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ABSTRACT This study introduces an effective population-based optimization algorithm, namely the Golden
Search Optimization Algorithm (GSO), for numerical function optimization. The new algorithm has a
simple but effective strategy for solving complex problems. GSO starts with random possible solutions
called objects, which interact with each other based on a simple mathematical model to reach the global
optimum. To provide a fine balance between the explorative and exploitative behavior of a search, the
proposed method utilizes a transfer operator in the adaptive step size adjustment scheme. The proposed
algorithm is benchmarked with 23 unimodal, multimodal, and fixed dimensional functions and the results are
verified by a comparative study with the well-known Gravitational Search Algorithm (GSA), Sine-Cosine
Algorithm (SCA), Grey Wolf Optimization (GWO), and Tunicate Swarm Algorithm (TSA). In addition,
the nonparametric Wilcoxon’s rank sum test is performed to measure the pair-wise statistical performance
of the GSO and provide a valid judgment about the performance of the algorithm. The simulation results
demonstrate that GSO is superior and could generate better optimal solutions when compared with other
competitive algorithms.

INDEX TERMS Global optimization, golden search, metaheuristic, population-based, benchmark function.

I. INTRODUCTION
Many real world design problems can be considered as
optimization problems, and an appropriate optimization
method is required for the solution. On the other hand,
design problems have become harder when discontinuities,
incomplete information, dynamicity, and uncertainties are
involved. In such a case, classical optimization algorithms
based on mathematical principles demand exponential time
or may not find the optimal solution at all. One of
these classical algorithms is the gradient-based methods,
which utilize the gradient of the objective function for the
configuration of the optimization problem. To overcome the
mentioned problem, during the last few decades, introducing
new efficient metaheuristic optimization algorithms to deal
with the drawbacks of classical techniques has been of
great concern. The privileges of these algorithms include
derivation-free mechanisms, simple concepts and structure,
local optima avoidance, and effectiveness for discrete and
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continuous functions. Accordingly, there is an increasing
interest in presenting new metaheuristic algorithms that have
high efficiency, great accuracy, and an increased speed rate
in dealing with difficult optimization problems. Generally,
metaheuristic algorithms have two types: single-solution
based methods (also known as trajectory methods) and
population-based algorithms.

As the name indicates, in the former type, only one solution
is generated (usually at random) and processed during the
optimization phase until a stopping criterion is satisfied.

Some of these methods are Simulated Annealing (SA) [1],
Tabu Search (TS) [2], Iterated Local Search (ILS) [3],
and Vortex Search Algorithm (VSA) [4]. In the latter
type, a set of solutions (i.e., a population) is generated
randomly and updated iteratively in each iteration of the
optimization process until satisfying a stopping criteria. Some
well-known examples of these algorithms are the Genetic
Algorithm [5], Ant Colony Optimization [6], Particle Swarm
Optimization [7], Firefly Algorithm [8] and Harris hawks
optimization [9]. Regardless of the wide variety of recently
developed metaheuristic algorithms, they have two main
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FIGURE 1. Categorization of meta-heuristic algorithms.

phases include investigating the various promising regions
in a search space (exploration) and the local search around
the obtained promising regions (exploitation). The basic
differences between metaheuristic methods is the special
procedure that they applied for well balance among these two
phases. Based on the nature of themetaheuristics, population-
based algorithms aremore exploration-oriented, while single-
solution algorithms are more exploitation-oriented [10].

Although all population-based metaheuristics could obtain
relatively acceptable results, there is no metaheuristic
method that provides superior performance in solving all
optimizing problems [11]. Hence, proposing new high per-
formance metaheuristic algorithms is welcome. In addition,
as shown by Mirjalali [12], a meta-heuristic does not
necessarily need actual inspiration, and simple mathemat-
ical functions can also be used to design optimization
algorithms.

Therefore, the motivation of this study is to propose
a simple and effective global optimization technique for
complex problems. The proposed algorithm utilizes a new
adaptive step size adjustment scheme, which has a simple
concept and significantly improves the performance of the
search process. It is worth mentioning that the presented
method could provide a well balance between exploration
and exploitation. According to the capability of the proposed
algorithm in finding a (near) global solution in a reasonable
time, it is called a ‘‘Golden Search Optimizer’’ (GSO).

