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This paper deals with retraction - intended as isomorphic embedding - in intersection types building
left and right inverses as terms of a λ-calculus with a ⊥ constant. The main result is a necessary
and sufficient condition two strict intersection types must satisfy in order to assure the existence of
two terms showing the first type to be a retract of the second one. Moreover, the characterisation of
retraction in the standard intersection types is discussed.

1 Introduction

Isomorphism of types has been first discussed in the seminal paper [7] and then studied in various type
disciplines [6,8–11,14–17,23,24]. Two types σ and τ in some typed calculus are isomorphic if there are
two terms L and R of types τ→ σ and σ→ τ, respectively, such that the composition L◦R is equal to the
identity at type σ and the composition R◦L is equal to the identity at type τ.

We claim that in programming practice and theory the notion of retraction between types plays a
central role, and it is more widespread than that of type isomorphism. Type σ is a retract of type τ in
some typed calculus if there are two terms L and R of types τ→ σ and σ→ τ, respectively, such that the
composition L ◦R is equal to the identity at type σ. Clearly L is right invertible and R is left invertible.
The terms R and L are injective and surjective, respectively, on their domains. They are also called the
coder and the decoder of type σ in type τ [20,22]. In fact, the term R encodes the values in σ as elements
of τ, while the term L decodes back from τ to σ, by returning the original values.

To the best of our knowledge, type retraction as defined above has been discussed for Curry types
and higher-order types [7, 13, 20–22, 25, 26], but not for intersection types. Aim of this paper is to make
a first step toward the filling of this gap. We consider the λ⊥-calculus as given in [2, Definition 14.3.1].
For this calculus the terms having left and right inverses have been characterised [19]. We reformulate
this characterisation in order to simplify the study of the types which can be derived for these terms.
In particular we identify a class of right inverses (the simple right inverses) such that if a term has a
right inverse it has also a right inverse belonging to this class. All results in this paper are given for the
λ⊥-calculus but they hold, as well, for the λ-calculus.

We choose to investigate retraction for the essential intersection type assignment system introduced
in [1]. This system has the same typeability power of the standard system [3] and a less permissive type
syntax. This restriction better fits the technical development of the present paper, as discussed in the
Conclusion. Nevertheless, we also provide a result for standard intersection types in the case where the
right inverse is assumed to be a simple right inverse.
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BETTY, IC1402 ARVI, IC1405 Reversible Computation, CA1523 EUTYPES, Ateneo/CSP project RunVar and STIC-AmSud
project FoQCoSS.



2 Retractions in Intersection Types

The first contribution of this paper is the characterisation of the strict intersection types which can be
derived for terms having left or right inverses. Building on this result we give a necessary and sufficient
condition for the existence of a retraction between two strict intersection types. This condition is a
generalisation of the one defined in [7] for Curry types. We show that each retraction can be witnessed
by a simple right inverse. We also prove that if µ is a retract of ν and ν is a retract of µ, then µ and ν are
equivalent with respect to the usual subtyping relation of intersection types. Then we discuss retraction
in standard intersection types. Finally we define semantic retraction as the natural adaptation to models
and we show that retraction and semantic retraction coincide. This proof uses the completeness of the
filter model given in [3].

Outline Section 2 introduces the λ⊥-calculus and characterises terms having left and right inverses.
The essential intersection type assignment system is defined in Section 3 together with the character-
isation of the types derivable for terms with left or right inverses. The results on retraction in strict
intersection types are the content of Section 4. In Section 5 we extend the characterisation of retractions
to standard intersection types assuming that right inverses are simple. The notion of retraction is shown
equivalent to that of semantic retraction in Section 6. Related work is overviewed in Section 7. Section 8
discusses our choices and future work.

2 Left/Right Invertible Terms

Following [2, Definition 14.3.1], Λ⊥ is the set of terms obtained by adding a constant⊥ to the formation
rules of λ-terms. The terms of Λ⊥ are generated by the syntax

M ::= x | ⊥ | λx.M |MM

where x ranges over a denumerable set of term variables.
The reduction rules of the λ⊥-calculus include the β-rule and two rules for ⊥ prescribing that both

application and abstraction of ⊥ reduce to ⊥.

(λx.M)N −→M{N/x} ⊥M −→⊥ λx.⊥−→⊥

The equality between terms is defined as β⊥-conversion, i.e. M = N means that there is a term P such
that both M and N reduce to P.

Let I = λx.x and M◦N = BMN, where B = λxyz.x(yz). We are interested in investigating the monoid
of terms with the combinator I as identity element and ◦ as binary operation. This naturally leads to the
following definition of left/right invertibility.
Definition 2.1 (Left/right invertibility).

1. A term M is left invertible if there exists a term L such that L◦M = I. We say that L is a left inverse
of M.

2. A term M is right invertible if there exists a term R such that M ◦R = I. We say that R is a right
inverse of M.

The left/right invertibility has been studied since the seventies. In particular the sets of terms having
at least one left or one right inverse have been characterised in [5] and [19].

The characterisation of left invertible terms resorts to a set of head normal forms (hnfs for short). We
recall that a hnf is a term of the shape λx1 . . .xn.x jM1 . . .Mm [2, Definition 2.2.11]. We define a set Ξ of
hnfs and we show that a term is left invertible iff it reduces to a hnf belonging to Ξ (Theorem 2.8).
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Definition 2.2. Let Ξ be the set of hnfs inductively defined as follows:

• λtx1 . . .xn.t ∈ Ξ for n≥ 0;

• if λtx1 . . .xn.Mi ∈ Ξ, then λtx1 . . .xn.x jM1 . . .Mi . . .Mm ∈ Ξ, where 1≤ j ≤ n and 1≤ i≤ m.

