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Abstract—Artificial intelligence is paving the way for a new
era of algorithms focusing directly on the information contained
in the data, autonomously extracting relevant features for a
given application. While the initial paradigm was to have these
applications run by a server hosted processor, recent advances in
microelectronics provide hardware accelerators with an efficient
ratio between computation and energy consumption, enabling the
implementation of artificial intelligence algorithms ‘at the edge’.
In this way only the meaningful and useful data are transmitted
to the end-user, minimising the required data bandwidth, and
reducing the latency with respect to the cloud computing model.
In recent years, European Space Agency is promoting the de-
velopment of disruptive innovative technologies on-board Earth
Observation missions. In this field, the most advanced experiment
to date is the Φ-sat-1, which has demonstrated the potential
of Artificial Intelligence as a reliable and accurate tool for
cloud detection on-board a hyperspectral imaging mission. The
activities involved included demonstrating the robustness of the
Intel Movidius Myriad 2 hardware accelerator against ionising
radiation, developing a Cloudscout segmentation neural network,
run on Myriad 2, to identify, classify, and eventually discard
on-board the cloudy images, and assessing of the innovative
Hyperscout-2 hyperspectral sensor. This mission represents the
first official attempt to successfully run an AI Deep Convolutional
Neural Network (CNN) directly inferencing on a dedicated
accelerator on-board a satellite, opening the way for a new era of
discovery and commercial applications driven by the deployment
of on-board AI.

Index Terms—AI, segmentation network, hyperspectral, on-
the edge, Earth Observation, synthetic dataset, satellite camera,
nanosatellite, microsatellite, Φ-Sat-1.

I. INTRODUCTION

THE space industry is growing at an incredible speed.
The increasing number of new private ventures that

complement the traditionally public sector agencies in the
space arena shows how this sector is attractive and rich with
new opportunities [1]–[3]. However, the adoption of new
technology on-board satellites is still strongly limited by the
requirements of reliability and availability, which traditionally
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have imposed the use of components with flight-heritage and
extensive qualification. This is why on-board processing on
space borne data systems still relies on old components that
do not provide enough computational power to run most of
the innovative state-of-the-art algorithms [4], [5].

Artificial Intelligence (AI) shows the ability to solve very
complex problems exploiting only the intrinsic information
contained within data, reducing the pre- and post-processing
that is required by standard on-board techniques. In this sense,
AI can provide the needed boost in actual performance that
will allow new applications to be realised [6]. AI algorithms,
and especially those related to image processing (such as
Convolutional Neural Networks (CNNs) and Deep Neural
Networks (DNNs)), are not suited for the typical class of
processors used on-satellite due to their limited computational
power and memory resources [7]–[9]. Furthermore, flight
hardware has to tolerate failures and faults caused by ionizing
radiation in orbit [10]. The radiation exposure is dependent on
the orbital altitude, so that the Total Ionizing Dose (TID) for
Low Earth Orbit (LEO) missions is much less than that for
Geostationary Earth Orbit (GEO) and interplanetary missions
[11]. The rapid and continuous advancement in semiconductor
technology is resulting in commercial processors that are
increasingly compute-powerful. The performance of these
Commercial Off-The-Shelf (COTS) devices, and in particular
their efficiency and ability to implement state-of-the-art AI
algorithms with low-power consumption at the edge, leads to
an increasingly large gap between their capabilities and those
of traditional, reliable space flight hardware [12]. In the latest
years, as part of its initiative to promote the development of
radically innovative technologies such as AI capabilities on-
board Earth Observation (EO) missions, the European Space
Agency (ESA) developed the first Φ-sat mission [13], [14],
leveraging the development of the Technology and Quality
Department of the Agency on a new processor board for
LEO missions, named Eyes of Things (EoT) [15]. The EoT
board features the Intel Movidius Myriad 2 Vision Process-
ing Unit (VPU) capable of performing fast inferences while
maintaining the power consumption well below 2 W [16].
Among the activities supported by ESA to assess and trial
the Myriad 2, one of the most important is the successful
radiation characterisation of the device at several European test
facilities, including CERN [17]. This provided the confidence
to progress to an in-fight demonstration of AI applied on-
satellite on Φ-Sat 1. This paper presents the design and the
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first in-flight results of the Φ-Sat 1 mission.
The aim of the mission is to demonstrate in-flight the

capability, robustness and accuracy of AI acceleration using
the Myriad 2 device, and the suitability of AI algorithms
for elaborating and handling raw L0 data or L0 to L1
data processing directly on-board. Specifically, the goal is to
demonstrate accurate band co-registration and precise cloud
detection to increase the efficiency of the downlink in terms
of ratio between useful images vs non useful images acquired
by an innovative hyperspectral camera called HyperScout-2
[18].

At the time of the Φ-Sat 1 mission, insufficient data volume
from the HyperScout® product line were available to train the
CNN to classify each pixel as cloudy or not-cloudy. This is a
common problem with space imagers where bespoke cameras
are developed for each new mission. The approach was to
derive synthesised images starting from the Sentinel-2 dataset
[19] after proper processing to emulate the new camera sensor
characteristics, and use those for training and initial test. This
mission represents the first use of Deep CNN inference on
a dedicated COTS VPU processor on-board a satellite, with
the aim to autonomously identify hyperspectral images from
HyperScout-2 that contain a percentage of cloudy pixels less
than a given threshold.