The remainder of this paper is organized as follows: In
section II, a survey on metaheuristic algorithms is presented.
Section III presents a description and step-by-step framework
of the proposed GSO algorithm. In section IV, the empirical
evaluation of GSO in an extensive test environment is
carried out, and the simulation results are compared with the

selected metaheuristic algorithms. Finally, the summary and
conclusions of the study are presented in Section V.

II. RELATED WORKS
In recent years, optimization has become a popular research
field and an economical way to find an optimal solution
to complex problems. According to Fig. 1, we have
divided the optimization algorithms into four categories
based on the type of inspiration. The first group is swarm-
based algorithms, which consist of a population of simple
agents interacting locally with one another and with their
environment. These algorithms employ artificial swarms of
autonomous agents that follow simple rules (relative to the
system’s complexity) to update their state through time. In the
optimization framework, a swarm consists of a number of
search agents whose state represents a candidate solution to
the optimization problem at hand. The agents adhere to basic
rules that promote their cooperation during the search for
better solutions. The search is typically defined as an iterative,
highly distributed procedure where the agents explore the
given search space for the problem while communicating
their findings to their mates. Information sharing is a key
issue for the efficiency of such computational schemes [13].
Some examples of swarm based algorithms include Par-
ticle Swarm Optimization (PSO) [14], Firefly Algorithm
(FFA) [15], Ant Colony Optimization (ACO) [16], Artificial
Bee Colony (ABC) [17], Krill Herd (KH) [18], Whale
Optimization Algorithm (WOA), Crow Search Algorithm
(CSA) [19], Rat Swarm Optimizer [20], Sperm Swarm
Optimization [21], Chameleon Swarm Algorithm [22]. The
second group is evolutionary algorithms, which are efficient
heuristic search methods based on Darwinian evolution
with powerful characteristics of robustness and flexibility
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to capture global solutions to complex optimization prob-
lems. Genetic Algorithm (GA), Evolution Strategy (ES),
Genetic Programming (GP), Biogeography Based Optimizer
(BBO), Evolutionary Programming (EP) [23], Differential
Evolution (DE) [24], Virulence Optimization Algorithm
(VOA) [25] are some of these algorithms. The third
category is physics-based algorithms inspired by natural
phenomena and imitating physical and biological processes
of nature, such as Simulated Annealing (SA) [1], Black Hole
Algorithm (BH) [26], Curved Space Optimization Algorithm
(CSO) [27], Ray Optimization (RO) [28], Gravitational
Search Algorithm (GSA) [29]. The fourth category is
human-based algorithms that allow humans to contribute
solution suggestions to the evolutionary process, such as
Harmony Search (HS) [30], Teaching Learning Based Opti-
mization (TLBO) [31], Imperialist Competitive Algorithm
(ICA) [32], Exchanged Market Algorithm (EMA) [33],
Thermal ExchangeOptimization (TEO) [34] and Tabu Search
(TS) [35]. There are other algorithms that are a combination
or modification of algorithms in these four categories. Some
of them are: modified particle swarm optimization [36], [37],
modified harmony search algorithm [38], modified gravi-
tational search algorithm [39], [40], modified ant colony
optimization [41], modified sine cosine algorithm [42], [43],
modified wild horse optimization [44], modified slime mould
algorithm [45], hybrid genetic algorithm and particle swarm
optimization [46], hybrid firefly algorithm [47], hybrid sperm
swarm optimization and gravitational search algorithm [48],
hybrid tunicate swarm algorithm and pattern search [49],
hybrid arithmetic optimization algorithm and sine cosine
algorithm [50].