Example 2.3.

i) The term λtx.xx(xt) ∈ Ξ because λtx.xt ∈ Ξ, and in turn λtx.xt ∈ Ξ since λtx.t ∈ Ξ.

ii) The term M = λtx1x2.x2(λx3.t)(x1t) ∈ Ξ since λtx1x2x3.t ∈ Ξ. We can also show that M ∈ Ξ

because λtx1x2.x1t ∈ Ξ and in turn λtx1x2.x1t ∈ Ξ since λtx1x2.t ∈ Ξ.

Point ii) of Example 2.3 shows that there is not, in general, a unique way to derive that a term
belongs to Ξ. In the following, when we write M ∈ Ξ, we refer to a particular proof, chosen according to
Definition 2.2.

In order to build a left inverse of a term in Ξ we need to “reach” an occurrence of the first abstracted
variable (called t in Definition 2.2). We use some machinery inspired by the Böhm-out technique [2,
§10.3]. In a hnf λx1 . . .xn.x jM1 . . .Mm the number of initial abstractions is n, the variable x j (bound in the
j-th abstraction) is the head variable and M1, . . . ,Mm are the m components. Following the definition of Ξ

we can associate with each term in Ξ a list of integer triples, whose first element is the abstraction position
of the head variable, whose second element is the number of components and whose third element is the
position of the component used to show that the term belongs to Ξ (0 if the component is missing). More
precisely, using _ to denote concatenation:

Definition 2.4. The path π(M) of the hnf M ∈ Ξ is inductively defined by:

• π(λtx1 . . .xn.t) = 〈1,0,0〉;

• π(λtx1 . . .xn.x jM1 . . .Mm) = 〈 j + 1,m, i〉_π(λtx1 . . .xn.Mi) if λtx1 . . .xn.Mi ∈ Ξ is used to show
λtx1 . . .xn.x jM1 . . .Mm ∈ Ξ.

Let p range over paths.

Example 2.5. We get π(λtx.xx(xt)) = 〈2,2,2〉_〈2,1,1〉_〈1,0,0〉. If M is defined as in Point ii) of Ex-
ample 2.3 we get either π(M) = 〈3,2,1〉_〈1,0,0〉 or π(M) = 〈3,2,2〉_〈2,1,1〉_〈1,0,0〉, according to
the proof used to show M ∈ Ξ.

The triple 〈 j + 1,m, i〉 says that the variable bound in the j + 1-th abstraction must choose the i-th
component out of m components to “reach” an occurrence of t. Then the variable bound in the j+1-th
abstraction needs to be replaced by the term S(m)

i = λy1 . . .ym.yi. We call selectors the terms of the shown
shape. This replacement becomes problematic if we have in the same path two triples with the same
first element which differ in one of the other elements. Following [19] we differentiate these occurrences
using terms of the shape P(m) = λz1 . . .zm+1.zm+1z1 . . .zm with m ≥ 1 that we dub permutators. We
convene that P(0) =⊥. We need two preliminary definitions and a technical lemma.

By `(p) we denote the length, i.e. the number of triples, of the path p.
We define #( j + 1,p) as the maximum of the second components of triples in path p whose first

component is j+ 1. We assume #( j+ 1,p) = 0 if j+ 1 does not occur in p as first component. More
formally:

#( j+1,〈1,0,0〉) = 0 #( j+1,〈h,m, i〉_p) =

{
max(m,#( j+1,p)) if h = j+1,
#( j+1,p) otherwise
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Lemma 2.6. Let M = λtx1 . . .xn.M′ ∈ Ξ and m j ≥ #( j+1,π(M)) for 1≤ j ≤ n. Then

λt.M′{P(m1)/x1} . . .{P(mn)/xn}= Q ∈ Ξ

and `(π(Q)) = `(π(M)).

Proof. The proof is by induction on the definition of Ξ. If M′ = λxn+1 . . .xq.t, then Q = λtxn+1 . . .xq.t.
Let M′= λxn+1 . . .xq.xrM1 . . .Mi . . .Mm and M ∈Ξ since λtx1 . . .xq.Mi ∈Ξ. Because m j ≥ #( j+1,π(M))
implies m j ≥ #( j+1,π(λtx1 . . .xq.Mi)) for 1≤ j ≤ n, by induction we get

λtxn+1 . . .xq.Mis= λtxn+1 . . .xq.Q′ ∈ Ξ

where s is the substitution {P(m1)/x1} . . .{P(mn)/xn}. If r ≥ n+1 we can take

Q = λtxn+1 . . .xq.xrM1s . . .Mi−1sQ′Mi+1s . . .Mms

Otherwise
M′s = λtxn+1 . . .xq.P(mr)M1s . . .Mi−1sQ′Mi+1s . . .Mms

= λtxn+1 . . .xqzm+1 . . .zmr+1.zmr+1M1s . . .Mi−1sQ′Mi+1s . . .Mmszm+1 . . .zmr

and we can take this last hnf as Q since λtxn+1 . . .xq.Q′ ∈ Ξ implies λtxn+1 . . .xqzm+1 . . .zmr+1.Q′ ∈ Ξ.
In all cases it is easy to verify that `(π(Q)) = `(π(M)).

Example 2.7. Let M = λtx.M′ where M′ = xx(xt). We get

λt.M′{P(2)/x}= λtz1.z1(λz2z3z4.z4z2z3)(λz5z6.z6tz5) = Q

We have π(Q) = 〈2,2,2〉_〈4,2,1〉_〈1,0,0〉.

Theorem 2.8. A term has at least one left inverse if and only if it reduces to a hnf M in Ξ.

Proof.

