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ABSTRACT: 

 

This work wants to highlight the results obtained during the BEEMS (Monitoring Bee Diversity in Natural System) project, which the 

main goal was to answer the following question: Which biotic and abiotic indicators of floral and nesting resources best reflect the 

diversity of bee species and community composition in the Israeli natural environment? The research was oriented towards the cost-

effectiveness analysis of new aerial geomatics techniques and classical ground-based methods for collecting the indicators described 

above, based only on open-source software for data analysis. Two complementary study systems in central Israel have been considered: 

the Alexander Stream National Park, an area undergoing an ecological restoration project in a sandy ecosystem, and the Judean foothills 

area, to the South of Tel Aviv. In each study system, different surveys of bees, flowers, nesting substrates and soil, using classical field 

measurement methods have been conducted. Simultaneously, an integrated aero photogrammetric survey, acquiring different spectral 

responses of the land surface by means of Uncrewed Aerial Vehicle (UAV) imaging systems have been performed. The multispectral 

sensors have provided surface spectral response out of the visible spectrum, while the photogrammetric reconstruction has provided 

three-dimensional information. Thanks to Artificial Intelligence algorithms and the richness of the data acquired, a methodology for 

Land Cover Classification has been developed. The results obtained by ground surveys and advanced geomatics tools have been 

compared and overlapped. The results are promising and show a good fit between the two approaches, and high performance of the 

geomatics tools in providing valuable ecological data. 

 

 

1. INTRODUCTION 

One of the major factors in maintaining global human food 

supply is the pollination (Klein et al., 2007) in addition to the 

functional integrity of most terrestrial ecosystems (Ollerton et al., 

2011). Wild pollinators have been defined as highly effective, 

often critical contributors to pollination services in natural and 

agricultural systems (Garibaldi et al., 2013), while colonies of the 

domesticated honey bee (Apis mellifera) offer their service 

mainly to crop pollination. Considering all wild pollinators, it is 

possible to define native bees as the most important pollinator 

group (Delaplane and Mayer 2000), because many bee 

communities usually provide more efficient and reliable 

pollination services than a single pollinator species (Blüthgen and 

Klein 2011) and are therefore of high conservation priority. 

The monitoring of these species and the climate change analyses 

has been emphasized the importance of these species, 

highlighting the ongoing global declines in both wild and 

managed environments. This has raised the interest in native bee 

conservation and restoration and therefore in long-term 

monitoring programs. However, executing such monitoring 

programs is a major challenge, as they are labor-intensive, and 

require high expertise in the collection of bees and their 

subsequent taxonomic identification. To date, little has been done 

in developing efficient tools for monitoring bee communities.  

The current prevailing approach for bee monitoring is site 

sampling oriented, time-consuming and labor-intensive upon 

collecting the required amount of data. Another approach is 

identifying, determining, and measuring which biotic and abiotic 

indicators of floral and nesting resources best reflect bee species 

diversity and community composition. Recent advances in the 

field of remote sensing have allowed performing such 

measurements parallelly to classical ground methods. The use of 
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Radar technology (Milanesio et al., 2020), UAVs, and image 

analysis can provide a wide-scale, fast, data-rich digital-platform 

for developing cost-effective bee monitoring programs. These 

tools have been widely used for many research activities, starting 

from subfluvial springs’ investigations (Aicardi et al., 2017), 

thermal analyses (Banding et al., 2012), forestry applications 

(Aicardi et al., 2016) and hyperspectral measurements 

(Weinmann et al., 2018). For this reason, the BEEMS project, a 

project of Scientific and Technological Cooperation between 

Italy and Israel (Scientific Track 2019), has focused the attention 

on the development of a technology-based approach for advanced 

bee community monitoring. The main idea is coupling 

photogrammetric tools, based on RGB images, with thermal and 

multispectral data, to develop a multi-scale and multi-temporal 

platform for monitoring bees and possibly other insect groups. 

