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ABSTRACT: 

 

Earth observation via remote sensing imagery provides a fast way to define alteration levels. In this work 12 stands of Araucaria-

Nothofagus forests were selected in southern Chile, which represented four alteration levels: (i) None (ii) Low (iii) Medium and (iv) 

High. The stands were surveyed measuring 379 field plots and Google Earth Engine was used to collect a composite of Sentinel-2 

images over a one-year range, from June 2019 to June 2020. The following approaches were tested: (i) aggregating the normalized 

difference vegetation index (NDVI) of each image and selecting the 95th and 99th percentile values of NDVI for each pixel; (ii) 

creating a composite imagery with best pixels over one year timeline using NDVI as weighting factor and NDVI value band itself 

(NDVI) – this is similar to the 99th percentile in the previous point, but with maximum values of NDVI; (iii) aggregating the 

composite as in the previous approach, but using the full spectral information of Sentinel-2 and then random forest machine learning 

for classification over alteration areas with k-fold validation with k=5. Results show that the 95th and 99th percentile of NDVI values 

from approach (i) do not discriminate the four classes correctly. The maximum NDVI from approach can distinguish all four classes. 

It must be noted through that statistical significance does not necessarily imply a strong practical significance; medium and high 

alterations have very similar NDVI distributions.  Random forest results provided an F-score for each class higher than 80% except 

for the “medium alteration” class.  

 

 

                                                                 
*  Corresponding author 

 

 

1. INTRODUCTION 

The Araucaria-Nothofagus forests are located in the southern 

part of Chile. The Araucaria araucana [Mol.] K. Koch, in 

association with other Nothofagus spp. are constantly affected, 

either by natural disturbances such as natural wildfires, 

alterations of volcanism, snow avalanches, droughts, landslides 

or wind and geological instability (Heusser et al., 1988; Burns 

1993; Puchi et al., 2021). As well as by anthropogenic 

disturbances, such as forest fires caused by human actions, 

harvesting of edible seeds, firewood, and timber extraction (in 

case of Nothofagus spp.), domestic livestock and introduction 

of exotic species e.g., Pinus contorta Dougl. Ex Loud. (Peña et 

al., 2008; González et al., 2011; Drake et al., 2012). Therefore, 

this high dynamism in these forest ecosystems creates the need 

to develop tools that can identify and quantify such disturbances 

and analyze these changes at a high spatial scale and in 

temporal scenarios. A general approach to identify and 

determine the degradation of a forest is through a standard 

forest inventory survey using dasometric parameters. The forest 

structure can be assessed by a dominant tree height (m), canopy 

cover (%) or either by a total aboveground tree biomass (Mg ha-

1) at stand level (Coops et al., 2020), allowing a quantitative 

comparison between forests stands with different level of 

degradation. However, the conventional method through field 

measurements is expensive, time-consuming and with some 

restriction to measuring in remote areas with lack of 

accessibility, being a not suitable approach in a large spatial 

scale (Soenen et al., 2020). 

Remote sensing is an alternative to optimize resources and time 

to identify and quantify such changes by different natural or 

human forest disturbances (Schultz et al., 2016; Senf et al., 

2017; Bullock et al., 2020). Nowadays, there are a wide range 

of satellite images with a high spatial resolution, which are free 

and open access data worldwide (Zhu et al., 2019). On the other 

hand, spectral bands and vegetational indices, which can be 

extracted from satellite images e.g., normalized difference 

vegetation index (NDVI), is a common approach used to assess 

disturbances on forest vegetation (Lambert et al., 2013; Hojas-

Gascón et al., 2015; Lastovicka et al., 2020), the advantage of 

this vegetation index is the capacity to detect anomalies changes 

pattern on small scales, which can be related to several biotic or 

abiotic agents, being identified at pixel level in the vegetation 

by positive or negative changes (Nolè et al., 2018). The NDVI 

is highly related to the aboveground tree biomass (and to other 
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forest parameters), but it could be conditioned on the season 