(If) Let M ∈ Ξ. The proof is by induction on `(π(M)). Let n be the number of initial abstractions and
p be the path of the term considered in the induction step. We build a left inverse of the shape
λz.zL1 . . .Lq, where q≥ n and Ll =⊥ whenever #(l +1,p) = 0.
If M = λtx1 . . .xn.t, then λz.z⊥⊥·· ·⊥︸ ︷︷ ︸

n

is a left inverse of M.

Let M = λtx1 . . .xn.x jM1 . . .Mi . . .Mm ∈ Ξ since λtx1 . . .xn.Mi ∈ Ξ. We distinguish two cases. In
the first case the construction of the left inverse using a selector is easy. In the second case we
compose M with a term N build out of permutators. The useful property is that N ◦M = Q ∈ Ξ and
`(π(Q)) = `(π(M)) and Q satisfies the condition of case 1. We can then build a left inverse L of Q
and L◦N is a left inverse of M.
Case 1: #( j+1,π(λtx1 . . .xn.Mi)) = 0. By induction hypothesis λtx1 . . .xn.Mi ∈Ξ has a left inverse
λz.zL′1 . . .L

′
q and in this case L′j =⊥. Then λz.zL′1 . . .L

′
j−1S(m)

i L′j+1 . . .L
′
q is a left inverse of M.

Case 2: #( j+1,π(λtx1 . . .xn.Mi)) = m j 6= 0. Let ml = #(l +1,π(M)) for 1≤ l ≤ j and

N = λz.zP(m1) . . .P(m j)

By the proof of Lemma 2.6 N ◦M = Q ∈ Ξ, where Q is the hnf

λtx j+1 . . .xnzm+1 . . .zm j+1.zm j+1M1s . . .Mmszm+1 . . .zm j
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and s is the substitution {P(m1)/x1} . . .{P(m j)/x j}. Since zm j+1 does not occur in Mis, i.e.

#(n− j+m j−m+2,π(λtx j+1 . . .xnzm+1 . . .zm j+1.Mis)) = 0

and `(π(Q)) = `(π(M)) we can build a left inverse L of Q according to previous case. Then a left
inverse of M is L◦N.

(Only if) Let us suppose, ad absurdum, that a term has a left inverse and it is unsolvable or its hnf doesn’t
belong to Ξ. The first case is obvious. In the second case the hnf M has no path which satisfies
Definition 2.4. Therefore, if M = λt.N, then there is no occurrence of t in N which is not applied
and such that it is always in components whose head variables are bound. The arguments of t
cannot be erased by reduction and a free variable cannot be replaced in order to get t. So we
conclude that M has no left inverse.

Example 2.9. Let M,Q be as in Example 2.7. The left inverse of Q built according to the lemma is
L = λz.z(λy1y2.y2)⊥(λy1y2.y1). According to the proof of previous theorem we get N = λz.zP(2). Then a
left inverse of M is L◦N = λz.zP(2)(λy1y2.y2)⊥(λy1y2.y1).

The characterisations of terms having right inverses is easy.

Theorem 2.10. A term has at least one right inverse if and only if its hnf is of the shape: λz.zM1 . . .Mm.

Proof.

(If) A right inverse is λtx1 . . .xm.t.

(Only if) An unsolvable term has no left inverse. Let suppose the hnf of a term be not of the shape
λz.zM1 . . .Mm. Then it must have more than one abstraction and/or the head variable must be a
free variable. In the first case the initial abstractions and in the second case the head free variable
cannot be eliminated using reductions.

Example 2.11. The term M of Example 2.7 is a right inverse of the term L◦N of Example 2.9. The right
inverse of L◦N built by the theorem is λtx1x2x3.t.

From the proof of Theorem 2.10 it is clear that if a term has a right inverse, then it has also a right
inverse of the shape λtx1 . . .xn.t, i.e. a selector S(n+1)

1 . We call simple right inverses the hnfs of this shape.

3 Strict Intersection Types

The type system considered in this paper is a notational variant of the essential intersection assignment
introduced in [1].

The set of strict intersection types is defined by:

µ := ϕ | ω | σ→ µ
σ := µ | σ∧σ

where ϕ ranges over type variables and ω is a constant. We convene that µ,ν range over strict intersection
types (either atomic or arrow types), while σ,τ,ρ range over intersections.
Conventionally, we omit parentheses according to the precedence rule “∧ over→” and we assume that
→ associates to the right. Intersections are considered modulo idempotence, commutativity and associa-
tivity of ∧. In this section and in the following one we use type as short for strict intersection type.

A preorder relation ≤, representing set inclusion, is assumed between types and intersections.
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Definition 3.1. Let ≤ be the minimal reflexive and transitive relation such that:

σ≤ ω ω≤ ω→ ω σ1∧σ2 ≤ σi (i = 1,2)

σ1 ≤ τ1 and σ2 ≤ τ2 imply σ1∧σ2 ≤ τ1∧ τ2

σ2 ≤ σ1 and µ1 ≤ µ2 imply σ1→ µ1 ≤ σ2→ µ2

We write σ∼ τ if σ≤ τ and σ≥ τ.
A key property of this subtyping is the content of the following lemma, for a proof see [1].

Lemma 3.2. If σ→ µ≤ τ→ ν, then τ≤ σ and µ≤ ν.

The essential intersection type assignment system is defined by the typing rules of Table 1. We
assume that an environment associates intersections with a finite number of term variables. Let Γ range
over environments. The subsumption rule uses the preorder of Definition 3.1. We write Γ ` N : σ with
σ =

∧
i∈I µi as short for Γ ` N : µi for all i ∈ I.