After this introduction, Sections 2 and 3 show the case study 

considered and the data acquisition, while section 4 describes the 

photogrammetric approach applied to this research activity. 

Section 5 is dedicated to showing the results and discussion, 

while section 6 concludes this article by proposing also some 

future steps for the next research activities. 

 

2. METHODS 

This section presents dataset acquisition, feature extraction, pre-

processing and the structure of the prediction models, including 

the training procedure with respect to the case studies described 

in Section 3. Colour and spectral imagery can be used to infer 

physical and chemical characteristics of vegetation and soil, 

allowing to develop several models or forecasting, monitoring 

and management. Classifying the land use and the land cover 

through maps is one of the most important tasks for several 

actors. 
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The proposed method for land cover classification of Very High 

Resolution (VHR) imagery collected from Uncrewed Aerial 

Systems (UAS) exploits the benefits of Artificial Intelligence 

(AI) in extrapolating useful features from heterogeneous 

geospatial data and clustering geographic maps. In the state of the 

art, several algorithms of machine learning and image analysis 

are already implemented in open-source tools commonly applied 

in remote sensing and earth-observation. Very few works (e.g., 

Pontoglio et al., 2021) have tried to use, adapt and validate those 

algorithms on VHR images, in particular in photogrammetric 

products from UAS (orthomosaic and DSM). This section will 

provide information on the methods applied in the entire pipeline 

of map classifications, from the data acquisition, feature 

extraction, data preparation, pre-processing, training and set-up 

of the prediction model. Pixel-based and Object-based 

approaches are applied and compared addressing the benefits and 

drawbacks of each methodology. Particular attention is paid on 

the data preparation as well as on validation of the results.  

The processing and the prediction model for land cover 

classification have been performed by exploiting the algorithms 

implemented in ORFEO ToolBox (OTB). OTB is an open-source 

project for processing satellite images, developed by CNSE 

(www.orfeo-toolbox.org, accessed 10 April 2019). The suite of 

libraries offered can be bound both in QGIS software 

(www.qgis.org, accessed 10 April 2019) and in a Python 

environment. Together with OTB, scikit-learn (https://scikit-

learn.org/stable/) tools have been used in some steps of the 

analysis. 

2.1 On-field and photogrammetric data acquisition  

The Israeli research group, composed of ecologists and soil 

chemists, has carried out actions aimed at acquiring ecological 

indicators with classical field survey methods and analysing them 

statistically to model bee species diversity. In particular, the 

onfield exploratory survey of the region under study has allowed 

to define about 1000 samples to use as training and validation 

data. Those sample have been selected in each study case, 

assuring a good spatial distribution. As explained by Congalton 

and Green (Congalton and Green, 2019), to obtain a statistically 

consistent representation of the analyzed image, the accuracy 

assessment requires that an adequate number of samples should 

be collected per each land cover class. To this end, we considered 

it appropriate to select a total number of trainer polygons that did 

not deviate from 2% of the total number of segments of the entire 

image. 

Regarding the photogrammetric data, multispectral images 

acquired from UAS flight serve as input information for deriving 

radiometric, spatial and three-dimensional information of the 

area through dense image matching and structure from motion. 

As for any aerial photogrammetric survey based on UAVs, a 

flight plan has been designed, assuring lateral and longitudinal 

overlaps within frames of 80 % in both directions. The flight 

elevation above the ground level, as well as the velocity of the 

quadricopter, was settled in order to assure a ground sample 

distance (GSD) of about 1.5 cm and to avoid motion blurring. 

The UAS was the same for each case study (DJI Matrice 200), 

equipped with a multispectral camera (Slantrange 4P+) which 

integrates multi-constellation and multi-frequency GNSS 

receivers that allow accurate positioning of the cameras’ frames 

and the direct georeferencing of the photogrammetric block. The 

data processing has followed the classical photogrammetric 

pipeline, from feature extraction to image matching and aerial 

triangulation. The details regarding the georeferencing procedure 

and the residual errors on the GCP are reported in Section 3.   

