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Abstract In this paper we report on the design, modeling,
experimental testing and scaling analysis of a novel
MAgnetic Variable stiffnEess spRIng-Clutch (MAVERIC)
device, which may be used as the elastic element
of Variable Stiffness Actuators (VSAs). The device,
comprising two co-axial diametrically magnetized hollow
cylinders, has two degrees of freedom: a rotation of the
two cylinders around the common axis and a relative
translation along the same axis. For small rotations,
the torque arising from the magnetic interaction of the
two cylinders is almost linearly proportional to their
relative rotation, as in mechanical torsion springs. In
addition, the stiffness of the equivalent spring can
be varied continuously from a maximum value down
to exactly zero by changing the axial overlap of the
two cylinders. In this way the proposed device can be
used both as a clutch (i.e., perfectly compliant element)
and as a variable stiffness torsion spring. A prototype,
designed after magnetostatic FEM simulations, has been
built and experimentally characterized. The developed
MAVERIC has an experimentally determined maximum
transmissible torque of 109.81 mN m, while the calculated
maximum stiffness is 110.2 mN m rad−1. The amplitude
of the torque-angle characteristic can be tuned linearly
with a sensitivity of 12.63 mN m mm−1 rad−1. Further

simulations have been computed parameterizing the
geometry and the number of pole pairs of the magnets.The
maximum torque density reached for one pole pair
is 47.21 · 103 N m m−3, whereas for a fixed geometry
similar to that of the developed prototype, the maximum
torque is reached for seven pole pairs. Overall, compared
to mechanical springs, MAVERIC has no fatigue or
overloading issues. Compared to other magnetic couplers,
torsion stiffness can be varied continuously from a
maximum value down to exactly zero, when the device
acts as a disengaged clutch, disconnecting the load from
the actuator.

Keywords Variable Stiffness Joint, Magnetic Compliant
Element, Magnetic Clutch

1. Introduction

Compliant transmissions, equipped with sensors
providing a feedback on the output torque, are used
in a number of robotic applications. Examples include
robotic hands, where the elastic elements are used to
perform a stable grasp [1–3], flying robots, in order to
estimate the pitch torques generated by wings during
flapping [4] and robotic snakes, for estimating ground
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contact forces [5]. Furthermore elastic elements are key
components of Series Elastic Actuators (SEAs) [6–9],
Variable Stiffness Actuators (VSAs) [10–18] and, more
generally, of Variable Impedance Actuators (VIAs) [19],
where damping can also be adjusted by properly
controlling the device. In this field, a seminal work is that
of Fasse et al. [20], where an electromagnetic variable
impedance actuator is demonstrated, capable of exerting
a torque much higher than that of the prototype described
in this paper.

SEAs, VSAs and VIAs are usually composed of one or
more actuator (pneumatic, hydraulic, electric), possibly
embedding gearboxes, compliant transmissions and
sensors measuring the deformation of the elastic elements
[21]. Elastic elements are also used in compliant joints
[22–28] as they are particularly useful in terms of intrinsic
safety, as in the case of wearable robotics, or to tune the
dynamical properties of the robot, as needed to establish
an effective interaction with the environment and the
wearer [29]. Elastic elements also provide the mechanical
structure with the capability to efficiently store and release
mechanical energy. This feature is particularly useful for
the generation of oscillatory movements. Moreover, the
elastic energy stored in compliant elements can be quickly
released for fast operations.

In the development of SEAs and VIAs, the often conflicting
main design requirements are: compactness, lightness,
backdrivability, compliance adjustability, maximum
torque, torque resolution and bandwidth. Any design
asks for an application-specific trade-off among such
requirements. For instance, compactness and lightness are
key requirements for ungrounded robots; backdrivability
(either intrinsic or control-based) is important in assistive
and rehabilitation robotics; stiffness adjustability is
important whenever the efficiency must be optimized.
Torque resolution and large torque bandwidth are also
conflicting requirements, the former asking for highly
compliant elastic elements to increase sensitivity, the latter
asking for high stiffness to improve system response.