(Ax) Γ,x :
∧

i∈I µi ` x : µ j j ∈ I (ω) Γ `M : ω (≤) Γ `M : µ µ≤ ν

Γ `M : ν

(→ I)
Γ,x : σ `M : µ

Γ ` λx.M : σ→ µ
(→ E)

Γ `M : σ→ µ Γ ` N : σ

Γ `MN : µ

Table 1: Typing Rules

The inversion lemma is as expected, for a proof see [1].

Lemma 3.3 (Inversion Lemma).

1. If Γ ` x : µ, then either µ∼ ω or x : σ ∈ Γ and σ≤ µ.

2. If Γ ` ⊥ : µ, then µ∼ ω.

3. If Γ `MN : µ, then Γ `M : σ→ µ and Γ ` N : σ.

4. If Γ ` λx.M : µ, then µ∼ σ→ ν and Γ,x : σ `M : ν.

In this system types are preserved by β⊥-conversion [1]:

Theorem 3.4 (Subject Conversion). If Γ `M : µ and M = N, then Γ ` N : µ.

We say that a term inhabits a type if we can derive the type for the term starting from the empty
environment. A term inhabits a set of types if it inhabits all the types belonging to the set. Let τ =

∧
i∈I µi:

we say that σ→ τ is inhabited if there exists a term which inhabits all the types σ→ µi for i ∈ I.
Inhabitation for intersection types has been shown undecidable in general [27], but decidable for

types with rank less than or equal to 2 [28], when the rank of types and intersections is defined by:

rank(µ) =

{
max(rank(σ)+1, rank(ν)) if µ = σ→ ν and ∧ occurs in µ,
0 otherwise

rank(σ∧ τ) = max(1, rank(σ), rank(τ))
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In the following we characterise the types of left/right invertible terms. These characterisations
require inhabitation of some types and therefore they are effective only when these types are of rank at
most 2.

We start defining inductively the set Θ of left types which mimic the set Ξ of hnfs, that is the con-
struction of Θ follows the construction of Ξ. In the following definition σ→ σ1→ . . .→ σn→ τ ∈ Θ,
where τ =

∧
i∈I µi, is used as short for σ→ σ1→ . . .→ σn→ µi ∈Θ for all i ∈ I.

Definition 3.5. The set Θ of left types is inductively defined by:

• if σ≤ ν, then σ→ σ1→ . . .→ σn→ ν ∈Θ;

• if σ→ σ1 → . . .→ σn → ρi ∈ Θ and σ j ≤ ρ1 → . . .→ ρm → ν for some j ≤ n and i ≤ m and
σ→ σ1→ . . .→ σn→ ρl is inhabited for 1≤ l ≤ m, then σ→ σ1→ . . .→ σn→ ν ∈Θ.

Example 3.6.

i) Let τ = ψ∧ (ϕ→ ϕ′)∧ (ψ→ ϕ′→ ψ′). We have ϕ→ τ→ ψ′ ∈Θ since:

– ϕ→ τ→ ϕ′ ∈Θ

– τ≤ ψ→ ϕ′→ ψ′ and

– both ϕ→ τ→ ψ and ϕ→ τ→ ϕ′ are inhabited.

Moreover ϕ→ τ→ ϕ′ ∈Θ since:

– ϕ→ τ→ ϕ ∈Θ

– τ≤ ϕ→ ϕ′ and

– ϕ→ τ→ ϕ is inhabited.

The type ϕ→ τ→ ψ′ can be derived for the term M of Example 2.7.

ii) Let µ = (ϕ→ ψ)→ ψ→ ψ′ and ν = ϕ→ ψ . We have ϕ→ µ→ ν→ ψ′ ∈Θ since:

– ϕ→ µ→ ν→ ψ ∈Θ

– µ≤ µ and

– both ϕ→ µ→ ν→ ν and ϕ→ µ→ ν→ ψ are inhabited.

Moreover ϕ→ µ→ ν→ ψ ∈Θ since:

– ϕ→ µ→ ν→ ϕ ∈Θ

– ν≤ ν and

– ϕ→ µ→ ν→ ϕ is inhabited.

The type ϕ→ µ→ ν→ ψ′ can be derived for the left invertible term λtx1x2.x1x2(x2t).

We define the number of top arrows of a type as expected:

[(ϕ) = [(ω) = 0 [(σ→ µ) = 1+ [(µ)

It is useful to observe that if a type with at least n top arrows has an inhabitant, then this type has also an
inhabitant with at least n initial abstraction.

Lemma 3.7. If type µ is inhabited and [(µ)≥ n, then there is M with at least n initial abstractions such
that `M : µ.
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Proof. If µ ∼ ω it is trivial. Otherwise the inhabitants of µ must have hnfs, see [1] for a proof. Let
µ = σ1→ . . .→ σn→ ν and λx1 . . .xn′ .x jM1 . . .Mm be an inhabitant of µ with n′ < n. It is easy to check
that we get M by η-expansion (see [2, Definition 3.3.1])

` λx1 . . .xn′y1 . . .yn−n′ .x jM1 . . .Mmy1 . . .yn−n′ : σ1→ . . .→ σn→ ν

Lemma 3.8 (Characterisation of Types for Left Invertible Terms).

1. Left invertible terms inhabit only types which are left types.

2. Each left type is inhabited by a left invertible term.

Proof.