Φ-sat-1, the first experiment of the Φ-sat mission series,
is part of the ESA Earth Observation Directorate initiative
to promote the space-oriented development and adaptation of
radically innovative technologies such as AI [20]. The Φ-
sat mission series objective is to address brand new mission
concepts, fostering novel architectures or sensing modalities
that enable to meet user-driven science and/or applications
by means of on-board processing. Specifically, the primary
objective of Φ-sat-1 was to demonstrate in flight the ability of
a DNN inference running on a dedicated COTS AI accelerator
to reliably detect clouds on acquired hyperspectral images,
allowing the removal of the cloudy pixels and thereby reducing
the amount of data to be downloaded while increasing the
information content of this data. The performance of an on-
board inference engine based on a machine learning (ML)
algorithm for cloud detection was validated in flight. This is
the first time such an experiment has been conducted in space.

II. ARTIFICIAL INTELLIGENCE ON-BOARD

Recent advances in space avionics have led to more de-
centralised on-board compute. COTS edge processors are
ideally positioned to deliver low-latency and distributed edge
compute at source for value added services from orbit [21].
Furthermore, rapid mission design cycles are possible using
COTS devices that incorporate suitable mitigation strategies.
Mission lifetime extensions, as well as improvement by means
of delta training, are also immediately feasible for AI solutions
via dynamic reconfigurability of the neural networks. This
paradigm opens new prospects and new opportunities enabled
by robust and accurate on-board processing, and L1 to L2
product generation, with respect to the classical approach to
download on ground mainly raw data for subsequent process-
ing. DNNs have demonstrated remarkable results in several

space applications, such as scene classification [22] object
recognition [23], pose-estimation [24], change-detection [25],
and others [26]. This capability of performing complex tasks
with credible and robust precision has pushed researchers to
investigate the possibility to move the application of DNNs on
board satellites [2].

Moving AI to the edge can have a twofold benefit: I) it
enables new remote sensing techniques, and II) it enables new
types of applications such as those requiring minimal latency
direct downlink to the final user, or those optimising the down-
link bandwidth by transmitting to ground only useful data or
only meta-information [27], [28]. In particular, the deployment
of DNNs on-board can help to reduce mission/application
bandwidth requirements by filtering out non-useful data [2],
[29]. This ability becomes particularly relevant when high
revisit times and limited budgets are pushing the increased
adoption of small and nano satellites, and CubeSats, which
feature extremely limited downlink data-rates [3]. It is worth
noting that the robustness and reliability of the processing is
of paramount importance, since a false detection can lead to
an ultimate and definitive loss of data. In order to port DNNs
on board spacecrafts, authors in [1], [17] propose to perform
inference using COTS hardware accelerators, which feature
improved energy efficiency and low costs and mass.

Furthermore, COTS accelerators are capable of exploiting
the regular structure of neural networks that, regardless of
the specific layers, share the same structure and require the
repeated execution of the same type of building block opera-
tions, such as Multiply and Accumulate (MAC). Thanks to this
feature, the use of COTS devices has strong potential to enable
the use of the same hardware for different applications, with
advantages in terms of reduced mission set-up times, greater
market access, and reduced costs [1], [17], [23].

III. THE Φ-SAT-1 PROJECT ARCHITECTURE

A. Hyperspectral instrument and CloudScout processing chain
HyperScout® 2, shown in Fig. 1, is a miniaturized spec-

tral camera developed by cosine Remote Sensing with a
hyperspectral channel in the Visible to Near-Infrared (VNIR)
offering 45 bands from 400 to 1000 nm and a multispectral
channel in the Thermal Infrared Range (TIR) [12] with 3 bands
from 8 µm to 14 µm, as detailed in Tab. I. HyperScout® 2 is
the second generation of the HyperScout® product line, with
the first generation launched and demonstrated in orbit in 2018
[5]. The instrument, detailed in Fig.2, is based on a two set
of 2D sensors used in push broom mode exploiting the orbital
motion of the satellite for the acquisition and reconstruction
of the entire sensor spectral coverage for each ground pixel.

The HyperScout® 2 includes a number of subsystems among
which the telescope, the VNIR and TIR focal plane arrays,
Instrument Control Unit (ICU) and back-end electronics. For
data processing the system is equipped with a Central Pro-
cessing Unit (CPU) based On-Board Data Handling and the
EoT as described in the following section. HyperScout has
been equipped with a dedicated interface board for control
and latch-up protection of the EoT.

The telescope is an athermal system based on a monolithical
structure. The VNIR Focal Panel Assembly (FPA) is based on
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Fig. 1. HyperScout 2 Flight Model.

TABLE I
HYPERSCOUT 2 SPECIFICATIONS.

Parameter Value
VNIR FOV [deg] 31 x 16
VNIR Focal length [mm] 41.25
VNIR Pixel size [µm] 5.5
VNIR ACT pixels [px] 4096
VNIR Spectral range [nm] 450-950
VNIR Spectral bands [-] 45
VNIR Spectral resolution [nm] 18
VNIR data throughput @ typ. frame rate [MB/s] 43
VNIR ACT GSD from 590 km [m] 83
VNIR Swath from 590 km ACT x ALT [km] 327 x 165
VNIR Data volume frame image (16 bit uncompressed) [MB] 15.16
TIR FOV [deg] 31 x 16
TIR focal length [mm] 25.78
TIR Pixel size [µm] 17
TIR pixels size[px] 840 x 700
TIR Spectral range [µm] 8.0 – 14.0
TIR band 1 CW [µm] 10.5
TIR band 1 BW [µm] 1.2
TIR band 2 CW [µm] 12.0
TIR band 2 BW [µm] 1.1
TIR band 3 CW [µm] 11.0
TIR band 3 BW [µm] 6.0
TIR GSD from 590 km [m] 390
TIR Swath from 590 km ACT x ALT [km] 327 x 165
TIR Data volume frame image (16 bit uncompressed) [MB] 1.6