The only change between classical methods is related to the data 

preparation and, in particular, the reflectance calibration of the 

multispectral data. As is known, changes in sunlight conditions 

generate a strong variability in the spectral and colour response 

of the acquired surface unless proper calibrations are applied. 

Slantrange P4+ camera incorporates an on-board incident solar 

light measurement sensor, a range measurement and a geo-

positioning sensor to provide necessary input data to the on-field 

calibration algorithm.  For each reflectance data acquired in a 

specific discrete spectral frequency range with the photo sensor, 

the algorithm allows correlating the spectral measurements of the 

ambient at the given time of acquisition, as well as the incident 

angle of the light source. The algorithm, as well as the 

implementation in the commercial sensor, are presented in Figure 

1. The Raw Slantrange images have been calibrated 

radiometrically, spectrally and geometrically by Slantview black 

box software and exported as multiple single-band .tif in 8-bit 

format. Some analysis has been made in order to evaluate the data 

missing behaviour of the calibration tool and assure the 

replicability of the analysis. 

 

 

Figure 1. The workflow of the calibration procedure 

implemented by Slantrange and its relation to the sensor 

components. 

 

2.2 Feature extraction and data preparation 

The production of very high scale digital cartography allowed the 

extraction of the necessary data for training the proposed 

Artificial Intelligence model. These data were applied to two 

different approaches for automatic land cover classification. The 

first approach was based on unsupervised classification at the 

pixel level, while the second approach is based on object 

classification, i.e. vector polygons describing the boundaries of a 

real object. The algorithms operate differently on these two types 

of data. In fact, in the pixel-based approach, they are applied at 

the level of the single pixel, while in the object-oriented 

approach, they are applied to groups of homogenous pixels for a 

given feature. The implementation of all the training and 

validation phases of the proposed models was based on Python 

programming language using open libraries for data management 

(shapely, raster) and learning (sk-learn). The segmentation of the 

input data is fundamental in the approach in order to define the 

objects to be classified. Therefore, the OTB library was applied.   

For object-oriented classification, we proceeded to apply 

automatic segmentation algorithms based on the analysis of 

multi-band spectral variability. In particular, the Large-Scale 

Mean-Shift (LSMS)-segmentation algorithm is used, producing 

a clustered image in which the pixels around a target pixel that 
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present similar behaviour from both the spatial and spectral 

points of view are grouped together. The LSMS-segmentation 

algorithm is a non-parametric and iterative clustering method 

introduced in 1975 by Fukunaga and Hostetler (Fukanaga and 

Hostetler 1975). It enables the performance of tile-wise 

segmentation of large VHR imagery, and the result is an artefact-

free vector file in which each polygon corresponds to a 

segmented image containing the radiometric mean and variance 

of each band. It is based on four steps: LSMS-smoothing, LSMS-

segmentation, LSMS-merging and LSMS-vectorization. The 

final step procedure vectorizes these clusters in order to obtain 

objects from which it is possible to compute the geometrical 

features (roundness, elongness, etc.). Finally, the operator 

associates a label to each vector for the dataset's generation.   

The dataset preparation is a fundamental step in ML. Considering 

the aims of this work in using UAS photogrammetric products to 

estimate land cover, two different test sites with peculiar 

characteristics for the interested region were selected. In those 

areas, direct measurements were made (MSI, coordinates of 

ground points, indicators), and from them, meaningful synthetic 

features were extracted.  The object-oriented approach was 

applied for the Alexander Stream National Park site while the 

pixel-based approach was applied on the Judean Foothills area. 

