer evident inmotor planning areas (Gold and
Shadlen, 2003).

Multistable perception

With many displays, prolonged viewing does not produce a
stable visual experience but provokes from time to time a discrete
change in appearance. This phenomenon is called bistable or
multistable perception, depending on whether two or more
alternative appearances are observed. Well-known examples are
the Necker cube, the perception of depth-from-motion, or binocular
rivalry (Attneave, 1971; Leopold and Logothetis, 1999). Multistable
phenomena are not restricted to the visual domain and occur also in
auditory and tactile perception (Pressnitzer and Hupe, 2006; Carter
et al., 2008).

Multistability is related to perceptual illusions and the inferential
nature of perception (Kersten et al., 2004): it occurs when the
visual system relies on prior knowledge of the natural environment
and of image formation to either infer additional object properties
that are not present in the retinal image, or to suppress retinal
information that is difficult to reconcile with prior knowledge. For
example, the visual system infers an illusory (but compelling)
appearance of depth from certain patterns of shading, line junctions,
or motion flow. When the situation is ambiguous and admits two
interpretations, a bistable appearance of depth results. An even
more dramatic form of multistability occurs with “unnatural” scenes
that are unlikely to be encountered in the physical world. In these
cases, the implausible information intermittently disappears from
awareness, resulting in binocular or monocular rivalry (Campbell
and Howell, 1972; Bonneh et al., 2001; Blake and Logothetis, 2002).



Fig. 2. Scalar property of multistable dynamics. The intervals between two consecutive
transitions of perceptual appearance are termed “dominance times.” Although mean
dominance times vary widely between different multistable phenomena, the distribu-
tion shape is largely preserved. Histograms of dominance times are shown for three
simulations (green, red, and blue areas). Solid curves are fitting Gamma probability
densities. Mean dominance times ( 4.0 s, 8.3 s and 16.4 s) differ fourfold, but the shape of
the normalized distributions (green, red, and blue curves of inset) remains very similar
(coefficients of variation 0.56, 0.64, and 0.69, respectively). Results obtained with the
“nested attractor”model of Fig. 3, with slightly different energy landscapes for the input
switches (see legend of Fig. 3).
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In what sense can multistable perception be compared to a
decision process? In a perceptual decision, sensory information is
classified into distinct categories and the outcome is probabilistic. In
the case of a multistable display, the possible outcomes (i.e.,
appearances) similarly fall into distinct categories and are probabi-
listic. This is true both when a display is first presented and when it is
viewed continuously so that its appearance changes from time to
time. Typically, the transition between appearances is marked by a
brief episode of indeterminate, mixed, or intermediate appearance.
Transitions are probabilistic in the sense that every possible pairing
“from appearance X to appearance Y” is typically observed, although
not all pairings with equal frequency (Suzuki and Grabowecky, 2002).
Even “unsuccessful” transitions (“from appearance X to appearance
X”) do occur (Brascamp et al., 2006).

Dynamical characteristics

The main difference to the acute perceptual decisions discussed in
the previous section is that, in the case of multistable phenomena,
stimulation is continuous and constant and that the decision is
periodically renewed. Unsurprisingly, the appearance after each
transition is influenced strongly by the preceding appearances. The
strongest influence of this kind is visual adaptation (Blake, 1989;
Petersik, 2002; Blake et al., 2003; Kanai and Verstraten, 2005;
Pearson and Clifford, 2005), which biases a renewed decision against
earlier appearances and ensures that “unsuccessful” transitions are
relatively infrequent. However, in those (rare) cases in which the
alternative appearances are adapted to a comparable degree,
“unsuccessful” and “successful” transitions occur comparably often
(Pastukhov et al., 2009). Another, weaker but longer-lasting influence
is a visual facilitation (Brascamp et al., 2008; Pastukhov and Braun,
2008), which biases a renewed decision in favour of earlier
appearances. For example, when the stimulus presentation is
periodically interrupted (in order to permit recovery from adapta-
tion), the long-lasting facilitation allows the current appearance to
persist across the interruption (Leopold et al., 2002; Maier et al.,
2003). This facilitation stabilizes perception considerably, slowing or
even arresting changes of appearance for intermittently presented
displays.

