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ABSTRACT Steel making industries exhibit extreme working conditions characterized by high temperature,
pressure, and production speed as well as intense throughput. Due to high economic and energy investments
of the overall production process, an intense and expensive preventive maintenance program is adopted
to avoid breakdowns. Steel making process would greatly benefit from a predictive maintenance module
able to detect incoming faults from data process analysis. However, due to intense preventive maintenance,
available data recording process operations enclose only a few samples of fault events, avoiding the
efficient application of classical data driven anomaly detection models. In an attempt to overcome the above
mentioned limits, we report the outcome of an industrial research project on data-driven anomaly detection
in a steel making production process. The study assesses a fault detection strategy for rotating machines
in the hot rolling mill line: we developed an automatic two-step strategy, which combines two statistical
methods over the available data set: more precisely, the combination of Re-weighted Minimum Covariance
Determinant estimator and Hidden Markov Models helped identify working conditions in a drive reducer of
a hot steel rolling mill line and automatically isolate signs of decreasing performance or upcoming failures.
The proposed strategy has been validated on real data collected in a steel making plant placed in the South
of Italy.

INDEX TERMS Anomaly detection, rolling mills, reweighted minimum covariance determinant (RMCD),
Hidden Markov Model (HMM), robust statistics.

I. INTRODUCTION
The steel making process forges a collection of rawmaterials,
including steel scrap, carbon, and limestone, into steel bars
with different diameter sizes. In order to obtain the high-
est production rates, today’s steel industries handle heavier
loads and faster velocity than ever before. Indeed, contin-
uous production processes working in these harsh environ-
ments characterized by high temperatures, pressures, and
production speeds need to flow uninterrupted [1]: unex-
pected equipment failures are expensive and potentially catas-
trophic, resulting in severe risk for plant operators, unplanned
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production downtime, costly replacement of parts. To reduce
breakdown impacts on production, steel making companies
adopt preventive maintenance strategies substituting equip-
ment long before the end of their useful life [2], [3]. Apart
from scheduled maintenance, production line reliability may
be increased adopting fully automatic monitoring and fault
diagnosis systems. Indeed, amajor task in steel making indus-
tries is the detection of faults, whereas neither an analytical
description of faults and process models nor the collection of
typical breakdown patterns exists [4].

Fault detection methods can be roughly classified into
two broad categories: model-based methods and data-based
methods (also referred to as history-based). The first relies on
a mathematical model of the system under analysis; faults are
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detected by computing the error between the estimated model
and the actual values of the process variable. However, this
method requires a detailed theoretical model the derivation
of which is a complex and time-consuming task, in particular
when production lines are equipped with rotating machines.
Data-based methods have been largely adopted since they do
not require any specific a priori knowledge of the system
characteristics; they only rely on the processing of avail-
able data measurements and statistical techniques [5], [6].
A fundamental requirement for the effective implementation
of data-based method is the availability of relevant, informa-
tion rich training data. However, in the particular environment
of high risk/high intensity industries -such as steel industries-
the availability of a large training data set is in fact imprac-
ticable since machine faults are prevented and unlikely to
occur. Lack of breakdown samples induces to address further
investigation towards the development of efficient methods
to detect anomalies in production data, rather than to predict
fault events [4].

In an attempt to settle an anomaly detection module in the
steel production line, we developed a two-step scheme, rely-
ing on complementary data-driven techniques. Specifically,
a preliminary anomaly detection phase has been carried out
based on Minimum Covariance Determinant (MCD), a sim-
ple robust multivariate outlier technique. Secondly, a more
complex method is proposed based on Hidden Markov Mod-
els (HMM), targeting a more precise identification of the
anomalies. Both techniques essentially rely on the fusion
of information received from sensors to obtain one reliable
measure and a corresponding cut-off level; new data coming
from the operating plant are compared with the cut-off level
to be classified as anomalies, normal operating conditions,
or intermediate operating stages.

The preliminary anomaly detection method of our scheme
uses multivariate analyses techniques which exploit the
nature of anomalies, i.e. measures aside from main features
of the majority of the data, exhibiting their own pattern
or even no pattern at all. These measures are also referred
to as outliers; in what follows we will refer to anomalies
and outliers interchangeably. Various methods for detecting
multivariate outliers have been proposed in the literature
(see [7], [8] for an overview); out of these, Principal Com-
ponent Analysis (PCA) and Independent Component Anal-
ysis (ICA) have been largely adopted in industrial anomaly
detection with some applications to steel making indus-
try [9]–[12]. While intuitive and popular, PCA has been
developed under the assumption that the extracted principal
components (PCs) have a Gaussian distribution; in practice,
PCA is not often applicable, and it has been proved to provide
unreliable monitoring results [8]. ICA-based monitoring has
been developed to overcome PCA limits and it has been
successfully adopted to analyze non-Gaussian data in the
steel casting process [8]. However, ICA also showed several
drawbacks: computational load, unavailable criteria for sort-
ing independent components, and solutions changing at each
computation since ICA is initialized randomly.