Several torsion springs have been proposed so far,
including: linear compression springs arranged so as to
produce torsion elasticity [15, 23, 24, 30]; leaf springs [13,
31]; flexible joints [22, 32–34]; custom-shaped compliant
elements [7, 26, 27].

Moreover, remotely operated magnetic springs have been
successfully used to operate wireless bioptic tools [35].

Magnetic couplers are a good replacement of their
mechanical counterparts in a number of applications,
thanks to such features as simple maintenance, high
reliability, no need for lubricants, high efficiency, precise
peak torque transmission, inherent overload protection,
reduced drivetrain pulsations, tolerance to misalignments
and low noise. Conversely, magnetic couplers are
inherently characterized by a residual compliance.
Nonetheless, this drawback can be managed [36] and
in some applications (e.g. ,SEAs, VIAs) it could be
beneficially exploited. Although a number of magnetic
springs with constant [37–41] and variable [42] stiffness
have been proposed, to the best of our knowledge no

variable stiffness magnetic spring, that can also be used as a
clutch, has been proposed up to now.

This paper demonstrates a synchronous one DOF
magnetic coupler with diametrically magnetized
permanent magnets, working as a tunable compliant
torsion element, with a maximum stiffness that can be
varied linearly from zero up to a maximum value. When
stiffness is set to zero, the coupling behaves as an open
clutch (i.e., no torque transmission).

The paper is organized as follows. Section 2 presents
the concept of the variable stiffness compliant element;
characterization and data analysis of the developed
prototype are described in Section 3; in Section 4 a scaling
analysis is presented; Section 5 presents some example
applications. Conclusions and future works are discussed
in Section 6.

Figure 1. Permanent magnets configuration in MAVERIC:
magnets are concentric and diametrically magnetized. They can
rotate around and translate along the z-axis. a) One pole pair
magnet configuration; b) two pole pairs magnet configuration.

Figure 2. Configuration of permanent magnets selected for the
setup. d and θ respectively are the relative linear and angular
displacement of magnets along z axis. Dout

1 , Dout
2 are the inner

and outer diameter of the outer magnet, while Din
1 , Din

2 are the
inner and outer diameters of the inner magnet.
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2. The concept of a magnetic variable torsion stiffness
compliant element

The proposed device, in the following referred to as
MAgnetic Variable stiffnEss spRIng-Clutch (MAVERIC),
is a particular rotational magnetic coupler, comprising
an inner and an outer part. The outer part consists
of an even series of diametrically magnetized identical
permanent magnets, placed in a cylindrical configuration,
with alternate directions of magnetization. The concentric
inner part has the same number of magnets, with alternate
magnetization (Figure 1). The two nested magnetic
cylinders are arranged in a two-DOF configuration, which
allows the relative translation of the cylinders along the
common axis and the rotation around the same axis. The
axial displacement produces a change of the overlap of the
two cylinders (Figure 2).

Keeping constant the magnetic properties of the
permanent magnets, the stiffness can be varied by
acting on the geometry of the device, e.g., by changing the
thickness of the air gap between the inner and the outer
parts or by varying their mutual overlap. The first solution
is not only less practical from a design and fabrication
point of view, but also less effective than the second one,
as will be demonstrated below. Compared to the first one,
the second option is not only simpler from a design point
of view, but, more importantly, it allows reducing the
stiffness of the coupler to zero, as needed for rendering a
perfect compliance (clutch principle).

In order to demonstrate the working principle, let’s
consider a simple case of a rotary magnetic coupler
with two nested concentric cylinders, both diametrically
magnetized, so that each cylinder has one magnetic pole
pair placed along the diameter (Figure 1-a). There are
two main analytical approaches to derive the magnetic
field from Maxwell’s equations: the Coulombian and the
Amperian current model [43]. Nevertheless, stiffness
can be analytically calculated only in a limited number
of simple cases while, in general, numerical methods are
necessary. For the sake of analytically demonstrating
the working principle, let’s simplify the actual geometry
by approximating the external magnetic cylinder (mean
radius: r) to a circle (Mout in Figure 4) and the
inner cylinder to a magnetic dipole (Min in Figure 4).
Introducing a three-dimensional (3D) Cartesian coordinate
system (x, y, z) to represent this simplified configuration,
assuming the magnetization vector of the external magnet
to be constant and oriented along the x axis, it is practical
to describe the magnetization of the external magnet as a
magnetic moment per unit length:

ml
out = [ml

out, 0, 0] (1)