Multistable perception lacks a characteristic timescale in that
average duration of one appearance (“dominance time”) ranges at
least from seconds to minutes. Average dominance times vary both
between individual observers (Aafjes et al., 1966; Medith, 1967) and
between different bistable displays (Hupe and Rubin, 2004; Van Ee,
2005; Brascamp et al., 2005; Sheppard and Pettigrew, 2006). Even for
the same observer and same display, average dominance times vary
substantially with stimulus intensity (Bossink et al., 1993; Brascamp
et al., 2006), with attention (Meng and Tong, 2004; Mitchell et al.,
2004; Paffen et al., 2006; Pastukhov and Braun, 2007), and when a
display is periodically interrupted (Orbach et al., 1963; Leopold et al.,
2002; Maier et al., 2003). In some cases, the average dominance time
experienced by a given observer on a given display may differ by two
orders of magnitude for different stimulus regimes (Pastukhov and
Braun, 2007).

Another outstanding characteristic of multistable perception is the
highly irregular timing of changes in appearance: individual domi-
nance times scatter widely around their average value and the
distribution of dominance times typically approximates a Gamma
function (Levelt, 1967; Borsellino et al., 1972; Murata et al., 2003;
Brascamp et al., 2005). Independently of the average dominance time,
many multistable displays exhibit Gamma functions of comparable
shape. Specifically, the coefficient of variation lies generally between
0.4 and 0.6, as shown in Fig. 2. This striking correlation between the
mean value and the variance of dominance times constitutes a “scalar
property” and suggests that both measures have the same mechanis-
tic origin (Gigante et al., 2009).
Neural correlates

The neural basis of multistable visual perception has been
reviewed very recently (Sterzer et al., 2009). In the case of binocular
rivalry, fMRI studies with human observers show that BOLD signals in
primary visual cortex closely mirror both temporal and spatial shifts
in subjective appearance (Polonsky et al., 2000; Tong and Engel, 2001;
Lee et al., 2005). Even BOLD signals in the lateral geniculate nucleus
reflect fluctuations of awareness (Haynes et al., 2005; Wunderlich et
al., 2005). In primates, these BOLD signals were shown to correlate
more closely with local field potentials than with spiking activity
(Wilke et al., 2006; Maier et al., 2008), explaining the discrepancy to
earlier neurophysiological studies (Leopold and Logothetis, 1999). In
extrastriate visual cortex, too, the amplitude of neural activity as
measured electrophysiologically in monkeys or with functional
imaging in humans, follows the reversals of subjective appearance
(Blake and Logothetis, 2002; Tong et al., 2006). Interestingly, more
subtle patterns of activity continue to carry information about the
stimuli that are suppressed from awareness (Fang and He, 2005;
Sterzer et al., 2008). The privileged representation of visual informa-
tion that dominates awareness in higher visual cortex has been
confirmed also with other types of multistable displays. For example,
changes in the appearance of bistable motion are reflected in the
activity of motion-selective visual areas (Dodd et al., 2001; Castelo-
Branco et al., 2002; Muckli et al., 2002; Brouwer and van Ee, 2007) and
episodes of motion-induced blindness (a type of monocular rivalry
between stationary and moving stimulus elements) are associated
with antagonistic increases and decreases of activity in cortical areas
responsive to stationary ormoving stimuli, respectively (Donner et al.,
2008). Studies in which multistable displays are presented intermit-
tently further strengthen the link between subjective appearance and
activity in higher visual areas (Sterzer et al., 2008; Hesselmann et al.,
2008): in these areas, baseline activity prior to stimulus onset is
predictive of stimulus appearance after the onset.

Particularly interesting from a dynamical systems perspective is
the fact that changes in the appearance of a multistable display are
associated with transient increases in BOLD activity (Sterzer et al.,
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2009). These transient increases are observed not only in visual cortex
(Sterzer et al., 2002, 2003), but also in the parietal and frontal areas
that have also been associated with visual attention and working
memory (Lumer et al., 1998; Sterzer and Kleinschmidt, 2007).
Whether the transient activation of parietal and frontal areas is a
cause or a consequence of the changing appearance remains unclear.
Tentative support for a causal contribution is furnished by reports that
parietal/frontal activity transients precede both the change in
appearance and the activity transients in visual cortex (Sterzer and
Kleinschmidt, 2007; Britz et al., 2009). This should not be taken to
imply, however, that attentional mechanisms are responsible for
changes in appearance: voluntary control over multistable perception
is typically poor (Van Ee, 2005; Hancock and Andrews, 2007) and
multistable displays change their appearance even when attention is
tightly controlled (Pastukhov and Braun, 2007; Lee et al., 2007).