when the analysis is carried out. Zhu & Liu (2015) mentioned 

that NDVI in the fall season shows stronger correlation to 

aboveground tree biomass than in the peak season due the 

saturation issue in canopies with a high density. Therefore, 

seasonality is an important aspect to be considered when 

correlating NDVI and the aboveground tree biomass, especially 

because the peak season contains information that comes mostly 

from the top of the canopies, which is sensitive to the presence 

or absence of the leaves. Therefore, it is important to collect a 

high number of images that can represent the entire year, 

creating a single image in order to avoid saturation or lack of 

vegetation due seasonality and compare different areas 

contemporaneously. 

 

The goals of this study can be summarized to two main points. 

First is the use of Sentinel-2 optical imagery data to compute 

NDVI using different percentiles (95, 99 and maximum NDVI 

value) in 12 Araucaria-Nothofagus forests stands in southern 

Chile divided in four different alteration levels (three stands for 

each alteration level) and identify which percentile can 

recognize all alteration levels. Secondly analyze if NDVI and 

forest parameters such as tree density (N ha-1), basal area (m2 

ha-1), stem volume (m3 ha-1) and total aboveground tree biomass 

(Mg ha-1), can distinguish between different levels of alterations 

using ground truth values. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Study area 

The study area was located in the North-East part of the 

Araucania region between the provinces of Malleco and Cautin. 

The 12 forest stands were mainly distributed in three communes 

and the areas of the stands were relatively similar with a range 

of 5.4 and 7.9 ha (table 1), being a total area of sampling of 

76.0 ha. The climate is defined as cool temperature with a 

humid regime and Mediterranean tendency. The temperature 

varies between 19.7 °C and -1.1 °C and the mean annual 

precipitation is 2,470 mm (AGRIMED, 2017). On the other 

hand, the soils are derived from volcanic ashes, being relatively 

deep soils (~ 100 cm depth), its texture varies from clay loam to 

sandy and its drainage is moderate (Luzio, 2010). The 

vegetation is mainly composed of A. araucana trees, in 

association to Nothofagus spp., such as Nothofagus pumilio 

(Poepp. et Endl.) Krasser and rarely by Nothofagus dombeyi 

(Mirb.) Bl. trees, in an altitude which varies between 1,304 and 

1,691 MASL. 

 

 
Figure 1. Study area in Araucania region, southern Chile and 

distribution of the 12 forest stands. 

 

2.2 Araucaria-Nothofagus forest stands 

The 12 forest stands were selected in January 2021 through a 

fieldwork prospecting and interviews to local people, 

considering mostly anthropogenic factors such as forest fires, 

seed harvesting of A. araucana (edible fruit with a high 

economical value in the market), livestock, firewood extraction 

of Nothofagus spp., introduction of exotic species (e.g., P. 

contorta), land division and land use changes, which were 

observed in situ in the fieldwork prospection and reported by 

local people. These activities allowed an objective classification 

of the stands by level of alteration (table 1). Then, between 

February and March 2021, the 12 forest stands were measured 

applying a systematic sampling technique and using horizontal 

point sampling in 379 field plots. In case of the stem volume 

and total aboveground tree biomass, these parameters were 

obtained through allometric equations reported by Drake et al. 

(2003) and Kutchartt et al. (2021). 

 

  Area 

(ha) 

Volume 

(m3 ha-1) 

Biomass 

(Mg ha-1) 

Level of 

alteration 

4 LF 6.2 265.0 194.5 None 

5 C 7.3 530.3 186.3 None 

6 M 5.4 294.7 196.5 None 

7 EN 5.9 349.8 187.4 Low 

8 EN 5.9 415.6 221.4 Low 

9 EN 5.5 369.1 233.1 Low 

10 EN 6.5 322.6 184.8 Medium 

11 EN 6.7 251.0 163.3 Medium 

12 EN 6.6 269.1 159.2 Medium 

1 LF 7.9 174.2 111.3 High 

2 LF 5.6 107.0   69.3 High 

3 LF 6.0 188.6 122.4 High 

Table 1.  Description of the 12 forest stands regarding 

location, area, stem volume, aboveground tree 

biomass and level of alteration. La Fusta (LF), 

Conguillio (C), Malalcahuello (M), El Naranjo 

(EN). 