a CMOS sensor and a hyperspectral filtering element used to
separate the different wavelengths. The TIR FPA is based on
a microbolometer and a multispectral filtering element. The
ICU presents the contact point for the HyperScout® allowing
in-flight debugging of the Basic Electronic Element (BEE)/On-
Board Data Handler (OBDH) subsystem. Housekeeping data
is logged in the idle state. Being located on an independent
MCU, it is possible to completely power down each com-
ponent from the ICU. The BEE is the electrical interface to
the spacecraft and is latch-up protected. It distributes power,
clocks, telemetry and commands between the units, controls
the detector and serves as the data and control interface,

providing clock timings, frame rate control, exposure and gain
control. The BEE then merges the data acquired with the
platform ancillary information creating L0 payload image data.
The latter are reconstructed unprocessed information at full
space-time resolution coming from the imager payload with all
available supplemental information to be used in subsequent
processing appended. These data are then stored in the payload
Mass Memory Unit (MMU).

The OBDH hardware serves multiple purposes, the most
distinct being the platform for both the acquisition and the
processing modes. During the acquisition mode, data will be
transferred from the BEE into the memory of the OBDH,
which is then written to the MMU via SATA. During process-
ing mode, the data is retrieved from the MMU and processed
in memory on the OBDH. Both the acquired L0 image data
and processed data are stored on board the payload’s MMUs.

Standard methods of constructing spectral cubes from push-
broom sensors rely on a multitude of satellite platform de-
pendent instrumentation. These on-board instruments include
GPS, star trackers, and other attitude determination systems.
This method inevitably makes the critical interface between
platform and instrument very complex to manage in terms of
synchronisation, and additionally imposes requirements on the
platform that need to be managed, verified and validated. Fur-
thermore, the available instrumentation makes the respective
spectral cubing algorithm platform dependent, which could
be a disadvantage for push-broom satellites constituting a
constellation on multiple platforms where it is desirable for
all the satellites to behave in a similar manner.

cosine’s HyperScout® are intended to be flown by various
customers on different platforms and could indeed be used
to create a constellation in the near future. Consequently, a
spectral cubing algorithm completely based on machine vision
techniques was developed. This algorithm, which is currently
in the process of being patented, can construct spectral cubes
without the use of Attitude Determination and Control Sys-
tem (ADCS) data allowing the HyperScout instruments, in
principle, to operate in a plethora of environments, e.g., on
various space based platforms, on-board airplanes, or as part

Fig. 2. Architectural block diagram of HyperScout 2
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of a Unmanned Aerial Vehicle (UAV), while all using the same
code base.

B. The EoT board

As introduced in Section I, the AI processing engine on Φ-
Sat-1 is a custom build of a Myriad 2-based EoT development
board from Ubotica Technologies. Initially developed as part
of the ‘Eyes of Things’ H2020 project [15], the EoT board is
a low-power vision-enabled Internet of Things (IoT) edge pro-
cessing platform. All EoT processing and control is performed
by the Intel Movidius Myriad 2 VPU, positioning the board
ideally as a readily available Myriad 2 hardware platform for
the inference task.

Fig. 3. Pre-processing and inference steps run on HyperScout 2.

Fig. 4. Φ-Sat-1’s inference engine: the EoT board with the centrally located
Myriad 2, shown mounted on the HyperScout® interface board that provides
latch-up protection (Credit: Tim Herman/Intel Corporation, cosine Remote
Sensing B.V.).

The Myriad 2 VPU is a System on Chip (SoC) with
integrated DRAM that has been designed from the ground
up considering high performance edge compute for vision
applications. It is a heterogeneous 14-core SoC, with 2 RISC-
V LEON processors managing functionality and controlling
the 12 integrated vector processors. These Streaming Hybrid
Architecture Vector Engines (SHAVEs) are 128-bit Very Long
Instruction Word (VLIW) processors that have concurrent ac-
cess to a 2MB multi-ported RAM, with 400GB/s of sustained
internal memory bandwidth supported between the SHAVEs
and RAM. The SHAVE processors contain wide and deep
register files controlling multiple functional units including
extensive Single Instruction Mutliple Data (SIMD) capability
for high parallelism and throughput at both the functional unit
and processor level. Firmware on the Myriad 2 utilises the 12
SHAVEs to efficiently perform parallelised Neural Network
(NN) inference, including memory management and Direct
Memory Access (DMA) for fast network weight loading to
the multi-ported memory, providing exceptional and highly
sustainable NN inference performance.

Key to its selection for Φ-Sat-1 was the Myriad 2’s compute
efficiency. With a core voltage of 0.9V (that guarantees a good
level of robustness against the most dangerous destructive radi-
ation effects), it can operate at 600MHz nominally consuming
only 1W. 20 independently controllable internal power islands
help to minimise power dissipation. Further efficiencies for
image processing operations are achieved via the Computer
Vision (CV) and Image Signal Processing (ISP) hardware
acceleration blocks. Together, these features provide Myriad
2 with in excess of 1 TFLOPs of compute.