The magnetic moment of the inner part will have a
constant module (min) and a direction depending on the
rotation angle (θ):

min = min[cos(θ), sin(θ), 0] (2)

The position of a generic magnet dipole in the external
circle is:

r = [r cos(θ1), r sin(θ1), z] (3)

NdFeB magnets (HKCM engineering)
Properties [unit] Outer magnet Inner magnet
Outer Diameter [mm] Dout

2 = 20.6 Dout
1 = 12

Inner Diameter [mm] Din
2 = 12.5 Din

1 = 2
Height [mm] h2 = 10 h1 = 12
Max. Energy Product
[BHmax [kJ m−3] 394 ± 12 410 ± 12

Coercive Force [kA m−1] 796 796
Residual Induction [mT] 1425 ± 25 1455 ± 25

Table 1. Properties of the permanent magnets.

where z is the axial coordinate and θ1 the angular position.
The magnetic flux density, due to the external magnet, can
be written as [44]:

B =
µ0
4π

∫ 2π

0

(
3
(ml

outr(θ1))r(θ1)

|r|5 − ml
out

|r|3

)
r dθ1 (4)

where µ0 is the vacuum permeability. Substituting (1) and
(3) in (4) it is possible to derive B:

B =

[
µ0
4

ml
out r (r2 − 2z2)

(r2 + z2)5/2 , 0, 0

]
(5)

From (2) and (5) it is then possible to calculate the magnetic
torque:

τ = min × B =

[
0, 0,−minml

outµ0

4
r sin(θ)(r2 − 2z2)

(r2 + z2)5/2

]

(6)
The torsion stiffness, function of θ, is:

k(θ) =
dτz(θ)

dθ
= −minml

outµ0

4
r cos(θ)(r2 − 2z2)

(r2 + z2)5/2 (7)

where τz(θ) is the z component of τ . According to (7),
keeping θ constant, the maximum stiffness is reached for
z = 0, while stiffness becomes zero when z = ±r/

√
2.

In the case where the control variable is r while z is
constant, considering the conservation of magnetic dipoles

numbers, i.e., ∂
∂ r

(∫ 2π
0 ml

out r dθ1

)
= 0 (hence ml

out =

mout/r where mout is a constant), it can be inferred that
the device could not be operated so to exhibit a stiffness
ranging from zero up to its maximum: if z = 0 stiffness
cannot be zero, while, if z �= 0, the maximum torque is the
one obtained in correspondence to the minimum r.

Although the simple model described above can be useful
in shedding some light on the working principle of
MAVERIC, it is too simple to provide an accurate estimate
of the expected performance of a real system. Conversely,
magnetostatic equations are not amenable to being
solved analytically given the complexity of the geometry.
Therefore, FEM simulations have been performed with
the purpose of dimensioning an experimental setup.
Additional simulations have been used to compute the
order of magnitude of the maximum reachable torque and
the storable energy density.
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Figure 3. Torque simulation data in the function of
magnet distance d and angle θ. Maximum torque modulus is
116.54 mN m, for d = 0 mm and θ = ±90◦, while d = dsim

0 =
7.12 mm corresponds to perfect compliance condition.

3. Characterization

The MAVERIC system taken into account features one pole
pair per cylinder (Figure 2). The characteristics of the
selected magnets are reported in Table 1. In the following
the torque is assumed positive if it tends to rotate the inner
cylinder clockwise.