Among various available robust techniques for estimation
of multivariate location and scatter and outliers detection,
we focus on the MCD estimator [13]–[15]. Briefly, the idea
behind the MCD is to discard a fraction of most distant data
points; the data to be retained are chosen as those whose sam-
ple variance-covariance matrix has the lowest determinant.
These data are expected to be the closest to each other and
not contaminated by outliers. In order to increase efficiency,
a re-weighting step is usually performed: observations with
squared distances from the MCD fit above a given thresh-
old are trimmed. Finally, anomalies conditions are identified
looking for multivariate outliers by the inspection of uni-
variate distances. In particular, data points whose distance
is larger than a fixed threshold can be pointed as potential
outliers.

Multivariate analysis provides binary information (i.e. nor-
mal/anomalous) on production process operating conditions.
It is a simple yet useful instrument to build up a fully auto-
mated process data classification. However, a complex pro-
duction process such as rolling mills shows a transition from
normality to failure through degradation of process perfor-
mances over time. Indeed, some changes in process variables
(such as vibration, oil temperature, motor electrical absorp-
tion) may alter the operating conditions without immediately
leading to a breakdown; however, if unreported, the persistent
shift over time to a range of intermediate efficiency states will
conduct to a failure. Hence, to monitor and predict several
latent states of the activity of the production process along
time we fit an Hidden Markov Model (HMM) over distances.
The HMM provides a dynamic classification of distances
and in particular of large distances corresponding to outliers
into the latent states. Furthermore, the HMM returns the
probability of moving towards degradation stages to the final
inferred state denoting failure. HMM represent a well-known
statistical tool to monitor different stages of the process and
for automatic outliers detection [16]–[18]. Here we mainly
rely on HMM to deal with the continuous-in-time nature
of the available measurements. Furthermore, we also stress
that effective outliers detection rules should be driven from
suitable robust methods well suited to handle outliers [19].

We applied the two-step scheme described above to a steel
making industry placed in the south of Italy. We focused
on anomaly detection in rolling mills of the metal sheet
forming processes. This problem has been rather studied
in the literature. Machine learning techniques have been
more successfully applied to faults affecting product qualities
[20]–[23]; when applied to anomaly detection methods, most
of the proposed strategies rely on classical machine learning
methodologies applied to rotating machines (as in [24], [25])
hence they are strongly limited by the absence of data on
breakdown events in the steel making process. To overcome
this limit faults are usually simulated, for example, corrupting
a vibration measurement with an additive train of pulses [25].
A residual based analysis has been adopted in [4]; authors
rely onmodel identification of main rolling mills components
and classify anomalies accordingly. Despite some intriguing
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FIGURE 1. Steel making process.

results, this methodology suffers from oversimplification of
plant activity and it is impracticable in a long chain of rolling
mills. Conversely, the two-stage scheme we developed relies
on robust measures; in fact, the HMM is identified over the
distances of the data points from the robust fit stemming
obtained through RMCD estimation, allowing a dynamic
strategy that takes into account the time-varying nature of
the data and infers several latent states in the production
process. Robust distance fuses the information received from
sensors displaced on the production process, hence obtaining
one reliable measure and the corresponding trade-off, easily
implementable and adaptable to all process stages. The pro-
cedure has been validated through production data from the
working plant.

Among our main contributions we consider:
• The identification of a metric fusing sensors’ measures
in one reliable feature.

• The design of an automatic procedure for anomaly
detection in large data sets with strongly unbalanced
clusters.

• The extension of the static anomaly detection method to
an HMM-based method providing additional informa-
tion on the evolution of anomaly severity in time.

• The validation of the proposed methodologies to rolling
mills of a steel production plant, using data recorded
from Pittini, a steel making plant placed in the South of
Italy.

II. DEVICE DESCRIPTION AND PROBLEM SETTING
A. STEEL MAKING PROCESS
Steel making is a multistage process including steel making,
continuous casting, and rolling stages (see Figure 1). The
process starts with the melting of raw materials into the
electric arc furnace (EAF) at 1600oC . The molten steel is
continuously supplied into the casting lines, in which the
liquid steel is ‘‘guided’’ through rolls; the output of this stage
is a semi-finished product, namely the billet.