 

The assignation and categorization of the forest stands to one of 

the specific levels of alteration was made by some field 

measurements to characterize the forest structure through some 

forest parameters, using as a main indicator the basal area (m2 

ha-1) and the canopy cover (%) for a quantitative distinction 

between stands. In addition to the field measurements, it was 

taking under consideration the sum of the alteration factors 

identified in situ as it is described below in each of the 

alteration level category:  

 

No (almost none) alteration: Two of these stands were located 

in a protected area, one was located at the Conguillio National 

Park and the other at the Malalcahuello National Reserve, 

which are managed by the Chilean forestry service. The other 

stand was in a private forest called La Fusta. These stands 

presented a mean basal area of 41.9 m2 ha-1 and a canopy cover 

of 87.0%, and in the case of Conguillio and Malalcahuello 

stands, these have not shown major changes since 1998. We 

evidenced logging in A. araucana mainly in the past (by 

stumps).  

 

Low alteration: The three stands were located in the forest El 

Naranjo, which belongs to an indigenous community. The mean 

basal area reported between the three forest stands was 44.3 m2 

ha-1 and the canopy cover presented in this level of alteration 

was 58%. The main disturbances were related to the edible 
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seeds extraction of A. araucana and livestock (cows). There 

was evidence of logging in the past. 

 

Medium alteration: Also, as in case of low alteration, the three 

stands were located at El Naranjo. The mean basal area here 

was 29.7 m2 ha-1 and the canopy cover presented in this level of 

alteration was 42%. The main disturbances observed here were 

edible seeds harvesting in case of A. araucana, frequent 

livestock and wood extraction in N. pumilio. 

 

High alteration: The three stands were located at La Fusta 

forest, of which some areas of this forest have historically 

undergone various types of damage. The mean basal area was 

18.1 m2 ha-1 and the canopy cover presented here was 42%. The 

alterations observed here were wood extraction of A. araucana 

in the past for plywood, extraction of wood of N. pumilio and 

harvesting of edible seeds of A. araucana. From 2012 the 

stands presented occasional livestock and controlled seed 

extraction of A. araucana. These areas experienced a huge 

forest fire in the season 2001-2002, which burned 20,000 ha in 

total, and it was caused by lightning, from dry thunderstorms 

during summer (González & Veblen, 2007). 

 

 
Figure 2. Comparison between orthomosaics in forest stands 

with different level of alteration. Left (A) stand #2 

located in La Fusta forest with high alteration and 

right (B) is stand #6 located in the Malalcahuello 

National Reserve with no alteration.  

 

2.3 Methods  

Google Earth Engine (GEE) was used to create a composite of 

Sentinel-2 cloud-free imagery (Gorelick et al., 2017). The 

process consisted in filtering only images from June 2019 to 

June 2020 and calculating the well-known normalized 

difference vegetation index (NDVI) for each image. This stack 

of about 60 images was processed to create a single image using 

three approaches: it was reduced to a single NDVI image using 

(i) 95th and (ii) 99th percentile values of the NDVI vector at each 

cell and (iii) NDVI values were used as quality indicators to 

composite an image with all bands. The rationale of the first two 

approaches in that this should keep the highest NDVI value that 

was recorded over the year for each cell, thus removing any 

disturbance from clouds and keeping the NDVI signal from any 

vegetation that is present in each cell. The third approach filters 

the values to keep for each cell and each band by using the 

NDVI values. In practice, for each band, out of the n-size vector 

where n equals to the numbers of images in the year and each 

vector element is an image, the i-th and j-th cell, where i and j 

are the row and column indices of the specific cell of the n-th 

image, the final i-th and j-th cell value will consist in the value 

from the image where that cell had the highest NDVI value over 

all n cells. Also, in this case the rationale is that where there is 

vegetation, NDVI will be used as a proxy for “best” 

representative cell. 