In order to support its deployment on Φ-Sat-1, and in
satellite applications in general, the Myriad 2 has undergone
radiation characterisation via a range of test campaigns in
European test facilities. During these campaigns the device
was assessed for susceptibility to latch-up, and to determine
radiation cross-sections across a range of energies [17]. Myriad
2 has demonstrated no Single Event Latchup (SEL) effects at
energies up to 8.8MeVcm2/mg, with further results for recent
tests at higher energies pending analysis. The in-package
DRAM of the device was shown during Single Event Upset
(SEU) campaigns to have high immunity to bit upsets (per
device cross-section of 2e-14 at the above energy), indicating
its suitability for code and NN model storage, and providing
a level of inherent protection against functional upsets. Total
Ionising Dose (TID) testing was conducted up to 49krad, with
the device found to have no sensitivity to cumulative Co-60
radiation effects up to this dose.

The EoT board was designed to expose the wide range of
Myriad 2 interfaces and peripherals in a compact 76mm x
68mm form factor, facilitating broad application development.
USB (2.0 and 3.0) is the high-speed control and data interface
to the board, while multiple low speed interfaces (I2C, SPI,
UART) for peripheral attachment are exposed, alongside serial
and parallel image sensor interfaces. The EoT board, being
Myriad-centric, was selected as a suitable AI accelerator for
the Φ-Sat-1 mission as it provides an ideal base platform
from which to build a complete inference engine, providing
a payload-compatible, host controlled, reconfigurable, low
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power, low heat generation, high-speed interfaced device, in
a form-factor that integrates into the available space atop the
sensor payload. However, although functionally capable for Φ-
Sat-1, the board was not designed with the harsh conditions
of launch and space operation in mind, and its design consists
entirely of COTS components. Consequently, a thorough anal-
ysis of the board design was conducted wherein non-essential
functionalities were identified, thermal and vibration factors
were considered, and a board-wide component risk analysis
was conducted. Out of this a robust version of the board
consisting of a custom-assembled COTS EoT mounted on a
protection PCB (Fig.4) was produced for Φ-Sat-1.

All active components associated with EoT board func-
tionalities that were not required for Φ-Sat-1 were excluded
where possible from the board assembly, along with debug
indicators and unused interface headers. In final preparation
for integration, the board was conformally coated to protect
against tin whiskers. The flight configuration of the Φ-Sat-1
EoT board build is shown in Fig.4.

Inference functionality is enabled on the EoT board via
Ubotica and Intel Movidius firmware [30] executing on the
Myriad 2, with host-side control of inference achieved via
inference libraries that were custom built in order to target
the payload OBC. The libraries expose a compact API for
downloading NN models to the EoT, and subsequently for
submitting input tensors to the inference engine and receiving
corresponding inference results. Asynchronous inference is
supported via input and output tensor queues in the firmware.
A Built In Self Test (BIST), with board-level and device-level
self-test coverage, is executable on-demand from the OBC,
enabling health monitoring of internal memories and proces-
sors, device interfaces and board peripherals (see Sec.V-D),
and detection of SEU effects. The OBC is also responsible for
booting the Myriad 2 via USB (either with BIST or inference
boot images).

IV. CLOUDSCOUT DEEP NEURAL NETWORK

A. Dataset Preparation

Most of the ESA missions implement either a new sensor or
new sensing technique, implying a general lack of data for the
construction of the data sets. Φ-Sat-1, as a highly innovative
mission, is no less affected by this lack of pre-flight sensor
data, which implied the need to construct and label synthetic
data sets based on proxy off-the-shelf data sets (in this case the
Sentinel-2 archive). Of course, the authors appreciate that this
is a potential source of inaccuracy in the in-flight inference
results.

In order to prepare a representative sample of Sentinel-2
data, the whole archive of Sentinel-2 tiles, available through
Sentinel-Hub services [31], was randomly sampled. Fig.5
shows the locations of the randomly sampled Sentinel-2 im-
ages.

For each sample, the 13 bands of the Sentinel-2, at 10
m/px resolution were acquired. To simulate the behaviour of
the HyperScout-2 imager, the original samples were re-binned
from 10 m/px to 70 m/px, which corresponds the ground
resolution of the HyperScout® 2 imager. Resampling was done

Fig. 5. Locations of random samples from the Sentinel-2 archive.

using the default interpolation method of the Sentinel-Hub:
nearest neighbour. Although nearest neighbour is not the best
solution for image resampling, it represents a good trade-off
between dataset management and computational effort. The
data was then retrieved and stored in the Coordinate Reference
System (CRS) of the corresponding Sentinel-2 tile, so as to
remove the need to re-project data. To prepare the dataset
to train the DNN, the associated cloud mask was added to
each image as produced by the s2cloudless package. The
s2cloudless [32] is an automated cloud-detection algorithm for
Sentinel-2 imagery based on a gradient boosting algorithm.
The algorithm is mono-temporal, it does not take into account
any spatial context and can be executed at any resolution. The
input features are Sentinel-2 Level-1C Top-Of-Atmosphere
(TOA) reflectance values of the following 10 bands: B01,
B02, B04, B05, B08, B8A, B09, B10, B11, B12 and output
of the algorithm is a cloud probability map. Users of the
algorithm can convert the cloud probability map to a cloud
mask by thresholding the cloud probability map. The masks
were produced at a 70m/px resolution, the same resolution
used to download the Sentinel-2 data, using cloud probability
threshold of 0.4. The distribution of the cloud ratio coverage
of the data generated is shown in Fig.6. Clearly, although
images were randomly selected, the nature of the observed
phenomenon within the instrument swath is such that the vast
majority of the images were either almost fully covered by
clouds or almost cloud free. This drives the decision on the
value of the cloud coverage threshold used to declare the
image cloudy and not download it. The distribution of the
cloud ratio coverage of the data generated is shown in Fig.6.
Clearly, although images were randomly selected, the nature
of the observed phenomenon within the instrument swath is
such that the vast majority of the images were either almost
fully covered by clouds or almost cloud free. This drives the
decision on the value of the cloud coverage threshold used to
declare the image cloudy and not download it. From Fig.6 it
is clear that choosing a threshold of 70% enables the detection
of fully cloudy images.