Billets are sequentially rolled in multiple rolling mills,
i.e., a chain of rotating machines that progressively stretches
the bars and reduces their diameters. The mill drive train sup-
plies mechanical energy to the top and bottom driven rollers
of the rolling mill stand; it is configured with an electrical
motor, a gear drive, and a pinion stand, all connected by
couplings; the combination of these elements is also referred
to as a cage (Figure 2).
A steel making plant generally produces several types of

bars differing for their diameters (also denoted as profiles);
each profile is worked by a subset of the available milling
machines. For instance, Pittini plant produces 25 profiles
(φ, in mm) each one worked by a specific combination of the
18 cages comprising the milling line.

FIGURE 2. 3D rendering example of the reversible rolling mill to be
studied, Figure 1 in [25].

In order to obtain the highest production rates, today’s
rolling mills handle heavier loads and faster velocities than
ever before, leading to high temperatures, pressures, and
degradation. The layout of a rolling mill is highly vulnerable
to sudden breakdowns: if a fault occurs in one of the operating
cages, it may cause injuries to operators, damages to other
mechanical equipment, and relevant economical losses. For
these reasons, faults are usually prevented by scheduling
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frequent and costly maintenance interventions which usually
comprise the replacement of critical componentsmuch earlier
than the end of their useful life.

B. AVAILABLE SIGNALS AND MONITORING SYSTEM
The core system to be studied consists of an electric motor
and a gear reducer, represented in Figure 3, serving the
blooming mill of the cage. The following are cage parameters
monitored in Pittini’s plant; they represent as well a list of the
most frequently recorded data rolling mills:

• Three vibration signals measured by three accelerome-
ters placed on the shell of the drive reducer, sampled at
10 kHz.

• Oil pressure in the drive reducer, acquired at 1 Hz.
• Two temperature signals measured by two probes placed
in the opposite sides of the reducer, sampled at 1 Hz.

• Current absorbed by the motor driving the mill, with the
sampling frequency of 10 Hz.

• Revolution speed of the motor, measured in Round Per
Minute (RPM) and acquired at 10 Hz.

• Torque of the motor sampled at 10 Hz.

FIGURE 3. Electric motor and gear scheme with the corresponding set of
available sensors and their positions (a). Gearbox structure, with the
positions of the sensors (b).

The set of the above mentioned sensors is replicated on 6
of the 18 cages of the plant, i.e., the monitoring system of the
rolling stand supervises the activity of the 6 most used rolling
machines. The recording system is completely automatic: it
acquires and stores on a server the data corresponding to
one registration every 10 produced billets, i.e., the data are
stored only if the plant is producing. In particular, starting
from 5 sec when the billet is loaded to all cages involved in
processing the ongoing profile, the acquisition lasts for 15 sec
and outputs a data set with a number of rows equal to the
number of samples and a number of columns equal to the
total number of sensors. The corresponding impact in terms
of memory load is about 100 MB/billet.

C. STRATEGY FOR ANOMALY DETECTION
In this section, we describe our two steps methodology for
anomaly detection in rolling mills, schematically is repre-
sented in Figure 4; the theoretical background supporting
each step is detailed in Section III while examples of its
application to Pittini’s plant are in Section IV.

FIGURE 4. Flow-chart of the proposed methods.

The first preparatory step is the computation of residuals
on the acquiredmeasures. This step is peculiar to Pittini’s data
set, nevertheless, it may apply to several production sights.
The supervisory system records process parameters of all
worked profiles; according to its production plan, each profile
is milled in some cages at peculiar reference values of the
production parameters. Indeed, different profiles are worked
at different nominal values of temperature, pressure, and line
velocity. The first objective of our work is to obtain one ref-
erence parameter -fusing information received from sensors-
independent from billets profiles. To this aim a conditional
mean has been evaluated: for each profile and for each feature
the mean of all recorded data is computed. In order words,
a profile-wise centering operation has been performed in
order to avoid the effects due to data acquisitions from distinct
profiles. With a slight abuse of terminology, we refer to the
record of the profile-wise centered data as the data set of
residuals; this will be input to subsequent phases. Since the
data are supposed to be contaminated by the occurrence of
several outliers, we perform a centering operation based on a
robust mean, rather than on the classical sample mean. Here,
we use the Huber estimate of location [19]. The use of the
sample mean is deprecated since it would be attracted by
outliers unavoidably and all residuals severely shifted. As a
consequence, a large rate of genuine observation could be
transformed into anomalous.
The second step concerns the robust fitting of multivariate
location and scatter over the p−dimensional residuals evalu-
ated using the RMCD estimator. Next, relying on the robust
estimate, a static outliers detection test is performed for
each data point at an overall confidence level α = 0.01. The
testing procedure is based on distances from the robust fit.
Finally, an HMM is fitted to the robust distances in order to
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take into account time dependence among subsequent mea-
surements (i.e. a dynamic outliers detection is performed).
One of the inferred HMM states is expected to collect outliers
and denote a failure state.