3.1. Simulations

The magnet (NdFeB, HKCM engineering) dimensions
and properties have been retrieved from the
manufacturer’s datasheet (Table 1). The selected
rare-earth permanent magnets are characterized by a
linear demagnetization curve and a high maximum
energy product. Magnetostatic FEM simulations have
been performed (Ansoft Maxwell 3D) taking into account
a current free space. There are four main methods
to numerically calculate forces/torques: the Maxwell
stress tensor method, the co-energy method, the Lorentz
force equation, and the rate of change of field energy
method [45]. The selection of a specific method is usually
problem-specific, although the most frequently used
methods are the Maxwell stress tensor and co-energy
methods. In our problem, where linear magnetic materials
are considered, magnetic co-energy can be approximated
to magnetic energy and forces/torques for different
configurations can be calculated using the principle of
virtual work. For the magnetostatic simulations, the
linear and angular displacements d and θ have been
taken as parameters: d has been varied from 0 mm to
15.5 mm (steps of 0.5 mm for d ≤ 1.5 mm; steps of 1 mm
for d > 1.5 mm), while θ has been varied from 0◦ to 180◦

(steps of 20◦; in addition, θ = 90◦ has been simulated,
since this angular position corresponds to the maximum
torque). Figure 3 shows how torque depends on those
parameters. In the same figure it is possible to observe
the sinusoidal profile related to angular displacement.
Maximum torque modulus, retrieved from simulations,
is 116.54 mN m, for d = 0 mm and θ = ±90◦, whereas
perfect compliance is achieved when d = dsim

0 = 7.12 mm,
as results from a linear interpolation.

Figure 4. a) Simplified geometry of a rotary magnetic
coupler with two nested concentric cylinders, both diametrically
magnetized. The external magnetic cylinder (mean radius: r) is
approximated to the circle Mout (i.e., infinitesimal thickness and
height), while the inner cylinder to the magnetic dipole Min. θ1
is the angular position of a generic magnetic dipole in the circle;
b) orientations of ml

out and min(θ).

3.2. Experiments

In order to assess the reliability of the performed
simulations, an actual prototype of MAVERIC has been
built, using the same materials and geometric dimensions
as in the simulation. The developed prototype has been
experimentally characterized, as reported below.

3.2.1. Setup

A custom measurement setup (Figure 5) has been
assembled to measure torques in different configurations
with a resolution of 1.0 mN m. The setup comprises a
linear and an angular micropositioner. The spring-loaded
linear positioner allows a maximum displacement of
25.4 mm, with a 1 µm resolution using the vernier scale
(M-460P-X, Newport). The other positioner is a rotation
stage that allows 360◦ of coarse and 5◦ of fine angular
positioning: scale markings indicating every degree
and vernier reading allow 5 arcmin positioning accuracy
(M-481-A, Newport). Magnets have been connected to
3D-printed acrylic resin supports by means of shape
coupling: a support, fixed to the rotating stage, houses the
inner cylinder; the other cylinder is mounted on a shaft,
supported by two ball bearings locked by two circlips in an
A-shaped support, connected to the linear slide. An Al bar
is fixed to the other end of the shaft. The head of a set screw
in the bar localizes the contact point between the bar and
the plate of a load cell (A120EC, Exacta; precision of 1 µN
and a range of 1.5 N). The torque exerted by MAVERIC is
calculated by multiplying the lever arm of the bar and the
force read by the load cell.

3.2.2. Measurements

Exerted torques have been measured for 22 values of θ
in the interval [0◦, 360◦], while d has been varied from
0 mm to 15.5 mm. Experimental data and their deviation
from simulations are shown in Figure 6. In particular, the
RMS error is 4.30 mN m, i.e., less than 4% of the maximum
measured torque (109.81 mN m when d = 0 mm and θ =
90◦). Perfect compliance is achieved when d = dexp

0 =
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6.78 mm. Torque-angle sinusoidal profile is confirmed by
experimental data.

Figure 5. Overview of the experimental setup. a) CAD sketch:
1. set screw, 2. Al bar, 3. acrylic resin shaft A-shaped support, 4.
rotation stage, 5. micrometer screw for angular displacements, 6.
micrometer screw for linear displacements, 7. linear positioner, 8.
load cell; 9. ball bearings, 10. permanent magnets, 11. acrylic resin
shaft. b) Picture of the actual setup.