Effective use of features as input data for a classification 

procedure can improve classification accuracy. Thus, the 

classification dataset was enriched with derivative features, 

namely, spectral-, textural-, and statistical-based features which 

can be descriptive of the object to classify. The definition of the 

ground cover classes has been assessed by the ecologist expert 

which have identified the most important indicator to monitoring 

bee diversity. The description of these classes is reported in Table 

1. Knowing the classes and consequently identifying possible 

beneficial features, the raw MS images have been used to derive 

the aiding features. Table 2 reports the used measures for 

segmentation and classification. For each segment, the mean, the 

standard deviation, the median, the variance, the skewness and 

the kurtosis of the spectral, histogram and textural features were 

computed. The elevation is an important feature obtained by the 

photogrammetric procedure as well as the geometric-derived 

information. All those features have been stacked in an input data 

frame composed of thousands of samples/objects and hundreds 

of features.  In image-based classification, independent features 

highly correlated with dependent features must be maintained, 

while independent features highly correlated between them must 

be eliminated. Therefore, once selected, they were subjected to 

importance and dimensionality reduction procedures in order to 

extract only the features with the highest weight for the given 

learning process. Firstly, the features were subjected to 

correlation analysis, reducing the features highly correlated in the 

function of a given threshold, then a feature importance analysis 

was addressed using the Gini criterion as described in Section 

2.3. 

 

Herbaceous 

plants 

 

 

Plants that 

have non-

woody 

steams, 
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annual 

plants 

0 

 

Dry 

herbaceous 

plants 

  

Dead 

herbaceous 

plants 

1 

 

Woody 

plants 

 

 

Perennial 

plants that 

have hard 

steams, like 

bushes and 

trees 

2 (subclass 8 

and 9) 

Dry woody 

material 

 

 

Dead woody 

material like 

broken 

brunches, 

dead steams 

3 

Bare soil 

 

 

Exposed 

ground, free 

from rocks 

and plant 

litter 

4 

Leaves on 

ground 

 

 

Leaf litter 5 

Rocks 

 

 

Rocks and 

stones 
6 

Moss 

 

 

Moss 7 

Trees 

 

 

Subclass of 

Dry 

herbaceous 

plants 

mainly 

Eucalyptus/a

lmond trees 

8 

Bushes 

 

 

Subclass of 

Dry 

herbaceous 

plants 

9 

Table 1. Class labelling for LC classification based on ecologist 

expert directives. 

 

Category  Features  

Spectral-based  Color Index   

Statistical-based   Variance  

Mean  

Skewness  

Kurtosis  

Elevation  Digital Elevation Model  

Geometric  Extension (Number of 

Pixels)  

Flat  

Roundness  

Longness  

Perimeter  

Morphological Edges sobel 

 Harlick features 

 Local statistics 

Table 2. Features selected for the classification input dataset in 

object-based approach, computed using ORFEO toolbox. 

The final dataset array has been prepared and each input feature 

was scaled using scikit-learn pre-processing MinMaxscaler 

(Pedregosa et al., 2011), which resizes each feature on the 
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minimum and maximum values. At this point, the dataset has 

been split into training and testing (70% training – 30% test). The 

results of the data preparation are a training and testing dataset 

arrays where the prediction variable constituted the Y dataset and 

the X is composed of the features, both sample-based and object-

based.   

 

2.3    Machine Learning algorithms and Validation 

The ML algorithm that has provided the best results for the 

present task is the Random Forest classifier. Random forest is an 

automatic learning algorithm which consists of a set of decision 

trees that, thanks to a specific criterion, create several subsets of 

trees, each providing a classification result. The labels assigned 

to each input sample are assigned from the trees with the most 

votes. The RF classification was performed in a Python 

environment using Pandas, NumPy and Sklearn libraries. 

Random Forest classification model (Breiman, 2001) was trained 

using both sample and object datasets. The criterion used for the 

node splitting is the Gini (Hastie et al., 2009). The GINI gain is 

defined as the sum of impurity decreases from two nodes and the 

parent node. The GINI is calculated for each variable of the 

classifier. This parameter is a proxy of the importance of each 

feature within the model: the variables that have high GINI gain 

(so they have less impurity) are more important. Features that 

have GINI importance less than the median values of the feature 

importance values were excluded from the classification. The 

validation was performed in two steps. Firstly, the classical 

metrics to evaluate the model, then the comparison with the 

ground truth data acquired by the ecologist. The classification 

results were carried out using different validation metrics such as 

Precision, Recall, F1 score, etc. 