Computational accounts

Several observations about multistable phenomena are suggestive
of fluctuation-driven transitions between attractor states. For exam-
ple, experiments with quadra-stable displays show that the combined
appearance of different images parts is often “trapped” in certain
preferred configurations (Suzuki and Grabowecky, 2002). Direct
evidence for an attractor mechanism comes from a demonstration
of stochastic resonance in binocular rivalry (Kim et al., 2006). In this
study, antagonistic contrast modulation of the rivaling stimuli
combines with spontaneous activity fluctuations to produce discrete
“resonance peaks” in the distribution of dominance times. This allows
the amplitude of the spontaneous fluctuations to be estimated as the
equivalent of a 30% modulation of stimulus contrast. A related finding
is that perceptual learning accelerates rivalrous alternations of
appearance approximately three-fold (Suzuki and Grabowecky,
2007). This suggests that the neural plasticity induced by training
smoothes and simplifies the energy landscape, leaving merely two
distinct but shallow wells.

Various computational accounts have been proposed for multi-
stable phenomena. While some have been phenomenological and
others have detailed populations of spiking neurons, many of these
models propose essentially a noisy oscillator circuit (Lehky, 1988;
Mueller, 1990; Kalarickal and Marshall, 2000; Laing and Chow, 2002;
Wilson, 2003, 2007; Freeman, 2005; Shpiro et al., 2009). Just as in
perceptual decision models, mutual inhibition ensures that one of the
alternative stimulus representations emerges dominant. A habituat-
ing process such as spike-frequency adaptation (Schwindt et al., 1989;
Sanchez-Vives et al., 2000) or short-term synaptic depression (Abbott
et al., 1997; Tsodyks and Markram, 1997) curtails this dominance and
forces a perceptual reversal. Finally, intrinsic noise introduces some
variability to the dominance times (Lehky, 1995; Brascamp et al.,
2006). Oscillator models predict a characteristic dominance time that
is set by the habituation.

Attractor dynamics offers an alternative mechanism for multi-
stability. Both in phenomenological models (Kim et al., 2006; Shpiro
et al., 2009) and in detailed networks of formal (Riani and Simonotto,
1994) and spiking (Salinas, 2003; Moreno-Bote et al., 2007) neurons,
each stable appearance represents an attractor state of the system
dynamics: a valley in an energy landscape. Subjective appearance
changes when the barrier between two attractors is crossed.
Spontaneous activity fluctuations provide the random “kicks” that
are needed to escape from an attractor state. By varying network
parameters, the strength of the “kicks” and the height of the barriers
can be adjusted such as to obtain very low escape rates (Miller and
Wang, 2006; Martì et al., 2008), as is well known from “noise-driven
transitions” in multistable systems (Hanggi et al., 1990). In contrast to
oscillator models, this provides a natural way for obtaining a range of
dominance periods from the same set of neuronal time-constants
(Salinas, 2003). However, purely noise-driven transitions predict
exponential distributions of dominance times (Moreno-Bote et al.,
2007; Martì et al., 2008). To obtain the Gamma-like distributions that
characterize multistable phenomena, the attractor framework can be
extended by a habituating process (Moreno-Bote et al., 2007; Shpiro
et al., 2009). In this framework, habituation destabilizes the dominant
state by raising its valley in the energy landscape. Interestingly, the
empirical dominance time statistics is reproduced best when the
adaptation strength is such that the system operates just outside the
boundary of the oscillatory regime (Shpiro et al., 2009).

Nested attractors

Although attractor networks with habituation account adequately
for individual instances of multistable dynamics, this framework is too
simplistic to capture the dynamics under more general conditions.
The “scaling” of the variability with the mean of the dominance times
(mentioned above) presents a particular difficulty. Similar “scalar
properties” have been observed in other cognitive tasks involving
long timescales such as judgments of interval duration (Gibbon et al.,
1997). In the latter case, the scalar statistics of interval judgments can
be reproduced by pools of stochastic switches that accumulate over
time until a threshold is reached (Okamoto and Fukai, 2001; Okamoto
et al., 2007; Mattia, 2008; Almeida and Ledberg, 2009). Interestingly,
such a “stochastic integration” can also explain the Gamma distribu-
tion of dominance periods (Lehky, 1988). Recently, the attractor
framework and stochastic integration have been combined into a
more general account of multistable perception that explains the
scalar property of dominance statistics (Gigante et al., 2009). In this
approach, perception escapes from an attractor when sufficiently
many “flips” have occurred in an underlying pool of switches. In the
energy landscape metaphor, the valley floor now consists of discrete
wells and the monotonic climbing of a barrier is replaced by multiple
discrete hops between such wells. This type of dynamics has been
termed “chaotic itinerancy” (Tsuda, 2001; Durstewitz and Deco,
2008). If each stochastic switch is implemented as a bistable network
(as described above), then the perceptual state is represented by an
attractor of attractors, as illustrated in Fig. 3.