The analysis of robust distances through the RMCD leads
to appropriate testing rules that are meant to detect incon-
sistent data. Although efficient, this kind of strategy is
basic since it only deals with the pair of latent conditions
anomaly/not anomaly and it is likely to suffer a large number
of false alarms (false positives). On the contrary, the transition
from a normal operating condition towards faults can be
identified fitting an HMM over such distances evaluated on
the entire data set. Moreover, the outliers detection rule from
RMCD is static: it does not take into account the sequential
nature of the data, whereas the analysis on robust distances
made by fitting an HMM is dynamic, the evolution of the
clustering process being governed by a first-order Markov
chain.

III. MULTIVARIATE STATISTICAL METHODS
A. STATIC ANOMALY DETECTION
Notation:We denote byR andN+ the sets of real and positive
natural numbers, respectively. Uppercase bold variables X
represent matrices, lowercase bold ones x represent vectors,
that are supposed to be column, i.e., x = (·, . . . , ·)> is a
column vector.

Let Y = (y1, y2, . . . , yn)> be a sample of size n from a
p-variate Normal distribution Y ∼ Np(µ,6), where µ is the
sample mean,6 is the sample covariance matrix, and p ∈ N+
is the number of features, i.e., yi = (yi1, yi2, . . . , yip) ∈ Rp,
µ ∈ Rp, and 6 ∈ Rp×p, respectively.
Definition 1 (Mahalanobis distance): The Mahalanobis

distance (MD) between the ith sample yi = (yi1, yi2, . . . , yip)
and the sample mean µ ∈ Rp, with respect to the covariance
matrix 6 ∈ Rp×p, is

di := d(yi;µ,6) =
√
(yi − µ)>6−1(yi − µ). (1)

A traditional approach to detect outliers from a data set is
based on the MD evaluated on the sample mean µ̂ and the
sample covariance matrix 6̂ of the observed data Y. In par-
ticular, a sample y is considered anomalous if d(y; µ̂, 6̂)
is larger than some fixed threshold. Under the assumed p-
variate Normal model with known µ and 6, the squared MD
obeys a chi-squared distribution with p degrees of freedom,
i.e., d2(Y;µ,6) ∼ χ2

p . A frequent choice [19] consists in
using as a threshold the 0.975- or 0.99-level quantile of the
χ2
p distribution. However, it is well known that traditional

approaches in computing µ̂ and 6̂ are not robust to the
outliers, indeed they are biased by outliers themselves.

This motivates the exploration of methods to robustly esti-
mate the parameters of the p-variate Normal distribution. The
MCD is one of the most popular methods. The method is very
popular as it relies on good asymptotic properties [26] and the
availability of efficient algorithms for its computation [14].
The idea behind MCD is to discard a fraction ε of the most

distant data points [19], with ε denoting the trimming level
determining the size of the considered subsample. The data
to be retained are chosen as the set of size n̄ := bn(1 − ε)c
whose covariance matrix has the lowest determinant (where
b·c indicates the floor function), i.e., the data that are most
close to each other are less likely to be outlying.

Given data Yi, the MCD estimator is

µ̂ =
1
n̄∑
i
zi

n̄∑
i

ziyi,

6̂ =
c(p, ε)
n̄∑
i
zi − 1

n̄∑
i

zi(yi − µ̂)(yi − µ̂)>, (2)

where z is a binary vector whose components zi equal to
zero in case of a trimmed observation, and the consistency
factor c(p, ε) is used to make the MCD consistent at the
p-Normal model, by inflating the covariance matrix based on
the selected subset [19].

The MCD can be evaluated according to an iterative algo-
rithm that assures a monotonic decrease of the determinant of
the estimated covariance matrices, i.e., at each iteration j =
1, 2, . . . , |6̂j

| ≤ |6̂j−1
|, where |·| here is the determinant, and

the superscript is used to represent the iteration. Therefore,
the sequence of determinants is expected to converge in a
finite number of iterations. The complete MCD procedure is
summarized in Algorithm 1.