 

3. CASE STUDY 

The study involved two complementary study systems in central 

Israel (Figure 2), the Alexander Stream National Park, an area 

undergoing an ecological restoration project in a sandy 

ecosystem, and the Judean foothills area, to the South of Tel 

Aviv, which is characterized by an agro-natural landscape on 

vertisols. 

 
Figure 2. The two areas investigated in this study in Israel. 

In each study system, surveys of bees, flowers, nesting substrates 

and soil, using classical field measurement methods have been 

conducted. Simultaneously, an integrated aerophotogrammetric 

survey, acquiring different spectral responses of the land surface 

by means of UAV imaging systems has been performed. The 

acquisition of the indicators identified in the planning phase took 

place through several measurement campaigns conducted in the 

period between February 2020 and April 2020 located in two 

areas of interest in the Israeli territory. A total of 934 and 543 

wild bees were collected in the two systems under study, 

respectively. From a geomatics point of view, 8 flights were 

carried out in the Alexander Stream National Park on 24 February 

2020, acquiring approximately 65 GB of 8-bit multi-band images 

in tiff format. In the Judean foothills area, 11 flights were carried 

out on 26 February 2020, obtaining approximately 77 GB of tiff 

images. In addition, in order to obtain a correctly geo-referenced 

3D model, a total of 54 Ground Control Points (GCPs) were 

acquired, of which 27 in Alexander Stream National Park and 27 

in the Judean foothills, with a multi-frequency, multi-

constellation GNSS geodetic receiver in RTK mode.  

 

 
Figure 3. Instruments used during the survey’s campaigns. 

 

4. RESULTS AND DISCUSSION 

4.1 Analysis of Slantrange on-field calibration 

Once the collection is done, the imagery is uploaded to 

Slantrange calibration software, using the information from the 

ambient light irradiance sensor and the positioning, timing and 

attitude information of the camera drone and performing the 

reflectance calibration as well as the pixel crops to stack the 6 

optical sensor images. As the algorithms are patented and not 

publicly available, the algorithm's performance has been 

analyzed in terms of the quantity of information extracted from 

the raw data. Table 3 and Table 4 show the image extraction 

results for both case studies. 

 

time Site name Raw Extracted % extracted 

T080621 Block 5 898 860 95.77 

T082849 Block 5 273 130 47.62 

T093532 Block 4 628 424 67.52 

T095941 Block 4 372 248 66.67 

T110657 Block 1-2 653 448 68.61 

T113048 Block 1-2 478 293 61.30 

T120149 Block 2-3 702 522 74.36 

T122211 Block 2-3 454 309 68.06 

Table 3. % of images extracted from the Slantrange calibration 

procedure for Alexander Stream National Park data acquisition 

performed on 24th February 2020. 

time Site name Raw Extracted % extracted 

T071450 Block 1 519 361 69.56 

T080452 Block 1 502 278 55.38 

T081754 Block 1 315 170 53.97 

T084209 Block 1 390 138 35.38 

T085536 Block 2 638 309 48.43 

T091109 Block 2 597 283 47.40 

T092900 Block 2 656 305 46.49 
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T094556 Block 2 618 248 40.13 

T104605 Block 3 759 395 52.04 

T110719 Block 3 592 248 41.89 

Table 4. % of images extracted from the Slantrange calibration 

procedure for Judean Foothill data acquisition performed on 

26th February 2020. 

4.2 Photogrammetric results 

The photogrammetric processing results are several digital 

products that contain radiometric, texture, spectral, and spatial 

information. These products are: 

• Three-dimensional dense point clouds (DPC); 

• Digital Surface Models (DSM); 

• Orthomosaic map; 

All these products are georeferenced and defined in WGS84-

UTM zone 36N. The results are summarized in Table 5and Table 

6 for Alexander Stream National Park and the Judean foothills. 