A “nested attractor” would explain not only the scalar property,
but would also offer a plausible mechanism for another puzzling
aspect of multistable dynamics. As mentioned, the intermittent
presentation of a multistable display stabilizes appearance (Orbach
et al., 1963; Leopold et al., 2002; Maier et al., 2003), revealing a long-
lasting facilitatory effect of earlier perceptual states (Brascamp et al.,
2008; Pastukhov and Braun, 2008). Noisy oscillators address this
phenomenon by postulating additional habituating processes at
longer timescales (Noest et al., 2007; Brascamp et al., 2008; Wilson,
2007). A hierarchy of stochastic integrators operating at different
timescales is a promising alternative (Gigante et al., 2009). In this
scenario, the top-level attractor that represents the dominant
appearance has nesting within a variety of lower-level attractors
integrating both sensory input (on faster time-scales) and dominant
appearance (on slower time-scales). The appearance-driven attractor
pools provide a memory trace which biases perceptual transitions in a
history-dependent manner. Thus, subjective appearance is based on a
distributed representation and reflects both active sensory pools and
active memory traces.

Summary

In summary, multistable perception represents a sequence of
stochastic perceptual decisions that are variously biased by the
current sensory input and by the outcome of earlier decisions. Scalar
properties are a prominent feature of this multistable dynamics.
Transitions between one appearance and another are reflected in the
activity of those visual cortical areas that represent the visual
attributes involved. No “appearance-related” activity is evident in



Fig. 3. A nested attractor performing competing stochastic integrations of sensory input, as proposed for bistable perception (Gigante et al., 2009). (a) A pool of bistable stochastic
switches (In) represent different sensory inputs (small blobs in gray cloud). Their summed activity ∑in biases the relative stability of the two global attractor states in the output
module (Out). In turn, Out activity feeds back to the input switches, in each case favoring one of the local attractor states. The energy landscape (large blob at bottom) shows two
global basins of attraction, each corrugated by several local basins. (b) Example of stochastic dynamics of In (reddish traces) and Out (black trace) attractors, both implemented as in
Moreno-Bote et al. (2007). Steady-state activities are close to−1 and+1. Before a global (Out) transition (vertical dashed lines) can occur, all local (In) switches must have changed
state. Equivalently, a global transition occurs whenever the sum∑in of local activities reaches amaximum or aminimum (gray trace). (c) Dynamic trajectory of a 500 s simulation in
the state space cross-section (∑in, Out). The marginal distributions show that dynamics is bistable from a global and multi-stable from a local perspective.
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premotor areas that would compare to the “decision-related” activity
in perceptual choice tasks. However, “transition-related” activity does
occur outside visual cortex in certain parietal and frontal areas, which
are generally associated with attentional and working-memory
functions. Many aspects of multistable dynamics are captured by
the kind of noisy attractor transitions that have also bee proposed for
perceptual choice tasks. However, the scalar properties and history-
dependence of multistable dynamics suggest a less simplistic “nested
attractor” picture, which could be the hallmark of a highly distributed
representation.

Conclusions

The neural mechanisms underlying perceptual decisions can be
studied profitably with at least two paradigms. With perceptual
choice tasks, the flow of sensory information and the formation of a
perceptual decision can be traced in exquisite detail (i.e., in the
activity of single neurons) through several cortical stages, which
combine sensory representations, working-memory and decision
representations, and representations of intended motor actions to
varying proportions. The great strength of this approach lies in the fact
that it allows decision-related activity to be identified and localized to
premotor areas. The price for obtaining this neuroanatomical focus of
decision-related activity is that the perceptual choice must be
consistently associated with a stereotypical motor response. When
this association is broken, the decision-related activity presumably
becomes distributed and correspondingly more difficult to identify.
With multistable perception, the dominant perceptual appearance
correlates with neural activity in those areas of visual cortex that
represent the visual attributes in questions, at least as judged by
magnetic-resonance imaging. In addition, transitions of perceptual
appearance are also associated with transient activations in parietal
and frontal areas. Perhaps due to its distributed nature, it has proven
more difficult to study multistable perception at the level of the
activity of single neurons, although recent developments in this
respect are extremely encouraging (Wilke et al., 2006; Maier et al.,
2008; Leopold et al., 2008). Certainly the flow of information and the
causal chain of events is not nearly as well understood as for
perceptual choice tasks. Arguably, the ongoing nature of multistable
perception offers an advantage in allowing the stochastic dynamics of
the decision process to be characterized in great detail. Few other
situations come to mind in which the collective dynamics of
distributed neural representations is so readily accessible.