Figure 6. Torque data (experimental): a) Torque surface as a
function of magnets distance d and rotation angle θ. Maximum
torque is 109.81 mN m, for d = 0 mm and θ = 90◦, while
d = dexp

0 = 6.78 mm corresponds to perfect compliance; b)
Torque surface error calculated from simulation data (RMSE =
4.30 mN m).

3.3. Torque fittings

The relation between maximum torque and magnet
distance d in the configurations where there is overlap
(0 mm ≤ d ≤ 10 mm) is linear (R2 = 0.994), as
reported in Figure 7. It is expected that the linearity
of torque-angle characteristic is advantageous in SEAs
and VIAs on the grounds that a linear elastic element
simplifies the actuator model and the torque control.
While the maximum torque-position relation is linear, the
torque-angle characteristic is sinusoidal and its profile is
preserved for any value of d (Figure 8). Torque-angle
characteristic for d = 0 mm can also be fitted as T =
b1 sin(θ) (Figure 9), with b1 = 110.20 mN m (R2 = 0.999,
RMSE = 1.17 mN m). It is also possible to linearly
approximate the torque-angle characteristic in the range
±90◦ (i.e. T = c1 θ) obtaining R2 = 0.920 for a torsion
stiffness c1 = 79.41 mN m rad−1 (RMSE = 10.54mN m).
A good analytical approximation of the torque function
based on the experimental data is given by the following
parametric surface (Figure 10):

T(θ, d) = (A − B d) sin(θ) (8)

Figure 7. Maximum torque-magnet distance profile.
Experimental data are fitted with T = a1 − d a2 in the range of
overlapping (d = 0 mm ÷ 10 mm) resulting in: a1 = 109.64 mN m,
a2 = 15.56 N with a R2 = 0.994 and a RMSE = 4.57 mN m. Perfect
compliance is reached for d = dexp

0 = 6.78 mm. .

Figure 8. Piecewise linear interpolations of torque-angle
experimental data for different values of d. Curves preserve their
sinusoidal shape also varying magnet distance d.

Angelo Sudano, Dino Accoto, Loredana Zollo and Eugenio Guglielmelli:
Design, Development and Scaling Analysis of a Variable Stiffness Magnetic Torsion Spring

5www.intechopen.com



Figure 9. Torque-angle profile for d = 0 mm. Experimental
data are fitted with T(θ) = b1sin(θ). b1 = 110.20 mN m (R2 =
0.999, RMSE = 1.17 mN m. Experimental data are fitted also
with T(θ) = c1 θ in the range ±90◦ obtaining a R2 = 0.920,
with a RMSE = 10.54 mN m and a torsion stiffness c1 =
79.41 mN m rad−1.

As in the linear regression previously described, this fitting
is limited to values of d within the overlap range (0 mm ≤
d ≤ 10 mm). When A = 102.70 mN m and B = 12.63 N,
one finds RMSE = 1.89 mN m and R2 = 0.997.

For (0 mm ≤ d ≤ 10 mm), considering (8), the expected
torsion stiffness is:

k(θ, d) = (A − B d) cos(θ) (9)

From (9), the maximum stiffness is 102.70 mN m rad−1.
The maximum RMS stiffness, in the range −90◦ ≤ θ ≤
90◦, is 79.41 mN m rad−1. It is possible to notice that
(9) is not always positive, i.e., for fixed d, by increasing
(decreasing) θ until the torque reaches its maximum
(minimum), if θ keeps increasing (decreasing), torque
decreases (increases). This behaviour is exhibited because
the system has two equilibrium positions, one stable at
θ = 0◦ and the other one unstable at θ = 180◦. In
a magnetic gearing the possibility to cross an unstable
position (i.e., “pole slipping”) may be a desired effect
in the case of overloading in order to prevent potential
mechanical failures. Of course, such behaviour needs to
be carefully taken into account in the design of the system
control [46]. With reference to the intended application,
let’s consider the range −90◦ ≤ θ ≤ 90◦, where stiffness
is always positive. The energy stored in the system,
considering d constant, can be derived from (8) as:

∫ θ0

0
(A − B d) sin(θ)dθ = (A − B d) (1 − cos(θ0)) (10)

Considering the maximum rotation (θ0 = 90◦) and d =
0 mm, the energy stored is 102.70 mJ. The maximum
energy storable in the system is 203.42 mJ when θ = 180◦.