 

Product Param. Dataset 1 Dataset 3 Dataset 4 

Aerial 

images 
n° 4446 3918 5022 

DPC 
pts n° 171888569 130377749 170992083 

run time 28 min 38 min 38 min 

DSM 

size 
10,127x 

13,513 

11,317x 

6,440 

8,813x 

12,936 

pixel 2,57 cm/pix 
2,86 

cm/pix 

2,75 

cm/pix 

run time 3 min 2 min 24min 

Ortho-

mosaic 

band n° 6 6 6 

size 
19,870x 

27,002 

22,623x 

12,87 

17,569x 

25,85 

pixel 1,28 cm/pix 1,43 cm/px 
1,38 

cm/pix 

run time 27 min 15 min 43 min 

Table 5. Summary of processing parameters and accuracy 

results of the Alexander Stream National Park site's digital 

products. 

Digital 

Product 
Param Dataset 1  Dataset 2 Dataset 3 

Aerial 

images 
n° 1450 6846 4722 

DPC 

pts n° 98452320 194483854 82769132 

run time 37 min 3 hours 
1 hours 40 

min 

DSM 

size 
 9,595 x 

10,824 

 13,979 x 

13,852 

 7,042 x 

8,467 

pixel 
1,61 

cm/pix 
1,9 cm/px 

2,01 

xm/pix 

run time 2 min 27 min 2 min 

Ortho-

mosaic 

band n° 6 6 6 

size 
19,190 x 

21,648 

27,904 x 

27,696 

 13,929 x 

16,893 

pixel 
0,08 

cm/pix 

0,09 

cm/pix 

1,01 

cm/pix 

run time 22 min 3 hours 115 min 

Table 6. Summary of processing parameters and accuracy 

results of the Judean foothills site's digital products. 

4.3 Segmentation 

Tuning the LSMS-segmentation algorithm is quite complex due 

to the original implementation, which was mainly focused on 

remote sensing images and the spatial variability of the objects 

defined in the class statement. Therefore, in order to define the 

most suitable parameters to segment the two study areas, several 

tests have been performed, and the results are compared. The 

LSMS-smoothing algorithm requires defining two parameters 

called spatial r and range r. The spatial r corresponds to the spatial 

radius. A higher value will lead to stronger smoothing and will 

also take more time. Range r is the spectral radius which means 

how pixels in the spatial radius and with close radiometry values 

will be averaged. A higher ranger will increase the smoothing 

effect. After that, the LSMS-segmentation application produces 

a labelled image where neighbour pixels whose range distance is 

below range radius ranger (and optionally spatial distance below 

spatial radius spatial r) will be grouped together into the same 

cluster. The parameters tested for tuning the algorithm are 

reported in Table 7. The final used parameters are highlighted in 

the table and represent the most satisfying parameters for 

segmenting our areas of interest. An example of orthomosaic 

segmentation is presented in Figure 4. 

 

LSMS-Smoothing 

Test number Spatial r Range r 

Test 1 10 50 

Test 2 10 15 

Test 3 5 15 

LSMS-Segmentation 

Test number Spatial r Range r 

Test 1 5 30 

Test 2 5 15 

Test 3 5 10 

Test 4 5 2 

Test 5 2 2 

Test 6 2 1 

Table 7. Spatial radius and range radius parameters tested to 

obtain the most effective segmentation result. 

 

Figure 4. Example of LSMS-Segmentation algorithm result. 

The green objects are vector polygons of the Alexander Stream 

National Park subject to regeneration policies. 

4.4 Feature extraction and dataset preparation 

Identifying the features of greatest interest in describing the 

classes is necessary, which can lead to better classification 

accuracy. The features are the attributes of the pixels or objects 

derived from the digital images, from the multiple acquisition 

bands, their spectral response, their combination, and the textural, 

spatial, and shape information.  