Algorithm 1MCD algorithm

Require: µ̂0, 6̂0 be initial estimate based on a subsample
of size n̄, ε, n, p

Ensure: µ̂MCD, 6̂MCD
1: µ̂MCD← µ̂0, 6̂MCD← 6̂0
2: repeat
3: for i = 1, 2, . . . , n do
4: di =

√
(yi − µ̂MCD)>6̂−1MCD(yi − µ̂MCD)

5: end for
6: Sort distances d(1) ≤ d(2) . . . ≤ d(n) in non increasing

order and take a subsample Ȳ of size n̄ based on the
lowest distances

7: Estimate µ̂MCD and 6̂MCD using (2)
8: until convergence

In order to increase the efficiency of the method in the
finite horizon, a reweighting step is usually performed,
leading to the reweighted MCD (RMCD) method. The
reweighting step is performed downstream of Algorithm 1
and works as follows. Given the distances di,MCD =√
(yi − µ̂MCD)>6̂−1MCD(yi − µ̂MCD), i = 1, 2, . . . , n at con-

vergence, computed as described in Algorithm 1, then the
observations yi for which d2i,MCD > χ2

p,q are trimmed, where
χ2
p,q is the q-quantile of the χ

2
p distribution. Let ε̄ ≤ ε be the

rate of observation trimmed in the reweighting step. Then,
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the RMCD is obtained as the sample covariance matrix over
the non-trimmed set of data inflated by c(ε̄, p).
Let (µ̂RMCD, 6̂RMCD) denote the RMCD estimate. Then,

an observation y is labeled as anomalous if

d2(yi; µ̂RMCD, 6̂RMCD) > χ2
p;1−α. (3)

It is worth noting that the problem of mislabeled instances
can be further faced with additional well-knownmethods. For
example, when the number of instances is relatively large,
to contain the number of false positives (FPs), we suggest
controlling multiplicity by some correction procedure, such
as the False Discovery Rate (FDR) [27], as we show in the
experiments section.

B. DYNAMIC ANOMALY DETECTION
The anomaly detection strategy described so far can be con-
sidered as a static analysis as it identifies only two states
in the process, i.e., no failure and failure, thus overlooking
any kind of time dependencies. However, real conditions
of manufacturing processes exhibit continuous trends over
time, starting from healthy states and dropping toward some
failure conditions. In light of this dependency of any machin-
ery health’s conditions on the time, it would be desirable
to implement a dynamic analysis on the data. To this aim,
we here provide a generalmethod based onHMM that outputs
a set of latent states along with an estimate of their transition
probability distribution.

An HMM is a framework for representing probability dis-
tributions over sequences of observations. It involves two
interconnected models: i) the state model, consisting of a
discrete-time, discrete-state, first-order Markov chain, with
states zt ∈ {1, 2, . . . , k} and transition probability P(zt |zt−1),
and ii) the observation model, whose underlying dynamics is
given by P(yt |zt ), where yt is an observation at time t . Thus,
in this model, an observation yt is produced by a stochastic
process Z , but the state zt of this process cannot be directly
observed, i.e., it is hidden [28]. The stochastic process Z
is assumed to satisfy the Markov property, i.e., given zt−1,
the current hidden state zt is independent of all the states prior
to t − 1. The corresponding joint distribution of a sequence
of states z1:τ and observations y1:τ can be factored as

P(z1:τ , y1:τ ) = P(z1)P(y1|z1)
τ∏
t=2

P(zt |zt−1)P(yt |zt )

= P(z1)
τ∏
t=2

P(zt |zt−1)
τ∏
t=1

P(yt |zt ).

To summarize, an HMM can be defined by the tuple
〈k, n,P,Q,P0〉, where k is the number of possible hidden
states, assumed to be discrete, and n is the number of distinct
observations. Moreover, P and Q determine the underlying
transition models for the states and the observations, respec-
tively, with Pi,j = P(zt = i|zt−1 = j) and Qi,j = P(yt =
i|zt = j). The last element, P0, represents the initial state
distribution.

The author in [29] introduced the idea that HMMs should
be characterized by three fundamental problems:
1) (Likelihood) Given an HMM λ = (P,Q), and an obser-

vation sequence Y = (y1, y2, . . . , yn)>, determine the
likelihood P(Y|λ).