 

The three final images (NDVI_p95, NDVI_p99 and composite, 

maximum NDVI value) are then used to assess their ability to 

predict, for each of the 12 stands, alteration values and two 

other specific forest parameters that are also related: basal area 

and aboveground tree biomass. The composite image was 

further tested in two ways: one by creating an overall NDVI 

map from the composite, and one by keeping all the bands. All 

the bands of the composite imagery were assessed to know how 

much they contributed to defining the alteration class, and also 

were processed with random forest (RF) to assess how well they 

can be used to predict alteration levels and which bands are 

most important for this task (Pirotti et al., 2014; Vaglio Laurin 

et al., 2016). The RF method (Breiman, 2001) used the “ranger” 

package in the R software environment, with default 

parameters. The number of variables to split at each node (mtry) 

is the square root of the number of variables, thus rounded to 3. 

The number of trees (ntrees) is 500. All assessments over group 

differences (alteration levels) are assessed for statistical 

significance using Wilcoxon U Mann Whitey non-parametric 

test. 

 

3. RESULTS 

Collecting the imagery over 12 months from June 2019 to June 

2020 provided with a total of ~60 NDVI images from both 

Sentinel-2 vectors (Sentinel-2A and Sentinel-2B). 

 

The sections below are divided with respect to forest parameters 

that are confronted with Sentinel-2 data: alteration levels, tree 

density, basal area, stem volume and aboveground tree biomass. 

 

3.1 Sentinel-2 vs Alteration  

The cell values with NDVI timeseries over the whole year 

aggregated using 95th and 99th percentile shows that alteration 

values can be discriminated between none and low alteration, 

and medium and high alteration (figure 3 top part). It can be 

noted that the 95th percentile provides significant difference also 

between medium and high alteration, but with opposite 

difference with respect to what can be expected, e.g., the 

median NDVI aggregated with 95th percentile is higher in high 

alteration then in medium. The difference is not significant 

anymore if 99th percentile is used.  

 

(A)  

(B)  
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Figure 3. (A) Composite image from one year of cloud-free 

images, with NDVI values resulting from 95th and 

99th percentile; (B) NDVI from composite using 95th 

percentile NDVI over annual stack with NDVI 

quality weight. 

 

Furthermore, the NDVI created from composing using NDVI as 

quality factor (figure 3 bottom plot) shows a NDVI value 

distribution a bit lower for the high alteration. It can be 

interpreted as NDVI higher values are better suited than 95th 

and 99th percentiles. We must remember that the NDVI 

composite using timeseries NDVI values basically means 

keeping the highest NDVI value that was found in each cell 

over the whole year. 

 

Figure 4 shows the results from using random forest over all the 

bands available in the Sentinel-2 composite. The variable 

importance plot reflects what can be seen in the top plot as 

being significantly related to alteration. The red (Band 4) and a 

specific NIR-red edge (Band 7) and the short-wave infrared 

bands provide the most weight in the prediction of the alteration 

level. Table 2 below summarizes the classification accuracies 

over the independent validation set at each of the five runs. The 

medium alteration provides the lower score, probably due to 

mixing with the high alteration class. The five-fold validation 

allows to show also how consistent the accuracy metrics are 

over each independent run. 

 

(A) 

 

(B)  

Figure 4. (A) Band-wise separation potential for alteration. 

Band values are from compositing all imagery stack 

of 12 months using NDVI for quality weight. Letters 

are significant differences (99% confidence); (B) 

Image is variable importance for each band from 

random forest classification results. 