Using the implemented algorithms in OTB 41 features have been 

computed for the pixel-based sample and for object based-
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sample. Then, QGIS statistical algorithm operating on vector 

polygon was applied in the Alexander stream objects, reaching a 

final number of 129 features. The dataset array has been 

composed as follows: 1011 rows and 41 columns for the pixel-

based classification; 

• 1053 rows and 129 columns for the object-based 

classification.  

Staring from these datasets array, a Pearson correlation analysis 

has been performed, and the features with a correlation score of 

0.9 have been dropped. The new dataset is composed of: 

• 1011 rows and 21 columns for the pixel-based 

classification; 

• 1053 rows and 47 columns for the object-based 

classification.  

After this feature dropping, a feature importance analysis was 

addressed using the Gini criterion during the random forest 

training. Figure 5 shows the importance analysis for the 21 

features used in pixel-based classification, while Figure 6 shows 

the importance of the 47 features used in object-based 

classification; the features that have an importance Gini score 

greater than 0.02 have been extracted, and the model has fitted 

on this new decreased dataset. 

 
Figure 5. Importance analysis with Gini criterion for the pixel-

based classification. 

 
Figure 6. Importance analysis with Gini criterion for the object-

based classification. 

The input dataset in pixel-based classification was a 1011x21 

matrix which was split into test (30% observations, 304) and 

training (70% observations, 707) datasets.  The input dataset in 

pixel-based classification was a 1051x17 matrix which was split 

into test (30% observations, 316) and training (70% observations, 

735) datasets. 

 

4.5 Classification and accuracy results 

The experiences described in previous works (Trisasongko et al., 

2017) (Immtzer et al., 2016) show that the default values of the 

OTB parameters for training and classification processes seem to 

provide optimal results. For this reason, the default value 

parameters for the RF algorithm have been used, in particular, the 

maximum depth of the tree was set to 10, while the maximum 

number of trees in the forest was fixed to 1000. The class weight 

was placed equal to the parameter 'balanced_subsample' while 

the criterion parameter was settled equally to 'Gini'. The results 

of the validation for pixel-based and object-based approach are 

expressed in Table 8 and Table 9, which shows the accuracy 

metrics of the classification procedure, in particular the F1-score, 

Precision and Recall values of each class. Figure 7 and Figure 8 

represent the confusion matrices. Generally, the quality of the 

classification is good. Indeed, the overall accuracy of the RF 

model is 0.92 for the sample-based approach and 0.79 for the 

object-based approach. The difference between the two 

approaches can be assumed to be related intrinsically to the 

object-based method, in which each vector polygon is expressed 

by its feature mean value and therefore injects some spectral 
response noise in the computation. Considering Table 8, the 

classification in pixel-based samples is well-performant in almost 

all classes, as demonstrated by the F1-score (0.78 as minimum 

value). Class 6, i.e. rocks and stones, has no predicted sample, 

which is due to the very low number of support data. The lowest 

accuracy is related to classes 4 and 6, bare soil and rocks, 

respectively. In this case, the number of false-positive increases 

probably due to the similarity in spectral response and the 

unbalanced number of objects supporting class 6. 

class precision recall   f1-score support 

0 0.93 0.96 0.94 53 

1 0.89 0.70 0.78 23 

3 0.84 0.94 0.89 69 

4 0.95 0.95 0.95 55 

6 0.00 0.00 0.00 2 

8 0.98 0.98 0.98 61 

9 0.97 0.88 0.92 41 

accuracy   0.92 304 

macro avg 0.79 0.77 0.78 304 

weighted avg 0.92 0.92 0.92 304 

Table 8. Accuracy metrics calculated for pixel-based approach. 

 

 
Figure 7. Normalized confusion matrix for pixel-based RF 

classification. 
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class precision recall   f1-score support 

0 0.94 0.98 0.96 52 

1 0.86 0.80 0.83 15 

3 0.93 0.94 0.94 70 

4 0.57 0.48 0.52 66 

6 0.20 0.26 0.23 31 

8 0.98 1.00 0.99 49 

9 1.00 0.94 0.97 33 

accuracy   0.79 316 

macro avg 0.78 0.77 0.78 316 

weighted avg 0.80 0.79 0.79 316 

Table 9. Accuracy metrics calculated for object-based approach. 