HyperScout® 2 is able to sense 10 of the 13 bands available
on the Sentinel-2 satellites. However, using high number
of bands for inference would require a large pre-processing
directly on-board that would place significant memory and
energy demands on the satellite system. In fact, the data
processing chain, illustrated by the first 3 blocks Fig. 3, is
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Fig. 6. Distribution of relative area of cloudy pixels over sampled patches. X-axis is shows the percentage of clouds in given patch, while Y -axis shows the
number of images with such percentage.

executed on the HyperScout® 2 OBDH before the extracted
spectral bands are fed into the EoT board for executing
the inference step. During the first pre-processing, the raw
frames are radiometrically corrected for gain and offset and
are geometrically corrected to compensate for the distortions
created by instrument’s optical train. Next, for the spectral
cube construction step, the corrected frames are stack on one
another and aligned, using computer vision techniques, to form
a hyperspectral data cube. The appropriate bands from this
cube are then extracted and normalized during the second pre-
processing step.

To overcome this problem, we performed Principal Compo-
nent Analysis (PCA) on the 10 bands that HyperScout 2 has in
common with Sentinel-2 to select the best three bands to use
directly on-board. Using the three most important components
from PCA, a sample image that would be submitted to Myriad
for inference is shown in Fig. 7 (left), while reconstruction of
the true RGB image from the 3 PCA components is shown in
Fig. 8 (left), with the original RGB Sentinel-2 image on the
right.

Nevertheless, in-flight reduction of the 10 Sentinel-2 bands
into three using PCA, although possible using the CPU on
board HyperScout-2, was deemed prohibitive due to the neces-
sary power required. The chosen alternative is to extract from
the HyperScout-2 acquired data cube the three most important
bands as determined by the S2cloudless model. The feature
importance analysis of the S2cloudless model highlighted that
the three most important Sentinel-2 bands that have a highly
sensitive corresponding bands on HyperScout-2 are the B01,
B02 and the B8A, i.e., bands with central wavelengths of
450nm, 494nm and 862nm, respectively.

After the selection of the three most useful Sentinel-2 bands,
the HyperScout-2 data was simulated. The Sentinel-2 Level-

1C data (digital numbers), Sun zenith angles, per-band solar
irradiances and Sun-Earth distances were used to calculate
TOA radiances. For each pixel, the per-band radiance and

Fig. 7. 3-band-image using 3 components from PCA analysis (left) and
corresponding cloud mask (right).

Fig. 8. RGB image reconstructed from PCA (left) and original from Sentinel-
2 data (right). Images are brightened to better visualise non-cloudy areas.
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Fig. 9. Segmentation network structure. The arrows represent the concatena-
tion from the input to the output of the same dimensions.

HyperScout-2 imager per-band noise characteristics were used
to calculate (per-band) root-mean-square (RMS) values, and
simulated Gaussian noise with zero mean and RMS value
as standard deviation was added to the radiances. In case
the radiance value for given band was above HyperScout-2
imager saturation thresholds, the value was capped. Finally,
all the images produced were normalised to range [0, 1] and
stored using 16-bit floating point precision. This normalisation
allowed us to fully exploit the input channel of EoT board i.e.
16-bit FP per pixel.

B. CloudScout segmentation deep neural network

A custom segmentation NN architecture was developed for
the Φ-Sat-1 mission in order to achieve high detail and good
granularity in the network result. A semantic segmentation
network (Fig. 9) is generally composed of two parts: Encoder
and Decoder [33]. The Encoder extracts only the most relevant
features from the input image and propagates them through the
entire network, increasing the level of details within each fea-
ture. At the end of the encoding phase, a non-human-readable
vector is extracted that captures a compressed version of the
input image. This vector is input to the Decoder, and, helped
by the concatenation with the same dimension Encoder layers,
reconstructs only the most valuable information, creating the
segmented images.

As already mentioned in Section III, the hardware accel-
erator used in this mission is the Myriad 2 VPU. Due to
limitations on its maximum intra-layer memory, particular
attention had to be devoted to the implementation of the con-
volutional/deconvolutional layers, and to the quantization of
the weights to the 16-bit floating point arithmetic available in
the VPU. Furthermore, to avoid the saturation of the memory,
an input size reduction was performed. In contrast to the
binary classification model described in [34], the segmentation
network input tensor size is 192 x 192 x 3. This input reduction
allows increasing the number of deconvolutional layer within
the network model, although the output size has been halved

Fig. 10. CloudScout segmentation network architecture.

to better handling and post-process the output data by the on-
board processor.

The CloudScout network, shown in Fig. 10, was inspired
by U-Net [25] which is a network used to segment different
scenes, with particular attention to False Negative values [35].
Moreover, this network owes its success to the low number of
training images required compared to the mean Intersection
over Union (mIoU) obtained. Exploiting the same criteria, the
CloudScout network uses only the lowest section of the U-Net.