1. By Definition 2.2 a left invertible term M is a λ-abstraction, then its type is of the shape σ→ ν

by Lemma 3.3(4). It is enough to show that if the head normal form of M belongs to Ξ, then
σ→ ν ∈Θ. The proof is by induction on Ξ.
Case λtx1 . . .xn.t. By the invariance of types under β⊥-conversion (Theorem 3.4) we get

` λtx1 . . .xn.t : σ→ ν

which implies by repeated application of Lemma 3.3(4) ν∼ σ1→ . . .→ σn→ µ and

t : σ,x1 : σ1, . . . ,xn : σn ` t : µ

Then σ≤ µ by Lemma 3.3(1) and we can conclude σ→ ν ∈Θ.
Case λtx1 . . .xn.x jM1 . . .Mm ∈Ξ with j≤ n since λtx1 . . .xn.Mi ∈Ξ with i≤m. As in previous case
we get ν∼ σ1→ . . .→ σn→ µ and

t : σ,x1 : σ1, . . . ,xn : σn ` x jM1 . . .Mm : µ

Let Γ = t : σ,x1 : σ1, . . . ,xn : σn. By repeated application of Lemma 3.3(3) we have

Γ ` x j : ρ1→ . . .ρm→ µ and Γ `Ml : ρl for 1≤ l ≤ m.

Lemma 3.3(1) implies σ j ≤ ρ1→ . . .ρm→ µ. Moreover

λtx1 . . .xn.Ml inhabits σ→ σ1→ . . .→ σn→ ρl for 1≤ l ≤ m.

Lastly λtx1 . . .xn.Mi ∈ Ξ implies by induction

σ→ σ1→ . . .→ σn→ ρi ∈Θ

We can then conclude σ→ ν ∈Θ.

2. The proof is by induction on Θ. If σ ≤ ν we can derive ` λtx1 . . .xn.t : σ→ σ1→ . . .→ σn→ ν.
Otherwise by Lemma 3.7 we can assume that the inhabitants of σ→ σ1 → . . .→ σn → ρl for
1≤ l ≤ m have at least n+1 initial abstractions. Let

λtx1 . . .xn.Ml be an inhabitant of σ→ σ1→ . . .→ σn→ ρl for 1≤ l ≤ m and
σ→ σ1→ . . .→ σn→ ρi ∈Θ for some i≤ m.

By induction λtx1 . . .xn.Mi ∈ Ξ, then λtx1 . . .xn.x jM1 . . .Mi . . .Mm ∈ Ξ. Moreover
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if σ j ≤ ρ1→ . . .→ ρm→ ν, then λtx1 . . .xn.x jM1 . . .Mi . . .Mm inhabits σ→ σ1→ . . .→ σn→ ν.

The types of right invertible terms are easy to define, as expected.

Definition 3.9. A type τ→ µ is a right type if τ ≤ ρ1 → . . .→ ρm → µ and τ→ ρi is inhabited for
1≤ i≤ m.

Example 3.10. A right type is ((ψ1→ ψ1)∧ (ψ2→ ψ2)→ ω→ ϕ)∧ψ→ ϕ. Another right type is

((ϕ1→ ϕ2→ (ϕ1→ ϕ2→ ϕ3)→ ϕ3)→ (ψ1→ ψ2→ ψ2)→ ω→ (ψ1→ ψ2→ ψ1)→ ϕ)→ ϕ

This last type can be derived for the term L◦N of Example 2.9.

Lemma 3.11 (Characterisation of Types for Right Invertible Terms).

1. Right invertible terms inhabit only types which are right types.

2. Each right type is inhabited by a right invertible term.

Proof.

1. By Theorem 2.10 is it enough to show that ` λz.zM1 . . .Mm : τ→ µ implies that τ→ µ is a right
type. By Lemma 3.3(4) and (3) we get: z : τ ` z : ρ1 → . . .→ ρm → µ and z : τ ` Mi : ρi for
1 ≤ i ≤ m. By Lemma 3.3(1) τ ≤ ρ1 → . . .→ ρm → µ. Moreover λz.zMi inhabits τ→ ρi for
1≤ i≤ m. Therefore τ→ µ is a right type.

2. Let Mi be an inhabitant of τ→ ρi for 1≤ i≤ m and τ≤ ρ1→ . . .→ ρm→ µ. Then we can derive
` λz.zM1 . . .Mm : τ→ µ.

It is easy to verify that ω is both a left and a right type.

4 Characterisation of Retraction in Strict Intersection Types

We can discuss now retractions, i.e. isomorphic embeddings, in strict types using terms of Λ⊥.

Definition 4.1. Type µ is a retract of type ν (notation µCν) if there exist terms L and R such that:

1. ` L : ν→ µ;

2. ` R : µ→ ν;

3. L◦R = I.

We say that L,R witness the retraction.

Example 4.2. L = λz.zI(λy.yy)z and R = λtx1x2x3.x2x1t witness the retraction

ϕC (ϕ→ ϕ)∧ ((ϕ→ ϕ)→ ϕ→ ϕ)→ σ→ ω→ ϕ

where σ = (ϕ→ ϕ)∧ ((ϕ→ ϕ)→ ϕ→ ϕ)→ ϕ→ ϕ. The same retraction is witnessed by L and R′ =
λtx1x2x3.t, which is a simple right inverse. Notice that L cannot be typed with Curry types.

It easy to prove that the retraction relation enjoys the transitivity property. In fact if L,R witness
µCµ′ and L′,R′ witness µ′Cν, then L◦L′,R′ ◦R witness µCν.

Retraction can be fully characterised.
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Theorem 4.3 (Characterisation of Retraction). µCν if and only if ν ∼ ρ1→ . . .→ ρm→ µ and ν→ ρi

is inhabited for 1≤ i≤ m. Moreover, each retraction can be witnessed by a simple right inverse.

Proof.
(If) Let Mi be an inhabitant of ν→ ρi for 1 ≤ i ≤ m. We can choose L = λz.z(M1z) . . .(Mmz) and

R = λtx1 . . .xm.t. Notice that R is a simple right inverse. It it easy to verify that L and R satisfy the
conditions of Definition 4.1.