Some of the most famous of these optimization algorithms
are described below. The Genetic Algorithm (GA) is the
most popular evolutionary inspiration technique that mimics
the principles of Charles Darwin’s Compatibility Survival
Theory. This method involves the selection process, the
crossover, and the mutation process to replace the worst
solution in each generation. In this algorithm, solutions are
improved according to the best solutions obtained by each
particle so far and the best solution found for the overall
swarm. The ACO algorithm imitates the collective behavior
of ants in finding the shortest path from the nest to the
food source. One of the most important and most interesting
behaviors of ants is their behavior when finding food, and
in particular, how to find the shortest path between food
and nest. This kind of behavior by the ants has a kind of
swarm intelligence that has recently attracted the attention of
scientists. In the natural world, ants of some species (initially)
wander randomly, and upon finding food, return to their
colony while laying down pheromone trails. If other ants find
such a path, they are likely not to keep travelling at random,
but instead to follow the trail, returning and reinforcing it if
they eventually find food. The DE is presented to overcome
the main defect of the genetic algorithm, namely the lack of
local search in this algorithm.

Themain difference between GA andDE is in the selection
operators. In the ABC model, the colony consists of three
groups of bees: employed bees, onlookers, and scouts. It is
assumed that there is only one artificially employed bee for
each food source. In other words, the number of employed
bees in the colony is equal to the number of food sources
around the hive. Employed bees go to their food source and
come back to the hive to dance in this area. The employed bee
whose food source has been abandoned becomes a scout and
starts to search for a new food source. Onlookers watch the
dances of employed bees and choose food sources depending
on the dances. The FA is a meta-heuristic algorithm, inspired
by the flashing behavior of fireflies. The primary purpose of a
firefly’s flash is to act as a signal to attract other fireflies. The
Firefly Algorithm is based on the life cycle of firefly worms.
In the firefly algorithm, worms tend to be attracted to high-
attraction lights. The worm with less light can be absorbed
by the worm with more light. In this situation, the swarm
moves like a PSO. Of course, the degree of motion is also
taken randomly to prevent the early convergence of the FA.

Optimization algorithms have advantages and disadvan-
tages. For example, the PSO algorithm solves problems with
small and simple dimensions well, but has poor performance
in high-dimensional, complex, and hybrid problems and
suffers from premature convergence [51].

The Gravitational search algorithm (GSA) is a novel
meta-heuristic stochastic optimization algorithm inspired by
the law of gravity and mass interactions [29]. In GSA,
individuals, called agents, are a collection of masses that
interact with each other based on Newtonian gravity and
the laws of motion. The agents share information using
the gravitational force to guide the search towards the best
location in the search space. The high performance and the
global search ability of GSA in solving various nonlinear
functions are inferred from the results of experiments
undertaken previously [29], [52]. InGSA, all agentsmove to a
new place, the direction and distance are determined by their
velocities. By changing the velocities over time, the agents
are likely to move towards the global optima.

The sine cosine algorithm (SCA) is a relatively new
meta-heuristic optimization approach developed by Mirjalili
in 2016 [12]. Compared with other meta-heuristics, the
SCA has a simple concept and structure and does not
have complicated mathematical functions. In the SCA, the
formulas for updating the population rely solely on sine
and cosine functions. SCA is better than other competitive
methods at finding optimal solutions and is suitable for
tackling real-world optimization problems [53].

The Tunicate Swarm Algorithm (TSA) is a recently
developed swarm-based algorithm [54]. Tunicates use swarm
intelligence and jet propulsion at sea to choose the optimal
state for seeking food in their surroundings. TSA outperforms
other competitor approaches when it comes to identifying
optimal solutions and is well-suited to real-world optimiza-
tion challenges.

VOLUME 10, 2022 37517



M. Noroozi et al.: Golden Search Optimization Algorithm

FIGURE 2. The GSO flowchart.

The Grey Wolf Optimizer (GWO) is a novel heuris-
tic swarm intelligent optimization algorithm proposed by
Seyedali Mirjalili et al. in 2014 [55]. The wolf, as a top
predator in the food chain, has a strong ability to capture
prey. Wolves generally like social life, and in the interior
of the wolves, there exists a rigid social hierarchy. The
GWO algorithmmimics the leadership hierarchy and hunting
mechanism of grey wolves in nature. Four types of grey
wolves, such as alpha, beta, delta, and omega, are employed in
simulating the leadership hierarchy [55]. In addition, the three
main steps of hunting: searching for prey, encircling prey, and
attacking prey are implemented. The GWO is able to provide
very competitive results compared to other well-knownmeta-
heuristics [55].