The maximum energy density of MAVERIC and
the maximum torque density can be calculated
taking into account the volume of the device

( π
4 ∑2

i=1

[
(Dout

i )2 − (Din
i )2

]
hi ∼= 6.81 cm3), respectively

Figure 10. Experimental torque values fitted with the surface
(8). R2 = 0.997, RMSE = 1.89 mN m for A = 102.70 mN m and
B = 12.63 N.

obtaining 29.87 kJ m−3 (15.08 kJ m−3 when θ0 is 90◦) and
16.18 N m−2.

4. Scaling analysis

Magnetostatic FEM simulations, which in Section 3 proved
to be reliable and accurate in estimating the mechanical
properties of MAVERIC, have also been used to evaluate
how geometric dimensions and the number of pole
pairs impact the performance of the device in terms of
maximum torque, stiffness, torque density and energy
density.

In a first set of simulations the number of pole pairs has
been taken as the variable parameter (Npp = 2 ÷ 18). The
heights of the two magnets have been set to 10 mm and
the residual induction to 1455 mT. The other geometric and
magnetic parameters have been given the values in Table 1.
For 2, 3, 4 pole pairs, torques have been calculated also
varying the relative angular position (θ = 0◦ ÷ 90◦ with a
step of 3.75◦, θ = 0◦ ÷ 60◦ with a step of 5◦, θ = 0◦ ÷ 45◦

with a step of 3.75◦ for Npp = 2, 3, 4, respectively) and
linear position (d = 0 ÷ 15 mm with a step of 1 mm)
in order to demonstrate MAVERIC’s capability of acting
as a disengaged clutch (i.e., perfect compliance) also for
Npp �= 1. For Npp = 2 ÷ 4, torque-angle characteristics
(d = 0 mm) are shown in Figure 11, while Figure 12
reports the torque-linear displacement characteristics for
θ = 90◦/Npp (angle which maximizes torque). For all
the values of Npp the maximum torque (TMAX) has been
computed (13).

In the second set of simulations the number of pole
pairs has been kept constant (Npp = 1), while geometric
parameters have been changed. Overall, 684 geometries
have been simulated (Figure 14), considering as variable
parameters the radial thicknesses of both the inner and the
outer magnets (τ1 = 5 ÷ 52.5 mm, τ2 = 2.5 ÷ 52.5 mm)
and their height (h1 = h2 = H = 2.5 ÷ 52.5 mm).
For both magnets, Din

1 (2 mm), the residual induction
(1455 mT) and the coercive force (796 kA m−1) have been
kept constant. Also the air gap between magnets has

Int. j. adv. robot. syst., 2013, Vol. 10, 372:20136 www.intechopen.com



Figure 11. Torque angle characteristics (d = 0mm) for 2, 3 and
4 pole pairs and with Dout

1 , Dout
2 , Din

1 , Din
2 as in Table 1 and h1 =

h2 = 10 mm.

Figure 12. Torque-linear displacement characteristics for Npp=
2, 3 and 4 with θ equal to 45◦, 30◦ and 22.5◦. Dout

1 , Dout
2 , Din

1 , Din
2

as in Table 1 and h1 = h2 = 10 mm.

Figure 13. Maximum torque TMAX (circular markers),
energy density (square markers) and maximum stiffness density
(triangular markers) computed for d = 0 mm and θ = 90◦/Npp ,
as a function of Npp. Dout

1 , Dout
2 , Din

1 , Din
2 as in Table 1, h1 = h2 =

10 mm.

been kept constant (0.5 mm). The geometric bounds have
been selected in order to include in the analysis designs
which, for their size (i.e., outer diameters in the order of
tens of mm) and torques (in the order of tens of Nm), can
find practical applications in the fields of biorobotics and
wearable robotics.