2) (Decoding) Given an observation sequence Y and an
HMM λ = (P,Q), discover the best hidden state
sequence z = (z1, z2, . . . , zn)>.

3) (Learning) Given an observation sequence Y, the set of
states k in the HMM and the initial state distribution P0,
learn the HMM parameters P and Q.

Problem 1 aims at computing the likelihood of a particular
observation sequence Y. Because the hidden state sequence
corresponding to Y is not known, one possibility is to sum
over all possible hidden state sequences, i.e., P(Y|λ) =∑

z P(Y|z, λ)P(z|λ). This procedure is extremely compu-
tationally inefficient because there are kn possible hidden
sequences, thus requiring an exponential time in the number
of states. Amore efficient solution is called forward algorithm
and it is a kind of dynamic programming algorithm that
computes and stores in a table the partial probabilities for
each state-time pair, and iteratively computes the following
probability:

αt (j) =
k∑
i=1

αt−1(i)Pi,jbj(yt ), (4)

where αt (j) = P(Y, zt = j|λ), and bj(yt ) is the state
observation likelihood of the observation yt given the cur-
rent state j. After having initialized the probability α1(j) =
P0jbj(y1), 1 ≤ j ≤ k , the forward step (4) can be recursively
applied for all states and observations in order to compute the
marginal P(Y|λ) =

∑k
i=1 αn(i).

An extended version of the forward algorithm can be
used for the learning problem. In particular, if we design a
backward procedure that computes the backward probabil-
ity of seeing the observations from time t + 1 to the end,
i.e., βt (i) := P(yt+1, . . . , yn|zt = i, λ), we can solve the
problem of training both P andQ. This algorithm is known as
the Baum-Welch algorithm [30], and it is a special case of the
well-known Expectation-Maximization (EM) algorithm [31].
The recursive backward rule is given by

βt (i) =
k∑
j=1

βt+1(j)Pi,jbj(yt+1). (5)

The most probable state sequence z for an observed sequence
Y can be obtained exhaustively by deriving all the possible
state sequences, generating P(z|Y, λ), and finally obtaining
the z for which this probability is maximum. Even if this
approach may be feasible for relatively small Y, it becomes
computationally expensive as n increases. To efficiently
obtain the most probable state path for a given observation
sequence, i.e., to solve the decoding problem, we can use
the Viterbi algorithm [32] that is a dynamic programming
method that efficiently computes the best path probability
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by substituting the sum operation (over the previous path
probabilities) with a maximization. It is worth noting that,
for page limit reasons, we do not formally state the three
algorithms as they are standard methods used to solve the
HMM problems, and we remind to [28], [30], [32] for their
formal definitions.

Based on the above discussions, we can now cast the HMM
problems to our dynamic anomaly detection task. In par-
ticular, assuming that the hidden states represent the health
conditions of the monitored system, it would be important to
estimate the probability to transition from one state to another,
given a sequence of observations, i.e., problem 3. More-
over, given an estimate of the model and a new observation
sequence, it would be desirable to assign to such sequence a
corresponding hidden state sequence, e.g., using the Viterbi
algorithm.

In summary, the proposed methodology performs as
follows:

1) compute the robust distances d(yi; µ̂RMCD, 6̂RMCD),
i = 1, . . . , n;

2) fit an HMM model using the Baum-Welch algorithm;
3) given a new observation, compute its robust distance

from the RMCD estimate d(y; µ̂RMCD, 6̂RMCD) and
predict the corresponding hidden state using the Viterbi
algorithm.

In all the aforementioned methods, the number k of hidden
states is assumed to be known. In real applications it is
usually determined according to information criteria, such
as the Akaike or the Bayesian information criteria (AIC and
BIC) [33].

IV. RESULTS AND DISCUSSIONS
In this Section, we present and discuss the results obtained
applying the proposed methodologies on real data col-
lected from the steel making production process described in
Section I. In particular, in the following, we show the results
obtained from data stored at 1 Hz and at 10 kHz; we do not
show the results obtained with 10 Hz data since they did not
exhibit any anomalous patterns during the observation time.
Moreover, during the observation period lasting threemonths,
we observed only one significant downtime caused by a fault
on the 18th cage; the overall number of billets produced
during the observation time is equal to 5634. This unique
occurrence is a rare event, taking into account the frequent
preventive maintenance interventions scheduled to maximize
the reliability of the production process. In light of the above
considerations, we use the HMM-based approach to incor-
porate time dependencies into anomaly detection model and
provide an automatic methodology able to estimate an health
model based on real data. The application of the proposed
methodology on production data shows benefits derived from
our approach.