(Only if) By Theorem 2.10 L = λz.zM1 . . .Mm. Then applying Lemma 3.3(4) to ` L : ν→ µ we get
z : ν ` zM1 . . .Mm : µ. By repeated applications of Lemma 3.3(3) this implies

z : ν ` z : σ1→ . . .→ σm→ µ and z : ν `Mi : σi for 1≤ i≤ m.
From z : ν ` z : σ1→ . . .→ σm→ µ we have ν ≤ σ1→ . . .→ σm→ µ by Lemma 3.3(1). We can
assume ν = ρ1→ . . .→ ρm→ µ′, which implies σi ≤ ρi for 1≤ i≤ m and µ′ ≤ µ by Lemma 3.2.
Observe that L ◦R = λx.RxM′1 . . .M

′
m where M′i = Mi{Rx/z} for 1 ≤ i ≤ m. From ` R : µ→ ν

and z : ν ` Mi : σi and σi ≤ ρi we can derive x : µ ` M′i : ρi for 1 ≤ i ≤ m. This together with
ν = ρ1→ . . .→ ρm→ µ′ implies x : µ ` RxM′1 . . .M

′
m : µ′. From L◦R = I we get RxM′1 . . .M

′
m = x.

Subject Conversion derives x : µ ` x : µ′, so by Lemma 3.3(1) µ≤ µ′. We conclude µ∼ µ′.

As an easy consequence of this theorem if µC ν, then µC ρ→ ν for any intersection ρ such that
ν→ ρ is inhabited. Moreover if µ 6∼ ω, then neither µCω nor ωCµ can hold.

Reciprocal retraction implies equivalence.
Corollary 4.4. If µCν and νCµ, then µ∼ ν.

Proof. By previous theorem ν∼ ρ1→ . . .→ ρm→ µ and µ∼σ1→ . . .→σn→ ν, which imply m= n= 0
and then µ∼ ν.

Given two terms L and R such that L◦R = I, they do not witness a retraction for all the pairs of their
types. For instance, the terms L ◦N, M in Examples 2.9 and 2.7 do not witness a retraction using their
types shown in Examples 3.10 and 3.6 i). However L◦N, M witness the following retraction:

µ C (µ→ ν1)∧ (ω→ ν1→ ν2)→ ν2

where ν1 = ω→ (µ→ ω→ µ)→ µ and ν2 = (ω→ ν1→ ν1)→ ν1.

Notice that L◦R = I implies that for all types µ there is an intersection σ such that L has type σ→ µ
and R has type µ→ σ. The proof is easy using the inversion lemma and the invariance of types under
β-expansion. This does not mean that L,R always witness a retraction between strict types, since σ can
be an intersection of strict types, as shown in the following example.
Example 4.5. Let L = λu.u⊥(u⊥(λz.I)) and R = λtx1x2.x2t. We derive

` L : (ω→ (ϕ→ ϕ)→ ϕ)∧ (ω→ (ϕ→ ϕ→ ϕ)→ ϕ→ ϕ)→ ϕ

` R : ϕ→ ω→ (ϕ→ ϕ)→ ϕ and ` R : ϕ→ ω→ (ϕ→ ϕ→ ϕ)→ ϕ→ ϕ

When R is a simple right inverse instead we always get a set of retractions.
Theorem 4.6. If L◦R = I and R is a simple right inverse, then for each type µ we find types ν such that
L,R witness the retraction µCν.

Proof. By Theorem 2.10 L = λz.zM1 . . .Mm. By definition of simple right inverse R = λtx1 . . .xm.t. We
can then choose ν∼ ρ1→ . . .→ ρm→ µ for each ρ1, . . . ,ρm such that ` λz.Mi : ν→ ρi for 1≤ i≤m. In
particular we can always take ρi = ω for 1≤ i≤ m.
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5 Characterisation of Simple Retraction in Standard Intersection Types

In this section we extend the characterisation of retraction (Theorem 4.3), which holds for strict types, to
the case of standard intersection types, by considering only simple right inverses.

The set of standard intersection types (simply intersection types) is defined by:

σ := ϕ | ω | σ→ σ | σ∧σ

where, as before, ϕ ranges over type variables and ω is a constant. In this section, we convene that σ,τ,ρ
range over intersection types.

The preorder of Definition 3.1 is extended to intersection types by adding the rule

(σ→ τ)∧ (σ→ ρ)≤ σ→ τ∧ρ

The following lemma gives a crucial property of this subtyping, which is shown in [3].

Lemma 5.1. If
∧

i∈I(σi→ τi)≤ σ→ τ, then there is J ⊆ I such that σ≤
∧

i∈J σi and
∧

i∈J τi ≤ τ.

The type assignment system is defined by the typing rules of Table 2, where environments are finite
mappings from term variables to intersection types.

(Ax) Γ,x : σ ` x : σ (ω) Γ `M : ω (≤) Γ `M : σ σ≤ τ

Γ `M : τ

(→ I)
Γ,x : σ `M : τ

Γ ` λx.M : σ→ τ
(→ E)

Γ `M : σ→ τ Γ ` N : σ

Γ `MN : τ
(∧I)

Γ `M : σ Γ `M : τ

Γ `M : σ∧ τ

Table 2: Typing Rules of Standard Intersection Types

The inversion lemma is as expected, for a proof see [4, Theorem 12.1.13].

Lemma 5.2 (Inversion Lemma).

1. If Γ ` x : τ, then either τ∼ ω or x : σ ∈ Γ for σ≤ τ.

2. If Γ ` ⊥ : τ, then τ∼ ω.

3. If Γ `MN : τ, then Γ `M : σ→ τ and Γ ` N : σ.

4. If Γ ` λx.M : τ, then τ∼
∧

i∈I(σi→ ρi) and Γ,x : σi `M : ρi for all i ∈ I.