In particular, the network is composed of convolutional,
de-convolutional, and max-pooling layers. The convolutional
layers have kernel size of 3x3 and stride 1, while the de-
convolutional layers are of two types: i) doubling the in-
put image size by exploiting a stride of 2 and kernel of
2x2; ii) increase the input image size of two pixels per
axes, exploiting stride 1 and kernel of 3x3. All layers use
ReLU activation functions. The training phase, detailed in
Fig. 11, was conducted exploiting the Binary Cross Entropy
loss function, starting from 0.01 with AdaDelta optimiser.
Furthermore, in order to reduce the memory footprint and to
avoid excessive memory demand during the de-convolutional
phase, the reconstructed images, and consequently the number
of channels per layer, were reduced in size.

The Receiver Operating Characteristic (ROC) analysis in
Fig. 12 shows the variation of the performance with respect
to each pixel confidence score threshold value of the last
layer. This threshold represents the minimum confidence score
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Fig. 11. The graph represents the loss function during the 78 epochs of
training. The training was stopped exploiting a patients of 4 epochs.

TABLE II
CONFUSION MATRIX COMPUTED ON 96000 TEST SET IMAGES OF 192 X

192.

Cloudy Not Cloudy
Cloudy TP: 44.4% FP: 5.6%
Not Cloudy FN: 6% TN: 44%

needed by the network to define pixels cloudy or not cloudy,
providing a fine control of the final output. Furthermore, it is
not applied by the NN, but it is computed by the on-board
processor and can be changed to adjust the percentage of
FP/FN without retrain the network. The red dot represents
the best trade-off for the CloudScout network in terms of
pixel-wise accuracy and False Positive Rate, as shown by
the Confusion Matrix in Table II. This is obtained using a
threshold of 0.6 on the output mask of the last layer.

The final pixel-wise accuracy is 88.4%. Although this is
indicative of the overall quality of the inference, the main
parameter that sets the performance and represents the actual
index of quality is the false positive (FP) rate. The main
reason for this is that using this inference in an operative
mission to decide which of the images are worth downloading
to ground and which can be discarded on-satellite, the false
positives, being images actually not cloudy but detected as
cloudy, represent the net loss of good data, containing useful
information, that is discarded. Therefore, the chosen quality
index is the percentage of FP which for pixel classification is
equal to 5.6% (Tab.II). Moving from pixel classification back
to image classification, with the definition of cloudy images as
the images whose percentage of cloudy pixels is higher than
70%, the associated confusion matrix is that of Table III. It is
worth noting that the 88.4% of accuracy of the segmentation
algorithm corresponds to 95.1% of tiles accuracy with only
0.8% of the images were classified as False Positive within the
synthetic dataset. It is possible to further reduce the number
of FPs by increasing via software the threshold of the last
layer, at the expenses of some percentage reduction in the

TABLE III
CLOUDSCOUT NN CONFUSION MATRIX FOR THE SYNTHETIC DATASET,

BUT CONSIDERING THE RELATIVE DISTRIBUTION OF PIXELS IN EACH TILE
OF THE DATASET. HENCE, THE PERCENTAGE SHOWN REPRESENTS THE
CONFUSION MATRIX PRODUCED BY CLOUDSCOUT NN AT THE TILES

LEVEL.

Cloudy Not Cloudy
Cloudy TP: 78% FP: 0.8%
Not Cloudy FN: 4.1% TN: 17.1%

Fig. 12. ROC analysis.

pixel wise accuracy. The inference time is approximately 102
ms exploiting 8 of the 12 available SHAVE vector processors
of the Myriad 2, and consuming only 62.9 KB of memory
footprint.

V. RESULTS

A. HyperScout-2 pre-processing chain

The HyperScout-2 pre-processing chain was run on 17
datasets acquired during the Φ-Sat-1 mission, whose coordi-
nates and acquisition times are summarised in Tab. IV. For
each of these datasets, three 1152 x 1152 pixels bands with
central wavelengths of 450, 494 and 862 nm (see Section III)
were produced. 9 of these three-bands sets, combined to form
colour images, are shown in Fig. 13.

For every band produced, a saturation mask composed of
Boolean True/False values was made so that the impact on the
relative band radiances could be assessed. Each pixel which
exceeds the saturation threshold was marked as True and all
other pixels were assigned False values. Overall, 1.2% of the
pixels were saturated due to bright clouds. The percentage of
saturated pixels per acquisition is plotted in Fig. 14. It can be
seen that acquisition 02CE is considerably more saturated than
the other datasets, accounting for 50.6% of the total saturated
pixels.

Since significant feature misalignment between the bands
can affect the quality of the NN’s inference, the inter-band
alignment precision was also assessed. To quantify the pre-
cision, key points were identified with the ORB algorithm
[20]. The distance between corresponding key points was then
calculated and averaged for each band set. At least 100 suitable
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Fig. 13. Left to right, top to bottom, the tiles correspond with acquisitions
051A, 0444, 04A4, 034F, 0379, 03A2, 04D1, 0393 and 02CE. 450 nm is
shown as blue, 494 nm is shown as green and 862 nm is shown as red.

key point pairs were found for each acquisition except for
038B / Tumbarumba, where only 33 pairs were identified due
to the lack of sharp features in the image. All key point pairs
with distances of over 10 pixels were discarded because these
pairs were observed to be the result of incorrectly identified
key points, and misalignments of this magnitude were not
visually observed. Overall, the mean separation between the
key points for all pairs was calculated as 1.14 ± 1.33 pixels.
The key point separation per acquisition is plotted in Fig. 15.

Fig. 14. The percentage of saturated pixels per acquisition.

TABLE IV
SUMMARY OF THE SAMPLES PRE-PROCESSED.