III. GOLDEN SEARCH OPTIMIZATION (GSO) ALGORITHM
Despite the wide variety of population-based algorithms
in the field of stochastic optimization, they are almost
all the same in the process of finding the optimum.
These algorithms commonly start the search process with a
randomly generated initial population (potential solutions).
These random solutions are evaluated during iterations using
a fitness function and improved by a set of formulas, which is
the core of an optimization technique, until satisfying some
termination condition.

In this study, according to the principles and commonly
used procedures of metaheuristic algorithms, a very simple
but effective optimization method called the Golden Search
Optimizer (GSO) is proposed. In fact, the new method
combines some major advantages of previously presented
algorithms like particle swarm optimization (PSO) and sine
cosine algorithms (SCA) to provide a fine balance between
global exploration and local exploitation and to avoid
premature convergence. In the GSO algorithm, the objects
update their position using a step size parameter, which is
almost the same as the velocity in the PSO algorithm [7].
However, instead of simple random values, the GSO utilizes
sine and cosine functions. The oscillation behavior of sine and
cosine functions allows one object to be re-positioned around
another one, and it can guarantee exploitation of the space
defined between two solutions. In addition, the exploration
capability of the algorithm will be improved by increasing
the range of sine and cosine functions, which allow a
solution to update its position outside the space between itself
and another solution [12]. Apart from its simple structure,
the algorithm outperforms other metaheuristics in terms of
convergence to the global best solution.

As a population-based metaheuristic optimization tech-
nique, GSO also commences the search process with an
initial random population of objects (candidate solutions).
In every iteration, the algorithm updates the position of
the objects using a step size parameter until satisfying
some termination criteria. The following is the detailed
mathematical expression of the GSO steps.

A. ALGORITHMIC STEPS
Theoretically, as a global optimization algorithm, GSO
encompasses both exploration and exploitation phases and
could provide a well balance between these two contradictory
abilities.

The algorithm has three main parts; including population
initialization, population evaluation, and updating the current
population. The step-by-step procedure of the proposed GSO
is detailed as follows.

Step 1— population initialization
GSO starts the search process with a set of randomly

generated objects (possible solutions) in the search space
according to the following equation:

Oi = lbi + rand × (ubi − lbi) ; i = 1, 2, . . . ,N (1)

where Oi presents the location of ith objects in the search
space. Moreover, ubi and lbi are the lower and upper bounds
of the object, respectively.

Step 2- population evaluation
In this step, initial population will be evaluated based on

objective function and the object with the best fitness value
selected as Ogbest i
Step3- golden change
In the third step, the objects will be sorted according to their

fitness and the object with the worst fitness will be changed
by a random solution.
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Step4- step size evaluation
In each iteration of the optimization process, the objects

are moved toward the best solution using the step size
operator (Sti). St equation consists of three parts. The first part
represents the previous value of the step size that is multiple
by the transform operator (T ) which decreases iteratively to
balance global and local search of the algorithm. The second
part presents the distance between current position of the ith
object and its personal best position obtained so far by the
cosine of a random value in the range of 0 and 1.

The final part represents the distance between the ith
object’s current position and the best position obtained thus
far among all objects, multiplied by the sine of a random
value between 0 and 1. In the first iteration of optimization
process, Sti will be generated randomly and updated using
the following equation during the iterations:

St i (t + 1) = T .St i (t)+ C1. cos (r1) . (Obest i − xi (t))

+C2.sin(r2).
(
Ogbest i − xi (t)

)
(2)

where C1 and C2 are a random numbers between 0 and 2,
r1 and r2 are random numbers in the range of (0,1), Obest i
is the best previous position obtained by the ith object so
far and T is transfer operator which transforms search from
exploration to exploitation to improve the search performance
and controlling the balance between global search in early
iterations and local search in late iterations. Actually, T is a
decreasing function and evaluated using Eq. (3)

T = 100× exp(−20×
t

tmax
) (3)

where. tmax is the maximum number of iterations.
Step5- step size limitation
At each iteration, the algorithm proceeds by adjusting the

distance that each object moves in every dimension of the
problem hyperspace. Equation (2) shows that the step size
is a stochastic variable and may allow the objects follows
wider cycles in the problem space. In order to control
these oscillations and to avoid explosion and divergence,
a reasonable interval is introduced to clamp the object’s
movement according to:

−St imax ≤ St i ≤ St imax (4)

where St imax is a designated maximum movement allowed,
which defines the maximum change one object can undergo
in its positional coordinates during an iteration based on the
following equation:

St imax = 0.1× (ubi − lbi) (5)

Step 6- update position (generate new population)
In this stage, the objects move toward the global optimum

in the search space according to the following equation:

Oi (t + 1) = Oi (t)+ St i (t + 1) (6)

The flowchart of the proposed GSO algorithm is presented in
Fig. 2.

B. COMPARATIVE TIME COMPLEXITY ANALYSIS
Computational time complexity analysis can be conducted
in order to evaluate the overall performance of a new opti-
mization algorithm from different points of view. In computer
sciences, the ‘‘Big O notation’’ is a mathematical notation
that represents the required running time of an algorithm
by considering the growth rate when dealing with different
inputs [13].

The time complexity analysis of most algorithms involves
analyses of three components. Likewise, the time complexity
analysis of the proposed GSA also requires analyses of these
three components:

1. Time complexity of initialization of the population,
generally calculated by O(N × D) where N denotes the
population size andD denotes the dimensions of the problem.

2. Time complexity of initial fitness evaluation, generally
evaluated by O (N × F(X)), where F(X) represents the
objective function.

3. Time complexity of the main loop, generally calculated
by O (tmax× (N×D+N×F(X))), where tmax is the maximum
number of iterations.

Hence, the total time complexity of GSO algorithm is
O(tmax (N × D+ N × F(X))).

IV. COMPARATIVE ANALYSIS OF THE GSO
Because of the stochastic nature of metaheuristic algorithms,
several test cases should be employed to confirm the
effectiveness of an algorithm. In this study, the performance
of GSO is evaluated on a well-studied and diverse set of
benchmark functions from the literature [56], [57] against
a good combination of some well-known state-of-the-art
algorithms. All of these functions are minimization problems,
which are useful for evaluating the search efficiency and
convergence rate of optimization algorithms. The mathemat-
ical formulation and characteristics of these test functions
are available in Tables 1, 2 and 3. Figures 3, 4 and 5 show
three-dimensional drawings of these benchmark functions.
Moreover, the cost functions along with the dimensions,
ranges, and minimum inputs related to the single exponential
benchmark functions are shown in Table 1-3.

This benchmark set covers three main groups: unimodal
functions with a unique global best for testing the conver-
gence speed and exploitation ability of the algorithms; mul-
timodal functions with multiple local solutions and a global
optimum for testing local optima avoidance and exploration
capability of an algorithm; and finally multimodal functions
with a fixed dimension. The proposed algorithm is coded in
MATLAB R2020b programming software.

TheMATLAB codewill be released after the acceptance of
the paper. In order to verify the success of a newly proposed
computational intelligence algorithm, it is recommended
that the performance of the new method be compared
with the other algorithms that are widely accepted in the
field. In this paper, the results and performance of the
proposed GSO are compared with other well-established
optimization algorithms such as the Gravitational Search
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TABLE 1. Description of unimodal benchmark functions.

FIGURE 3. 3-D versions of unimodal benchmark functions.

Algorithm (GSA) [29], Sine-Cosine Algorithm (SCA) [12],
Tunicate Swarm Algorithm (TSA) [54], and Grey Wolf
Optimizer (GWO) [55]. These algorithms have proved
their effectiveness and robustness when compared with
other well-established methods like PSO, GA, FA, and
so on [12], [29], [54], [55]. It should be noted that
the performance and convergence of these metaheuristic
methods completely depend on the internal parameters of
the algorithms. GSO has a simple structure and needs only
two main parameters, N (number of objects) and MaxIter
(maximum number of iterations).

It is found through experiments that a lower value of N
results in premature convergence and a higher value improves
exploration but increases elapsed time significantly. The

appropriate value of N is considered to be 30, and the
maximum number of iterations is equal to 1000. In Table 4,
the key parameters of the selected methods are presented.