The notion of retraction (Definition 4.1) can be extended to standard intersection types. It is useful
here to add the notion of simple retraction.

Definition 5.3.

1. Type σ is a retract of type τ (notation σC τ) if there exist terms L and R such that:

(a) ` L : τ→ σ;
(b) ` R : σ→ τ;
(c) L◦R = I.

2. Type σ is a simple retract of type τ (notation σCs τ) if σC τ and R is a simple right inverse.
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We say that L,R witness the (simple) retraction.

We can now show the desired characterisation.

Theorem 5.4 (Characterisation of Simple Retractions in Standard Intersection Types). σ/s τ if and only if
σ∼

∧
i∈I σi and τ∼

∧
i∈I(ρ

(i)
1 → ·· ·→ ρ

(i)
m → σi) and the types τ→

∧
i∈I ρ

(i)
k are inhabited for 1≤ k≤m.

Proof.

(If) Let Mk be an inhabitant of τ→
∧

i∈I ρ
(i)
k for 1≤ k ≤ m. We can choose L = λz.z(M1z) . . .(Mmz) and

R = λtx1 . . .xm.t. It is easy to verify that L and R satisfy the conditions of Definition 5.3.

(Only if) Since R is simple, we can assume R = λtx1 . . .xm.t. Lemma 5.2(4) applied to ` R : σ→ τ gives
τ ∼

∧
i∈I(ρ

(i)
1 → ·· · → ρ

(i)
m → σi) and t : σ ` t : σi for all i ∈ I. Then σ ≤ σi for all i ∈ I, which

implies σ≤
∧

i∈I σi.

By Theorem 2.10 we have L = λz.zM1 . . .Mm. Then applying the Inversion Lemma to ` L : τ→ σ

we get τ≤ ρ1→ ··· → ρm→ σ and z : τ `Mk : ρk for 1≤ k ≤ m. Then

∧
i∈I

(ρ
(i)
1 → ··· → ρ

(i)
m → σi)≤ ρ1→ ·· · → ρm→ σ

By Lemma 5.1 this implies
∧

i∈J σi ≤ σ and ρk ≤
∧

i∈J ρ
(i)
k for some J ⊆ I and for all 1 ≤ k ≤ m.

From σ≤
∧

i∈I σi and
∧

i∈J σi ≤ σ with J ⊆ I we get J = I and σ∼
∧

i∈I σi. From z : τ `Mk : ρk and
ρk ≤

∧
i∈I ρ

(i)
k we can derive z : τ `Mk :

∧
i∈I ρ

(i)
k for 1≤ k ≤ m. Therefore the types τ→

∧
i∈I ρ

(i)
k

are inhabited for 1≤ k ≤ m.

In [1] it is proved that each intersection type is equivalent to an intersection of strict types. Owing
to this property and the idempotence of the intersection type constructor, we can show that a simple
retraction between intersection types implies a set of retractions between strict types.

Corollary 5.5. If σ/s τ and τ∼
∧

i∈I νi, then there are strict types µi with i ∈ I such that σ∼
∧

i∈I µi, and
µi /νi for i ∈ I.

Proof. By Theorem 5.4 νi ∼ ρ
(i)
1 → ··· → ρ

(i)
m → µi for some µi and σ∼

∧
i∈I µi. Then µi /νi for i ∈ I by

Theorem 4.3.

Example 5.6.

i) Consider σ = ϕ∧ψ and τ = ω→ ((ϕ→ ϕ→ ϕ)→ ϕ)∧ ((ψ→ ω→ ψ)→ ψ). We get σ/s τ by
choosing L = λz.z⊥K, where K = λxy.x and its simple right inverse R = λtx1x2.t. The terms L, R
witness also the two retractions ϕ / ω→ (ϕ→ ϕ→ ϕ)→ ϕ and ψ / ω→ (ψ→ ω→ ψ)→ ψ

between strict types.

ii) The terms L = λz.zI and R = λtx.t witness the simple retraction ϕ /s ((ψ→ ψ)→ ϕ)∧ (ω→ ϕ).
The same terms show the two retractions ϕ / (ψ→ ψ)→ ϕ and ϕ / ω→ ϕ between strict types.
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6 Retractions in Models

In this section we discuss retractions in models of λ⊥-calculus. Since standard intersection types can
be seen as a conservative extension of strict intersection types, the results of this section hold for both
systems.
It is easy to adapt the Hindley-Longo definition of λ-calculus models [18] to the λ⊥-calculus. We use V
to range over mappings from term variables to elements of the domain.

Definition 6.1. A model of the λ⊥-calculus is a structure M =< D, ·, [[−]]M ,d0 > which satisfies the
following conditions:

1. d0 is a distinguished element of the domain D such that d0 · e = d0 for all e ∈ D

2. [[x]]MV = V (x)

3. [[MN]]MV = [[M]]MV · [[N]]MV

4. [[λx.M]]MV ·d = [[M]]MV [d/x]

5. V = V ′ implies [[M]]MV = [[M]]MV ′

6. [[λx.M]]MV = [[λy.M[y/x]]]MV if y is not in M

7. ∀d ∈ D [[M]]MV [d/x] = [[N]]MV [d/x] implies [[λx.M]]MV = [[λx.N]]MV

8. [[⊥]]MV = [[λx.⊥]]MV = d0.

As usual we interpret types as subsets of the model domain.

Definition 6.2. The standard interpretation of types in a model M with domain D is defined by:

1. [[ω]]MW = D

2. [[ϕ]]MW = W (ϕ)

3. [[σ→ τ]]MW = {d | ∀e ∈ [[σ]]MW d · e ∈ [[τ]]MW }

4. [[σ∧ τ]]MW = [[σ]]MW ∩ [[τ]]
M
W

where W ranges over mappings from type variables to subsets of the domain.