The data set adopted in the following analysis has been
pre-processed to remove NaN data and anomalous zero
values; moreover, as discussed in Section II-C, a robust

profile-wise centering step has been performed to obtain a
data set independent on the produced profiles.

A. LOW FREQUENCY DATA
In this Subsection, we show the results of the static and
dynamic anomaly detection methods applied to the data
acquired at 1 Hz, namely two temperatures and one pressure
transducer. Figure 5 displays the robust distances along with
the detected anomalies for an overall level α = 0.01. The
points above the cut-off line are those detected as outliers.
In particular, there are 360 flagged points (outliers) of which
108 with profile φ8.

FIGURE 5. Anomaly detection using RMCD+FDR on 1 Hz data. The fault
corresponds to the samples around billet 3000 and is correctly identified
as anomaly.

According to the steps highlighted in Section II-C, we first
obtained robust residuals by inspection of the different pro-
files. Then, we applied the RMCD with an initial trimming
level of 25%. The reweighting step leads to the deletion of
about 17% of the data. Trimmed observations may give an
indication of the presence of outliers and the actual level of
contamination in the data but the outliers detection process
is supposed to be performed separately, based on the current
robust fit and formal rules as in (3). Figure 5 displays the
robust distances along with the detected anomalies for an
overall level α = 0.01. The points above the cut-off line are
those detected as outliers.

As far as the dynamic anomaly detection analysis is con-
cerned, we designed an HMM for a Gamma observations dis-
tribution and log link, as the chi-squared distribution belongs
to the Gamma family, and the logarithmic link allows to esti-
mate a positive mean. We chose the number of states accord-
ing to the BIC criterion, and we considered a multi-start
approach based on fifty random starts in order to make the
final maximum likelihood estimate independent from the
initialization. As we can see in Table 1, the BIC criterion
suggests a model with k = 6 hidden states.
The results from theHMManalysis over the distances from

the RMCD fit are given in Figure 6 and Figure 7, which
display the distribution of the robust distances by the six
inferred states and their classification on a log scale, respec-
tively. The group with the largest modal distance (whose
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TABLE 1. Selection of the number of latent states using the BIC applied
to 1 Hz data.

TABLE 2. Transition matrix for 1 Hz data.

FIGURE 6. 1 Hz data. Distribution of robust distances by latent states.

label is 6) should be interpreted as the fault alert state. It is
composed of 18 points, 16 of which are of φ8. On the
contrary, the groups with the lowest modal distance can be
seen as a normal condition state, whereas the other represents
intermediate situations that characterize the transitions from
normality to anomaly. Clearly, the HMM analysis of the
robust distances led to a more plausible classification and
dynamic description of the evolution of the process over time.
Table 2 gives the fitted transition probabilities. In particular,
we notice that the probabilities to have a fault when the
process is in any of the other states are rather small, with a
total probability of 0.014. Furthermore, the probability that
the process from the fault alert condition of state 6 returns in
the previous pre-alert state labeled 2 is 0.635. This finding
may suggest the potential occurrence of false alerts. There is
also a remarkable persistence in the fault alarm state, as the
probability to remain in state 6 is 0.314.

We also ran a classical multivariate Gaussian HMM to the
original data, still taking into account profile-wise centering.
In this case, the BIC criterion leads to choose k = 8, which
is a larger number of states underlying a more complex to
interpret data structure (not only from a strict visualizing
point of view). From the inspection of conditional means
and variance-covariance matrices, it turns out that the failure
state, characterized by themore extreme values for the second
temperature sensor and the pressure sensor, is composed

FIGURE 7. 1 Hz data. Robust distances by latent states on log scale.

TABLE 3. Transition matrix for 10 kHz data.

of 400 points. In addition, there are at least a couple of alert
states. We can state that the HMM evaluated over robust dis-
tances returns a more feasible description of the data structure
and effective detection of the failure state. On the contrary,
the classical HMM suffers from masking effects, since it is
not able to detect outliers properly with a lower number of
states and even with k = 8 is likely to flag many false
positives.

B. HIGH FREQUENCY DATA
The same analysis has been performed on the data generated
by the three accelerometers. The data generated for each
billet have been summarized with the mean values, that are
immediately affected by anomalies in the production process.
Figure 8 shows the distribution of robust distances among
profiles; the horizontal line gives the cut-off to detect outliers.
It is evident that the majority of outliers belong to profiles of
φ8: 158 over a total of 381 detected anomalies. In particular,
the more extreme points in the first box-plot are those corre-
sponding to the observed fault.