 

Results show that from the average values, deviation, minimum 

and maximum values cover a small interval. This can be 

interpreted as an indication that the method is reliable. 

Accuracy Metric Avera

ge 

Standard 

Deviation 

Min Max 

Kappa 74.63 0.83 73.25 75.40 

F-score”None” 84.28 0.93 83.07 85.43 

F-score”Low” 82.70 1.10 81.21 84.23 

F-score”Medium” 73.70 0.99 72.39 75.17 

F-score”High” 82.78 1.00 81.79 84.45 

Table 2. Statistics of accuracy metrics from the five-fold 

random forest training-validation runs. 

 

3.2 Sentinel-2 vs Forest Parameters 

Forest parameters considered are tree density (N ha-1), basal 

area (m2 ha-1), stem volume (m3 ha-1) and total aboveground tree 

biomass (Mg ha-1). Table 3 report the coefficient of correlation 

with the average and median NDVI percentile metrics extracted 

over each stand. The higher values are seen over the 99th 

percentile, for basal area, and also for the other forest 

parameters, but with lower values. 

 

 Tree 

Density 

Basal 

Area 

Stem 

Volume 

 

Biomass 

Mean NDVI_p99 0.642 0.819 0.709 0.697 

Mean NDVI_p95 0.717 0.642 0.498 0.550 

Median 

NDVI_p99 

 
0.651 

 
0.795 

 
0.686 

 
0.663 

Median 

NDVI_p95 

 
0.707 

 
0.627 

 
0.489 

 
0.530 

Table 3.  Coefficient of correlation (r) for forest parameters 

and Sentinel-2 information. 

 

A further indication of results can be seen from the plot in 

figure 5 below, where each stand mean NDVI value is plotted 

against basal area and total aboveground tree biomass.  
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(A)  

(B) 

 
 

Figure 5.  Plots of basal area (A) and total aboveground tree 

biomass (B) predicted from mean NDVI value in 

the stand. 

 

We can see two distinct clusters, the high and medium alteration 

and the low and none alteration groups. Adjusted r-squared 

shows a good relationship between the two variables. Stand 3 is 

the only inconsistent one, as it has a low value of field-

measured basal area and total aboveground tree biomass, but the 

NDVI values are not as low as a linear model would predict. 

This part should be further investigated. 

 

Figure 6 shows the NDVI maps for each stand, showing that 

stand 3 does seem to have a dense patch of high NDVI values in 

the center, but lower values in the borders, in particular in the 

northern part of the stand. The plots in each stand are evenly 

distributed and therefore representative of the area, so a possible 

explanation can be that the alteration impacted to lower part of 

the forest vertical structure. 

 

 
 

Figure 6. NDVI values from reducing using 99th percentile. 

 

 

4. DISCUSSION 

4.1 Forest disturbances detected by NDVI 

Disturbances and degradation in forest can be detected through 

field observations and by simple field measurements. However, 

to detect changes at a large scale, analysis with different 

approaches and remote sensing advances are needed. Our 

findings using satellite data were in the same line with Hojas-

Gascón et al. (2015), who detected and quantified differences in 

forest degradation using Sentinel-2 data and computing NDVI 

values. In our results, at least in three out of four alteration 

levels (95th percentile) were categorized (figure 3), which 

showed a clear negative trend when the NDVI decreases, the 

levels of alteration are higher. Hojas-Gascón et al. (2015) could 

discriminated forest classes only with more than 40% of cover 

differences, identifying similar difficulties when the 

classification of forest degradation tends to be finer with more 

classes of degradation. 