From these definitions it easy to show the soundness of the type systems of Sections 3 and 5. We say
that the mappings V ,W for a model M respect an environment Γ if x : σ ∈ Γ implies [[x]]MV ∈ [[σ]]MW .

Theorem 6.3 (Soundness). If Γ `M : σ, then [[M]]MV ∈ [[σ]]MW for all M and all V , W respecting Γ.

The semantic retraction is naturally defined as follows.

Definition 6.4. Type σ is a semantic retract of type τ (notation σ J τ) if there are two terms L and R such
that for all models M of λ⊥-calculus and for all mappings V ,W :

1. [[R]]MV ∈ [[σ→ τ]]MW

2. [[L]]MV ∈ [[τ→ σ]]MW

3. [[L]]MV ◦ [[R]]
M
V = [[I]]MV .
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An interesting model of λ-calculus is the filter model F defined in [3]. The domain of this model is
the set of filters of types. We refer to that paper for the basic definitions and properties. The model F
can be easily seen as a model of the λ⊥-calculus by taking the filter generated by type ω as d0.

In [3] the filter model is proved to be complete for λ-calculus and standard intersection types. It is
easy to adapt this result to λ⊥-calculus. The completeness theorem of [3] can then be reformulated as
follows:

Theorem 6.5 (Completeness of the Filter Model). If [[M]]FV ∈ [[σ]]FW for all V , W respecting Γ, then
Γ `M : σ.

We can show that retraction and semantic retraction coincide using the soundness and the complete-
ness of the filter model.

Theorem 6.6. σC τ if and only if σ J τ.

Proof.

(If) By Theorem 6.5 we immediately have that

• [[L]]FV ∈ [[τ→ σ]]FW for all V , W implies ` L : τ→ σ and

• [[R]]FV ∈ [[σ→ τ]]FW for all V , W implies ` R : σ→ τ.

Notice that [[L]]MV ◦ [[R]]
M
V = [[BLR]]MV . Since ϕ→ ϕ ∈ [[I]]FV , the completeness of the filter model

gives ` BLR : ϕ→ ϕ. It is easy to prove that this implies BLR = I, as remarked in [3].

(Only if) The soundness of the type system (Theorem 6.3) implies that

• ` L : τ→ σ gives [[L]]MV ∈ [[τ→ σ]]FW for all M , V , W and

• ` R : σ→ τ gives [[R]]MV ∈ [[σ→ τ]]FW for all M , V , W .

If L◦R = I, then by definition of model we get [[L]]MV ◦ [[R]]
M
V = [[I]]MV .

7 Related Work

The seminal paper [7] characterises for Curry types both isomorphism in the λβη-calculus and retraction
in the λβ-calculus.

Isomorphism in the λβη-calculus is characterised for various type disciplines by means of equations
between types [16]. Product and unit types are considered in [6,23,24], universally quantified types in [7],
all the above type constructors in [15]. Characterisation of isomorphism for intersection types instead
requires a notion of type similarity [9, 14]. Analogous result holds for intersection and union types [8,
10, 11]. [17] shows that isomorphism for product, arrow and sum types is not finitely axiomatizable.

Retraction witnessed by affine terms of λβη-calculus for Curry types with only one atom is charac-
terised in [13]. As an auxiliary result in the study of the relation between iteration and recursion, [25]
gives a necessary condition for retraction considering universally quantified types and λβ-calculus. An
algorithm to decide if a Curry type with a single atom is a retract of another one in the λβη-calculus is
given in [20]. This algorithm builds the witnesses of the retraction, when they exist. The results of [13]
are extended to Curry types with many atoms in [21]. Moreover [21] gives necessary conditions for re-
traction witnessed by arbitrary terms of λβη-calculus dealing with both Curry and universally quantified
types. The problem of retraction solved in [13] is shown to be NP-complete in [22]. [26] gives a proof
system which leads to an exponential decision procedure to characterise retraction for Curry types in the
λβη-calculus.
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8 Conclusion

This paper deals with retraction for strict and standard intersection types in the λ⊥-calculus. Both the
choices of the calculus and of the types can be discussed.

We considered the λ⊥-calculus following [19]. Our results are easily adapted to the λ-calculus taking
an unsolvable term to play the role of ⊥.

By conservativity the given characterisation of retraction in strict intersection types holds in Curry
types [12]. In this way we obtain the result of [7]. We give also a characterisation of retractions in
standard intersection types when the right inverses are simple. However the retraction of Example 4.5
cannot be shown by a simple right inverse, since it should have both the types

ϕ→ ω→ (ϕ→ ϕ)→ ϕ and ϕ→ ω→ (ϕ→ ϕ→ ϕ)→ ϕ→ ϕ.

The definition of a necessary and sufficient condition for the existence of a retraction between stan-
dard intersection types is not obvious when the right inverses are arbitrary. For example, no type can be
a retract of the type

ω→ ((ω→ ϕ→ ϕ)→ ϕ)∧ ((ψ→ ω→ ψ)→ ψ)
essentially since (ω→ ϕ→ ϕ)∧ (ψ→ ω→ ψ) is not inhabited. Notice that this type and the type τ of
Example 5.6 i) differ only for one occurrence of ω in place of one occurrence of ϕ.

We plan to investigate retractions in standard intersection types without conditions on right inverses,
and in intersection and union types. The problem for the λβη-calculus is surely more difficult as shown
by the papers [7, 13, 20–22, 26] and it is left for future work.

As suggested by one referee, an interesting future development is to see how the results presented
here can be adapted to programming languages with richer sets of constructs. This would allow to apply
automatic retraction inference in dealing with API of functional programs or proof-assistants so as to
maximise code reuse.
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