FIGURE 8. 10 kHz data. Distribution of robust distances over profiles.

53834 VOLUME 9, 2021



K. Sarda et al.: Multi-Step Anomaly Detection Strategy Based on Robust Distances

FIGURE 9. 10 kHz data. Distribution of robust distances by latent states.

FIGURE 10. 10 kHz data. Robust distances by latent states on log scale.

By running the HMM, the BIC criterion identifies five
latent states. In this example, the HMM has been fitted
after that the squared robust distances have been transformed
according to the Wilson-Hilferty formula [34], which allows
to transform χ2

p distributed variate towards normality. There-
fore, a Gaussian HMM has been fitted because the Gamma
HMM showed severe convergence issues. The BIC criterion
selected a model with five latent states. The distribution of
distances within each state is displayed in Figure 9, whereas
their classification is given in Figure 10. We notice that
the fifth cluster includes the most incipient fault samples:
34 over 36 anomalies concern φ8 profile. The output from
HMM clearly reduced the risk of false alarms with respect
to the former static analysis. The entries in Table 3 give the
transition probabilities: the probability of remaining in the
fault state is 91.6%.
In order to better assess the performance of the proposed
technique, we also fitted a Gaussian multivariate HMM to
the high frequency profile-wise centered values. The classical
procedure returned a similar structure with the same number
of latent states and a similar classification into states. The
main difference concerns the fitted conditional probability to
remain in the fault state that now is lower than its robust coun-
terpart and equal to 0.876. Here, the classical procedure is
able to deal with outliers since they are very far from the bulk
of the data and characterized by huge values. Nevertheless,
the underestimation of the conditional probability to remain

in the alarm state could badly affect the prediction of future
anomalies.

C. COMBINING DATA ANALYSIS: 1 Hz AND 10 kHz DATA
We here consider the combination of the above analyzed data,
i.e., temperature, pressure, and vibration signals obtained
through robust distances. Let us focus on the results stemming
from the HMM analysis over the robust distances. The BIC
criterion suggested to select seven hidden states. The seven
clusters inferred from the fitted HMM are given in Figure 11.
It is quite evident that the state labeled 1 includes very large
outliers. In this latent state 39 points have been classified of
which 37 are from profile φ8. The classification is displayed
in Figure 12. These results are in strong agreement with
those stemming from the previous analyses. In this example,
fitting the classical HMM model under the assumption of
multivariate normality of the data at hand does not lead to
select a feasible number of latent states, with k ≥ 10. It is
evident that such a result makes any interpretation effort
challenging and likely to be not useful. This means that the
classical multivariate HMM is not able to cope with outliers,
if not at the cost of an extremely complex underlying structure
that can undo any prediction effort.

FIGURE 11. Combined data. Distribution of robust distances by latent
states.

FIGURE 12. Combined data. Robust distances by latent states on log
scale.

D. PREDICTION AND ALARM DETECTION
In order to investigate and assess the predictive capability
of the proposed strategy, we decided to split the data into
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FIGURE 13. Detected anomalies in the test data (red circles).

two groups: the first 2700 observations are used as train
data, whereas the remaining 2744 as test data. The static
outliers detection based on the reweighted MCD leads to
flag about 20% of the test data as outliers. On the contrary,
the HMM analysis detects only 49 points, after classifying
robust distances into seven latent states: the points are dis-
played in Figure 13. The method is able to detect the occurred
anomalies, despite few false alarms.

V. CONCLUSION
In this work we have proposed a two-step scheme, relying on
two different methodologies (static and dynamic), for fault
detection for rolling mill in a steel production plant, using
real field data. A preliminary fault detection phase has been
carried out based on robust MDs and on the RMCD. This
method appears to be very effective for the detection of faulty
samples, and it results computationally efficient. Secondly,
based on the robust distances obtained in the previous phase,
a more complex method is then used to confirm the detection
of the fault and provide additional information about the
probability of transitioning among the latent states, i.e., the
HMM-based method can potentially predict the evolution
over time of the status of the monitored system. In the results
section, we proved the effectiveness of the proposed proce-
dures when applied to real data.

We believe that the proposed methodology is attractive
because it is straightforwardly implementable yet sufficiently
accurate. Future work will cover the extension of the pro-
posed methods to the frequency domain. Moreover, it will be
investigated the application of the proposed anomaly detec-
tion method to an automatic plant’s supervisor systems such
as a digital twin.
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