Properties [unit] Value Npp

Max. Torque Density [N m m−3] 166.84 · 103

7Max. Torque [N m] 0.68

Max. Energy Density [J m−3] 38.68 · 103

3Max. Energy [ J ] 0.124

Max. Stiffness [N m rad−1] 8.76
18Max. Stiffness Density

[N m rad−1 m−3]
2.15 · 106

Table 2. Analysis results of pole pairs (τ1 = 5 mm,
τ2 = 4.05 mm, H = 10 mm).

Properties [unit] Value
τ1 τ2 H

[mm] [mm] [mm]

Max. Torque Density
[N m m−3]

47.21 · 103

47.5 22.5 32.5

Max. Energy Density
[J m−3]

Max. Stiffness
Density
[N m rad−1 m−3]

47.21 · 103

Max. Energy [ J ]
70.32

50 52.5 52.5Max. Torque [N m]

Max. Stiffness
[N m rad−1]

70.32

Table 3. Geometry scaling analysis results (Npp = 1). As it can
be verified from (8), (9) and (10), maximum torque, energy and
stiffness assume the same numerical value for −90◦ < θ < 90◦

and Npp = 1 if SI units are used.

4.1. Results

The first set of simulations (constant geometry, variable
Npp) shows that maximum torque, stiffness and energy
increase with Npp (Figure 13). In particular, for the
geometry described in Section 4, the maximum torque
density is 166.84 · 103 N m m−3 for Npp = 7, the maximum
energy density is 38.68 · 103 J m−3 for Npp = 3 and
the maximum stiffness density is 2.15 · 106 N m rad−1 for
Npp = 18 (Table 2).

The second set of simulations (variable geometry, Npp =
1) allowed us to identify the geometries that maximize
torque, stiffness and energy per unit volume. It is to be
noted that, in the case under consideration (Npp = 1), the
latter two values numerically coincide for each geometry.

In detail, simulations returned a maximum energy density
of 47.21 · 103 J m−3 and a maximum torque density of
47.21 · 103 N m m−3 for τ1 = 47.5 mm, τ2 = 22.5 mm, H =
32.5 mm (Figure 15) and a maximum torque of 70.32 N m
in correspondence to upper bounds (τ1 = 50 mm, τ2 =
52.5 mm, H = 52.5 mm ), as summarized in Table 3.

5. Example applications

The scaling analysis reported above can be used to adapt
the design of MAVERIC to specific needs. One example
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Figure 14. Maximum torque as a function of magnet dimensions.
Height of magnet (H) varies from 2.5 mm to 52.5 mm by steps
of 10 mm. Maximum torque increases with dimensions. When
τ1 = 50 mm, τ2 = 52.5 mm, H = 52.5 mm the maximum torque is
70.32 Nm.

Properties [unit] Value

Max. Torque [N m] 55.52

Stiffness [N m rad−1] 0 ÷ 388.64

Torque Density [N m m−3] 852.58 · 103

Energy Density [J m−3] 121.77 · 103

Energy [ J ] 7.93

Stiffness Density [N m rad−1 m−3] 5.97 · 106

Perfect Compliance Distance [mm] 33.3

Table 4. Calculated performance for Npp = 7, τ1 = 36 mm,
τ2 = 20 mm, H = 20 mm.

application is in the field of resonant motors for biorobotic
applications [48]. In nature several animal species generate
oscillatory movements by exploiting body stiffness, and
this principle can be replicated in robots by properly
coupling a motor to a compliant element acting as a
spring. For example, the device presented in [48] uses
a torsion spring with a stiffness of 1.6 · 10−3 N m rad−1

and a stiffness density, calculated from the data reported
in the paper of about 2.32 · 104 N m rad−1 m−3. Both
values can be rendered by MAVERIC, as shown in
the previous section. Moreover, a variable stiffness
compliant element would allow us to efficiently tune the
oscillation frequency without compromising efficiency. As
already mentioned, another important class of potential
applications is represented by VIAs and SEAs. For
example, let’s set as design targets a minimum peak torque
Tem ∼= 60 N m, a stiffness of about 300 N m rad−1, a
deflection angle θmax = 10◦ ÷ 15◦, a maximum diameter
of 120 mm and a thickness of 20 mm. Considering the state
of the art, such a spring would fit compliant actuators
with a nominal power in the range 300 − 600 W [25–27].
For such a design, the number of pole pairs needed is
approximately given by Npp = 90◦/θmax. Let’s set Npp =
7 (rounding to the closest lower integer of 90◦/12.5◦).
A preliminary design can be obtained by considering
the scaling analysis results related to the case Npp =
1. The torque is almost directly proportional to the