These values have been determined using the reference-
based parameter identification process according to those
recommended by their authors in the original papers. The
references for each method are presented in the third column
of Table 4.

Because metaheuristic methods are stochastic, the results
of a single run may be unreliable, and the algorithms
may obtain better or worse solutions than the previous
one. Therefore, statistical analysis should be applied to
have a fair comparison and effective evaluation of the
algorithms. Regarding this issue, for the selected algorithms,
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TABLE 2. Description of multimodal benchmark functions.

FIGURE 4. 3-D versions of multimodal benchmark functions.
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TABLE 3. Description of fixed-dimension multimodal benchmark functions.

FIGURE 5. 3-D versions of fixed-dimension multimodal benchmark functions.
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TABLE 4. Parameter setting of the selected algorithms.

TABLE 5. Comparison of different methods in solving unimodal test functions in Table 1.
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TABLE 6. Comparison of different methods in solving multimodal test functions in Table 2.

30 independent runs are performed and statistical results
are collected and reported in Tables 5-7. In the first stage
of experiments, all the functions are optimized with the
dimension presented in the last column of Tables 1-3.
The results of Tables 5-7 show the best (minimum), worst
(maximum), mean (average), median, and standard deviation
(Std) of the solutions obtained from experiments using the
selected optimization algorithms. The best results among the
five algorithms are shown in bold. According to the results
of these tables in the following subsections, the exploration,
exploitation, convergence rate, and scalability of the new
method are investigated using a comparative performance
comparison of GSO against four selected algorithms.

A. EXPLOITATION CAPABILITY
Unimodal test functions can be considered to investi-
gate the exploitation capability of an optimization algo-
rithm [55], [58]. In this study, to evaluate the ability of GSO
to exploit the promising regions, seven unimodal benchmark
functions (F1 to F7) are solved, and the results are compared
with four selected optimization methods in Table 5. The
results of this table show that, for all unimodal functions
except F6, GSO could provide a better solution. In addition,

for four functions (F1-F4), GSO reached the global optima.
It means that the new algorithm has a large potential search
space compared with the other optimization algorithms.
It should be noted that the good exploitative capability of
GSO is due to the effective position updating strategy.

B. EXPLORATION VERIFICATION
In order to evaluate the capability of an optimization
algorithm to effectively explore the search space, multimodal
benchmark functions that have many local optima are usually
considered [55], [58]. Based on the presented procedure,
16 multimodal functions (F8 to F23) are minimized. Accord-
ing to the results of Tables 6-7, it can be observed that the best
and mean values reached by GSO for most of the functions
(except F12, F13, F17-F19) are significantly better than the
other methods. However, the results for F17-F19 functions
are also comparable to the other algorithms. In addition,
for F12 and F13, mean values of GSO are smaller than the
robust GSA method, and the results are much better than
those obtained by SCA, TSA, and GWO. From the standard
deviation point of view, which indicates the stability of the
algorithm, the results show that GSO is a more stable method
when compared with the other techniques.
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TABLE 7. Comparison of different methods in solving multimodal test functions in Table 3.

From the analysis, it can be concluded that GSO
either outperforms the other algorithms or performs almost
equivalently. The consistent performance of the new

method for such a comprehensive suite of multimodal
benchmark functions verifies its superior capabilities of
exploration.
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FIGURE 6. Comparison of convergence curves of GSO and selected algorithms for F1-F23.
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FIGURE 6. (Continued.) Comparison of convergence curves of GSO and selected algorithms for F1-F23.

C. CONVERGENCE CAPABILITY
An effective optimization algorithm should converge to a
global optimum, not prematurely converge to some local
optimum. The convergence progress curves of GSO for some
benchmark test functions are compared with GSA, SCA,
TSA, and GWO in Fig. 6. The curves are plotted against the
number of iterations, which is in the hundreds.

The figure shows that GSO outperforms the other algo-
rithms in most cases. The curves of test functions show that
GSO is capable of exploring the search space extensively
and identifying the most promising region in less iteration
because of its position-updating mechanism and utilization
of a random solution instead of worst object during the
iterations.
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TABLE 8. Comparison of different methods in solving F1- F13 with Dim=100.
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TABLE 9. Results of Wilcoxon’s rank sum test.
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TABLE 9. (Continued.) Results of Wilcoxon’s rank sum test.