Acq. Location Date Coordinates

02CE Baringo County,
Kenya 2020-10-01 0.89, 36.77

034F Railroad Valley,
United States 2020-10-25 39.15, -116.60

0369 Rome,
Italy 2020-10-29 42.15, 12.45

0379 Geo-1,
Saudi Arabia 2020-10-30 28.76, 34.71

0381 Lucinda,
Australia 2020-10-31 -18.22, -146.70

0386 Bajo Guadalquivir,
Spain 2020-11-01 37.52, 6.08

038B Tumbarumba,
Australia 2020-11-02 -35.00, -147.23

0393 San Francisco,
United States 2020-11-02 38.05, -122.97

039D Surfrad Arm Facility,
United States 2020-11-03 36.60, -97.49

03A2 Lelystad,
Netherlands 2020-11-04 52.68, 6.07

03A7 Popocatepetl,
Mexico 2020-11-04 19.60, -98.73

03D3 Railroad Valley,
United States 2020-11-05 38.97, -115.85

0444 Moffet Field,
United States 2020-11-24 38.91, -121.39

047F Credo,
Australia 2020-12-13 -28.70, -121.07

04A4 Libya-4,
Libya 2020-12-17 29.15, 22.94

04D1 Etna,
Italy 2020-12-23 38.21, 14.88

051A Acklins,
Bahamas 2021-01-07 23.11, 74.41

Fig. 15. Mean separation distance per acquisition. The middle point represents
the mean while the protruding lines represent the standard deviation.

B. Synthesized Dataset Quality Performance

In order to train an NN capable of segmenting the images
produced by the HyperScout 2 camera, a dedicated dataset
reflecting the characteristics of the sensor itself is needed. As
described in Sec.IV-A, the dataset has been synthesized from
Sentinel-2 images, which, although similar, differ in some
aspects, namely I) radiance vs reflectance; and II) relative SNR
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per band.

Simulating the behaviour of radiance from reflectance im-
ages may introduce additional noise. This noise is important
for the NN which uses the intrinsic characteristics to classify
pixel values. To this aim, for each image from the generated
synthetic radiance images, we added and removed 5% of the
noise from the nominal noise expected for the selected band
in HyperScout-2. The process involved adding an Additive
White Gaussian Noise (AWGN) to increase the baseline value,
and a denoiser algorithm to reduce it. Increasing the SNR
values allows us to train a more robust NN capable of
working correctly in different situations, and possibly with
different bands. Furthermore, to challenge the network and
avoid wasting potential good images, some images containing
clouds over salt lakes, snow, etc. were included in the synthetic
dataset. These images, even if they do not represent the main
goal of the ΦSat-1 mission, lead to a reduction of the overall
accuracy in the classification of the synthetic dataset. On the
other hand, these challenging images improve the ability of
the network to recognise boundary situations. In operational
missions improvements can be easily obtained adding special
location information. Finally, in order to evaluate these capa-
bilities, we mixed some bands obtained from a cube generated
by the HyperScout-2 sensor as shown in Fig. 16.

The classification result is almost the same for all cases,
achieving about 97% pixel accuracy for each image. This
dataset is a real-world example of generating a synthetic
dataset for cloud detection, demonstrating that it is possible to
use/generate synthetic images for new sensors to be exploited
directly on board.

(a) Bands: 1 2 8 (b) Bands: 0 8 2

(c) Bands: 1 0 5 (d) Bands: 2 7 8

Fig. 16. Some examples of band mixing. The bands were extracted and
elaborated starting from the HyperScout 2 imager.

TABLE V
CLOUDSCOUT NN CONFUSION MATRIX ON THE CLOUDSCOUT-2 TEST
CUBES. ALL THE ACQUISITIONS, PLANNED ACCORDING TO THE EARTH

OBSERVATION APPLICATIONS, HAVE BEEN USED FOR THE PHISAT IN
ORBIT DEMONSTRATION.

Cloudy Not Cloudy
Cloudy TP: 24.54% FP: 0.0%
Not Cloudy FN: 4.01% TN: 71.45%

(a) Original input (b) NN output

Fig. 17. Volcano Etna, Sicily (Acq. ID 04D1), Italy (a) original input, (b)
respectively NN output.

C. Segmentation Network Performance

The CloudScout Segmentation has gone through two
completely different testing phases. The first was conducted
during the design phase at the end of the training and
validation stages, using the synthetized data set, and the
second one was conducted in-flight using the available
images acquired by HyperScout-2 during the Φ-Sat-1
mission. While the first testing phase aimed to assess the
network’s capabilities and performances using the synthetic
dataset to validate the inference against the requirements,
the second phase was a direct evaluation of the performance
exploiting the hypercubes acquired in-flight during the
Φ-Sat-1 mission by the HyperScout-2 camera. The results of
the first phase have been already presented and summarised
in the confusion matrix in Table III. As already highlighted
they respect the most stringent requirement: false positive
under 1% on images for the entire test set.

After the launch, 17 cubes acquired by the HyperScout-2
hyperspectral camera have been used for the assessment of
the performances of the NN. As already highlighted above,
each cube is pre-processed to extract a portion of 1152 by
1152 pixels with only the 3 bands and tiled in 6 by 6 images
of size 192 by 192 by 3 bands which makes a total of 612
images tested. An example of original input images and the
respectively NN output mask is shown in Fig.17, Fig.18.