Figure 15. Torque density for different geometries. Maximum
torque density is 23.82 Nm m−3 for τ1 = 47.5 mm, τ2 = 22.5 mm
and H = 32.5 mm.

number of pole pairs. For a given geometry, if T1 is
the maximum torque when Npp = 1, then the actual
torque is approximately given by NppT1. The geometry,
which for Npp = 1 provides an expected torque not less
than Tem/Npp, is characterized by the following geometric
parameters: τ1 = 30 mm, τ2 = 22.5 mm, H = 22.5 mm. In
fact, a device with such dimensions expectedly provides
a maximum torque of 8.75 N m> 8.57 N m= Tem/Npp. In
order to comply with the design requirement on height,
this geometry needs to be slightly adapted as follows:
τ1 = 36 mm, τ2 = 20 mm, H = 20 mm. Numerical
simulations are necessary to refine the evaluation of the
expected performance. Simulations retrieved a maximum
torque (for θ = 90◦/Npp) of TMAX =55.52 N m, a
maximum stiffness of 388.64 N m rad−1 and a maximum
stored energy of 7.93 J (Table 4), in line with the design
targets. For this device, the distance between the magnets
at which perfect compliance occurs is d0 = 33.3 mm, as it
can be retrieved by linearly interpolating the torques for
θ = 90◦/7 when d varies from 0 mm to 42 mm with a
step of 2 mm. Overall, the outer diameter of the spring
is 115 mm, while the thickness varies from 20 mm to
55.3 mm, depending on the value of d.

The two examples reported above show how the
MAVERIC principle can be applied in robotics. The
potential drawback represented by dimensions and weight
in certain applications may be counterbalanced by a
number of positive aspects. First of all MAVERIC is
not affected by overloading issues, because an excessive
torque would cause pole slipping, thus preventing
mechanical failures, which may conversely occur in metal
springs [27]. Moreover, MAVERIC intrinsically has an
infinite fatigue life. While the two above-mentioned
advantages are characteristic of magnetic couplers,
MAVERIC is characterized by a third feature, consisting
of its capability to continuously vary the intrinsic stiffness
from a maximum value down to the perfect compliance
condition. Once set, stiffness can be kept constant without
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supplying current, e.g., by using a non-backdriveable
mechanism to adjust d, with energetic advantages over
existing solutions (e.g., [20]). Variable intrinsic stiffness
is important, for example, to efficiently modulate the
frequency of resonant motors, to tune the stiffness of
compliant actuators or to separate the load from the
actuator without resorting to control-based strategies or
additional mechanical components (e.g., clutches).

6. Conclusions and future work

In this paper we reported on a novel concept of a magnetic
variable stiffness coupler that can also be used as a clutch.
Both simulations and experimental measurements have
been performed to prove the effectiveness of the proposed
concept. The proposed device offers a good trade-off
between compactness, reliability, variable compliance and
backdrivability. Scaling analysis indicates a maximum
torque density of 166.84 · 103 N m m−3. Simulations show
that a large range of stiffness, maximum stored energy and
torque can be obtained by changing dimensions and the
number of pole pairs. Therefore, the actual embodiment
of the MAVERIC principle can be chosen in order to
meet the requirements of specific applications. To this
end, a semi-analytical model, inspired by [47], will be
implemented in order to obtain a computationally efficient
tool for optimizing MAVERIC for specific applications.
Furthermore, a VSA incorporating a MAVERIC is under
development for the actuation of the spine of a robotic fish
[49].
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