D. IMPACT OF HIGH-DIMENSIONALITY
In order to present the ability of GSO to solve very high-
dimensional problems effectively, the dimensions of all the
scalable benchmark functions (F1-F13) have been increased
to 100. The algorithms’ parameters are the same as in
Table 4. The results are compared with those obtained by
the other methods in Table 8. The results show that all
100-dim functions become more difficult than their 30-dim
counterparts.

As it can be seen from Table 8, the GSO outperforms the
competitors for all high-dimensional functions, which indi-
cates the scalability and efficiency of the proposed method in
terms of the number of variables in the optimization problem.

E. STATISTICAL SIGNIFICANCE ANALYSIS
A non-parametric pairwise statistical analysis should be
conducted in order to determine the statistical significance
of the comparative results between two or more algorithms.
As recommended by Derrac et al. [59], to assess meaningful
comparison between the proposed and alternative methods,
the nonparametric Wilcoxon’s rank sum test is performed
between the results. In this regard, utilizing the best
results obtained from 30 runs of each method, a pair-wise
comparison was conducted.

Wilcoxon’s rank sum test returns p-value, the sum of
positive ranks (R+) and the sum of negative ranks (R−) [60].
Table 9 presents the results of Wilcoxon’s rank sum test
of GSO when compared with other methods. The p-value
indicates the minimum significance level for detecting
differences. In this study, α = 0.05 is considered the level
of significance If the p-value of the given algorithm is greater
than 0.05, then there is no significant difference between the

two comparedmethods. Such a result is indicated with ‘‘N.A’’
in thewinner rows of Table 9. On the other hand, if the p-value
is less than α, it definitively means that, in each pair-wise
comparison, the better result obtained by the best algorithm
is statistically significant and it was not gained by chance.
In such cases, if the R+ is greater than the R-, GSO performs
better than the alternative method; otherwise, GSO performs
poorly and the alternative algorithm performs better [61].

According to the results of Wilcoxon’s rank sum test
in Table 9, the pairwise comparison between GSO and
GSA reveals that in the optimization of 23 test functions,
the new method has superior performance in 17 cases and
has inferior performance in 5 cases. In addition, for F16,
both methods are statistically equivalent. Similarly, in the
other pairwise comparison, for the majority of the test suite,
GSO provides better results. Therefore, the nonparametric
statistical analysis proves that GSO generates significantly
better solutions and, comparatively, has superior performance
over the other algorithms.

V. CONCLUSION
This study develops a novel population-based Golden Search
Optimizer based on some principles of metaheuristic algo-
rithms. In the proposed GSO algorithm, during the search
process, the objects (candidate solutions) interact with each
other and improve their positions based on the best position
obtained so far as the reference point. In summary, the main
features of GSO are as follows: it has just two internal
parameters; it is easy to code; and it is easy to apply. The
performance of the new method is tested by utilizing several
experiments. First, a set of various unimodal and multi-modal
benchmark functions have been considered to investigate
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the exploration, exploitation, and convergence rate of the
proposed algorithm. Moreover, the results were compared
with four well-known and recently developed algorithms,
including GSA, SCA, TSA, and GWO. As per the results
and findings, it was observed and may be concluded that
GSO is capable of finding the global solution for most of the
unimodal, multi-modal, and composite benchmark functions
and outperforming the other algorithms in a statistically
significant manner. While, for most of the benchmark test
functions, all the competitor methods rarely reach the global
optimal solutions. In order to evaluate the capability of
the new method for solving high-dimensional problems,
13 scalable benchmark functions are optimized. Optimization
results of scalable test functions proved that the performance
of GSO remains consistent even if the dimensions of the
problems are increased to 100. Finally, to provide a mean-
ingful comparison and valid judgment between the proposed
and alternative algorithms, the nonparametricWilcoxonRank
Sum test has been conducted. According to the statistical
experiments, it is evident that GSO outperformed well-
established optimization methods, and its superiority is
statistically significant.
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