 
Figure 8. Normalized confusion matrix for object-based RF 

classification. 

 
Figure 9. Extract of land cover map obtained with methodology 

developed by the geomatics group of the Politecnico di Torino. 

 

code *** 0 1 2 3 4 5 6 8 9 Tot % 

N
A

*
 

FS%** 22,20 4,20 17,80 3,40 53,67 15,67 0,0 n.a. n.a. 116,9 

CL% 25,55 0,585 0,07 10,991 3,745 n.a. 0,0 0,32 58,802 100,0 

Δ% -3,36 3,62 17,73 -7,59 49,92 n.a. 0,00 n.a. n.a. 16,93 

E
U

 

FS% 32,73 1,20 0,07 5,20 0,33 63,13 0,0 n.a. n.a. 102,7 

CL% 0,68 0,00 0,00 0,048 0,00 n.a. 0,0 89,44 9,83 100 

Δ% 32,05 1,20 0,07 5,15 0,33 n.a. 0,00 n.a. n.a. 2,66 

R
G

 

FS% 30,27 0,53 0,00 3,00 49,53 16,67 0,0 n.a. n.a. 100,0 

CL% 47,52 0,443 0,00 32,482 15,09 n.a. 0,047 0,00 4,39 100,0 

Δ% -17,25 0,09 0,00 -29,48 34,45 n.a. -0,05 n.a. -n.a. 0,02 

R
S

 

FS% 26,07 1,40 0,00 1,27 65,27 6,00 0,0 n.a. n.a. 100,0 

CL% 40,92 0,252 0,00 28,135 22,51 n.a. n.a. 0,03 8,17 100,0 

Δ%% -14,85 1,15 0,00 -26,87 42,76 n.a. 0,00 n.a. n.a. -0,02 

Table 10. Land cover percentages of Block 1 identified in Alexander Stream National Park and discrepancies between the two 

methods implemented. *Natural (NA), Eucalyptus (EU), Regeneration (RG), Restoration (RS). **Field Sampling (FS), Classification 

results (CL), Discrepances (Δ%). ***Coding: Herbaceous plants (0), Woody plants (1), Dry woody materials (2), Bare soil (3), 

Leaves on the ground (4), Rocks (5), Threes (8), Bushes (9) 

 

5. CONCLUSIONS 

This work involved two complementary study systems in central 

Israel, the Alexander Stream National Park, an area undergoing 

an ecological restoration project in a sandy ecosystem, and the 

Judean foothills area, to the south of Tel Aviv, which is 

characterized by an agro-natural landscape on vertisols. A 

measurement campaign was conducted by the Israeli and Italian 

teams. We conducted surveys of bees, flowers, nesting substrates 

and soil in each study system, using classical field measurement 

methods. Simultaneously, we performed an integrated 

aerophotogrammetric survey, acquiring different spectral 

responses of the land surface through UAV imaging systems. The 

results of our analysis are summarised hereinafter. We found 

three focal habitat characteristics (indicators) shaping bee 

communities; the amount of bloom, perennial cover, and extent 

of bare ground (used by many bee species for nesting). VHR 

orthophotos and DSM have been produced with rigorous 
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photogrammetric methodology and with accurate 

georeferencing. The multispectral sensors have provided surface 

spectral response out of the visible spectrum, while the 

photogrammetric reconstruction has provided three-dimensional 

information. Thanks to Artificial Intelligence (AI) algorithms 

and the richness of the data acquired, a methodology for Land 

Cover Classification has been developed. The results obtained by 

ground surveys and advanced geomatics tools have been 

compared and overlapped. The results are promising and show a 

good fit between the two approaches, and the high performance 

of the geomatics tools in providing valuable ecological data.   
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