Surprisingly, the high alteration level showed a NDVI value 

slightly higher in comparison to medium alteration in 95th 

percentile. On the other hand, the 99th percentile showed similar 

trend than in 95th, but with the only difference that the 

categories of medium and high alteration were not possible to 

distinguished in 99th between each other, which is in 

concordance with the ground truth values obtained in the 

canopy cover, where both categories obtained a 42% of canopy 

cover during the field campaign. On the other hand, using the 

maximum NDVI value (NDVI_p100), all the categories of 
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forest alteration were discriminated, but although they were 

distinguished by means of a non-parametric test, this does not 

mean that there is a clear distinction between groups, depending 

mainly on the type of statistical test applied, observing strong 

association between the none and low alteration as one group 

and medium and high alteration as a second group. 

 

4.2 Degradation level through spectral indices on a single 

year  

Several authors used NDVI to demonstrate the decline of a 

forest according to different anthropogenic drivers or through 

environmental changes (e.g., drought, high temperatures, pests 

by insects or pathogens) over time (Lambert et al., 2013; Neigh 

et al., 2014; Recanatesi et al., 2018). However, our study was 

focused on the same year avoiding a multi-temporal analysis, 

which normally with the inclusion of a longer time series, it 

provides more detailed information regarding trends related to 

climate change disturbances and all types of natural 

disturbances that can influence in the dynamism of a forest in a 

long term (Hall Bayer, 2003). However, long time series 

analysis demand high volume of data and it is time-consuming. 

Therefore, our approach was focused on the verification of 

anthropogenic alterations using satellite data in a single year 

related to the field measurements and observations in situ. As 

expected, we identified different values in their forest 

parameters through stands surveyed at the same time (month-

year). On the other side, similar response was found with 

Sentinel-2 and NDVI values, which also took in consideration 

the seasonality (> 60 satellite images per year) to avoid that 

phenological changes could influence in the NDVI saturation 

(Reed, 2006). Our finding using satellite data have the potential 

to increase the scale of the study area, reaching a provincial or 

regional scale, using the field measurements only as ground 

control points. 

 

4.3 Anthropogenic drivers on forest status     

Our finding showed that forest under similar environmental 

conditions, but under different anthropogenic pressures can 

vary on spectral indices, which were corroborated by the ground 

truth values obtained in the field campaign between February 

and March 2021. A clear example is La Fusta forest, which 

considered similar environmental conditions, but its historical 

management and damaged, classified stands in the same forest 

from none to high altered, according to its current status. On the 

other side, the anthropogenic drivers can be categorized in 

different levels, considering that some could be easily identified 

through satellite images in a single year, e.g. forest fires 

(Morresi et al. 2022) or wind-throw (Piragnolo et al. 2021; 

Vaglio Laurin et al. 2021), but other anthropogenic drivers 

which are slowly creating damages are not easy to identify in 

short terms (single year) through satellite data, such as illegal 

logging, overgrazing, seed harvesting, among others. Therefore, 

these types of alterations need to be analyzed in long terms 

using long time series in order to distinguish them in a properly 

way. It can be noted that other technologies can support more 

detailed definition of disturbances. The most commonly used in 

forest environments are laser scanner sensors working at tree-

level (Pirotti et al. 2017) or at plot level (Pirotti et al. 2014) to 

define also a vertical structure and assess disturbance from tree 

cutting and felling. 

 

 

5. CONCLUSIONS 

Sentinel-2 data can be a powerful tool to detect and 

discriminate a level of alteration into a forest at a large scale. 

However, in some situations the level of alteration cannot be 

clearly distinguished. When the alteration difference is not 

clearly defined or when categories have similar parameters (e.g., 

tree heights, species composition), their classification becomes 

very complicated. Therefore, the proposed method would be a 

valid alternative, only if the forest classes are well defined 

because the detailed information at this level can be obtained 

only through field measurements. 

 

Future work needs to address the integration of multiple data 

sources from optical imagery to improve the temporal density of 

images. For example, using both Landsat and Sentinel-2 

missions can help to provide a better temporal composite. Also 

testing other vegetational indices and higher spatial resolution 

through commercial images to see if forest degradation classes 

can be distinguished in more specific groups and spatialized to 

a higher detail.  
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