In both paradigms, the dynamics of perceptual decisions is best
captured by a noisy attractor framework. However, the appropriate
mental picture is not a static, double-well energy landscape but rather
a sequence of temporary energy landscapes that are constantly
overturned by external or internal events (e.g., stimulus onsets,
transitions of perceptual appearance) (Deco and Rolls, 2005b; Rigotti
et al., 2007). Together with spontaneous activity fluctuations, this
results in a complex dynamics of “attractor hopping,” activity
transitions through “attractor ruins,” dynamical sequences of meta-
stable activity states, and so on (Mongillo et al., 2003; Destexhe and
Contreras, 2006; Durstewitz and Deco, 2008; Deco et al., 2009).
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Importantly, the time-scale of attractor transitions may span several
orders of magnitude evenwith identical neuronal components (Miller
and Wang, 2006; Martì et al., 2008), allowing the nervous system to
match a wide range of environmental processes.

Themost appropriate framework for capturing the dynamics of the
distributed neural representations underlying multistable perception
may be a “nested attractor” (Gigante et al., 2009). In this scenario, a
top-level transition is possible only after a sufficient number of lower-
level transitions have accumulated. Such a stochastic integration
process would explain in a natural way the “scalar property” that
characterizes multistable perception and other types of perceptual
judgments involving long timescales (Gibbon et al., 1997). Note that
the lower-level attractor pools need not be homogeneous. Instead,
they might comprise both faster-switching sensory representations
and slower-switching representations of memory traces, of anticipat-
ed stimulation, of behavioral goals, and so on. In consequence, the
top-level transition of perceptual appearance would come to reflect
external and internal events represented in a widely distributed set of
brain areas.

The coherent picture that emerges is that both goal-directed and
spontaneous decisions in perception may be actuated by the same
hierarchical and distributed machinery, as summarized in Fig. 4. It is
tempting to speculate that these insights into perceptual decision
making may reflect a general computational strategy adopted by the
brain. A hierarchy of nested attractors would provide a natural
substrate for all manner of spatial and/or tempo-erarchies in the
neural responses evoked by spatiotemporal sensory patterns (Kiebel
et al., 2008). For instance, when an observer watches a silent movie,
longer movie segments evoke more reliable responses in higher
cortical areas, suggesting a hierarchical representation of temporal
structure (Hasson et al., 2008). Similar evidence for hierarchical
organization has been reported for acoustic stimulation (Overath et
al., 2008). Furthermore, it has been suggested that increasingly
abstract behavioral goals are associated with increasingly longer
timescales, which in prefrontal cortex appear to be represented in a
Fig. 4. A perceptual choice between alternatives A and B involves the dimensional
reduction of a distributed and heterogeneous internal representation of current sensory
input, memory traces of prior sensory experience, behavioral goals, and other relevant
factors. Nested attractors provide a flexible framework for hierarchical representations
and for achieving this reduction. Importantly, the lower-level attractors are heteroge-
neous and exhibit different time-scales. Depending on the behavioral context, a smaller
or larger part of the hierarchical representation can be addressed. In a perceptual
decision, for example, the choice may be expressed in the activity of a focal population
in premotor areas. In multistable perception, the perceived appearance may be
represented in the activity of distributed populations in sensory, parietal, and frontal
areas. Intrinsic noise plays a constructive role and ensures that the computational
richness of nested attractors is fully exploited.
rostrocaudal gradient (Koechlin and Summerfield, 2007; Badre and
D'Esposito, 2009). Accordingly, it seems quite possible that distribut-
ed dynamical representations based on noise-driven, nested attrac-
tors may be operating in the context of a wide range of cognitive
processes. A critical prediction of this point of view is that
spontaneous activity should exhibit recurring patterns that are nested
over a wide range of spatial and temporal scales, possibly even in a
fractal manner. While the available evidence on spontaneous activity
is certainly suggestive in this regard, it remains far from conclusive
(Plenz and Thiagarajan, 2007). Accordingly, we eagerly await further
studies of spontaneous activity that will simultaneously cover
multiple spatial and temporal scales.
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