The entire test executed on the HyperScout-2 images pro-
duced the results shown in Tab.V. Although the result with
0% false positives is very promising, it should be highlighted
that the acquisitions of HyperScout-2 were not planned to
challenge the NN but rather to perform actual applications. In
particular, the HyperScout 2 acquisitions have been planned
and executed according to requirements related to Earth Ob-
servation applications. All the acquisitions have been used for
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(a) Original input (b) NN output

Fig. 18. San Francisco, United States, (Acq. ID 0393) (a) original input, (b)
respectively NN output.

the PhiSat in orbit demonstration. This implies, for example,
that no images of clouds on snow or clouds on Salt Lake
have been acquired, while the training and synthetic test data
sets randomly chosen from the Sentinel-2 archive contained
many configurations quite challenging for the NN. This is also
observable in the overall accuracy obtained by the NN model
against the synthetic test set which was 95.1% (considering
the images results representation) against an accuracy of 96%
obtained in the test with in-flight HyperScout-2 acquired
images.

D. EoT Inference Engine In-Flight Performance

In addition to the CloudScout results acquired during Φ-Sat-
1’s mission, in-flight performance data was also acquired for
the EoT inference engine. Four separate EoT hardware test
phases were executed over a 70 day period of the mission.
During each phase the EoT BIST routine was initiated, which
performed both EoT chip-level and board-level diagnostics
and reported back results. Chip-level tests coverage encom-
passed memories, caches, interfaces, and functional tests to
dynamically exercise the SHAVEs and multi-ported memory.
Board-level diagnostics evaluated the PMU, flash and SD card.
The executed diagnostics and their results are summarised in
Table VI. It is seen that every diagnostic test passed at each
phase, with the exception of the SD card test. 2 and 3 bit
errors were observed in two of the data readbacks from the
SD card, where the temporal gap between write and readback
was 41 seconds. Note that the SD card functionality was not
used on the Φ-Sat-1 mission. Test 027A included an additional
240 second test run during which NN inference with an
exemplar TinyYOLO [36] model was continuously executed,
with all inference outputs exactly matching the reference
values. The in-flight diagnostics tests for the EoT inference
engine indicate that the device performed as expected on-
board Φ-Sat-1 without experiencing any functional upsets, or
any functional degradation effects due to radiation. All future
installations of the Myriad VPU in space will be equipped with
this Built In Test (BIST) that will allow to monitor correct
performance of the hardware in time.

VI. CONCLUSION

Φ-Sat-1 is part of the European Space Agency initiatives to
promote the development of disruptive innovative technology

TABLE VI
IN-FLIGHT DIAGNOSTIC TEST RESULTS FOR THE EOT INFERENCE ENGINE.

0278 027A 02A7 044B
CMX memory pass pass pass pass
DDR memory pass pass pass pass
LEON caches pass pass pass pass
SHAVE caches pass pass pass pass
SHAVE dynamic pass pass pass pass
SHAVE + CMX dynamic pass pass pass pass
USB bulk pass pass pass pass
PMU pass pass pass pass
Flash pass pass pass pass
SD card pass pass 2 bit errors 3 bit errors
Inference (classification) pass pass pass pass

Fig. 19. HyperScout 2 and Eyes of Things assembled.

capabilities on-board EO missions. The Φ-Sat-1 satellite
represents the first ever on-board AI deep Convolutional
Neural Network inference on a dedicated chip attempting to
exploit artificial Deep Neural Network capability for Earth
Observation. In particular, the mission is composed of two
innovative devices: the HyperScout-2, and the Eyes of Things
inference engine (detailed in Sec.III).

The HyperScout-2 (Sec.III-A), developed and produced by
Cosine Remote Sensing B.V., is a hyperspectral camera based
on a 2D sensor used in push broom mode. This Hyper-
Scout model provides hyperspectral imaging in the visible
and near infrared to analyze the Earth composition, along
with three thermal infrared bands to retrieve the temperature
distribution, boosting and improving the number of Earth
Observation applications. As part of the Φ-Sat-1 mission it
has been demonstrated that it is possible to run the full pre-
processing chain before inference onboard the HyperScout
OBDH, including computing spectral data cubes at pixel
accuracy without relying on platform ADCS data but instead
solely on machine vision techniques, allowing robustness and
independence from small satellites’ performance.

As shown in Fig.19, at the bottom of its structure, there
is the EoT hardware accelerator, developed by Ubotica
(Sec.III-B), latch-up protected and controlled by cosine’s
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HyperScout subsystems. The EoT, powered by the Myriad 2
Vision Processing Unit, accelerates both computer vision and
artificial intelligence while operating in a low power envelope.
Acceleration is achieved via a unique combination of parallel
processing and high-bandwidth multi-ported memory on the
multi-core Myriad 2 SoC. The NN inference acceleration
provided by EoT on Φ-Sat-1 is enabled by a compact, host-
integrated API, wherein the EoT acts as an inference server,
supporting frame-by-frame inference requests over a high-
speed USB interface. In-flight test and self-test data from
Φ-Sat-1 demonstrates the ability of the board to reliably,
accurately and robustly perform the inference task throughout
the duration of the mission. The success of this board as an
AI accelerator on Φ-Sat-1 has led to the development of a
successor board (the UB0100 board) for enabling future AI-
based cubesat missions to advance on the success of Φ-Sat-1.

In order to demonstrate the potential of using AI directly
on board, the CloudScout segmentation neural network was
developed by the University of Pisa (Sec.IV-B). It assigns to
each pixel a binary classification: cloudy or not cloudy. The
CloudScout NN exploits only 3 of the 10 bands available from
the HyperScout 2 for two main reasons: memory constraints
on the Myriad 2, and power limits derived from the satellite
power budget. Hence, to perform the NN training, a synthetic
dataset was developed by Sinergise (IV-A), starting from the
Sentinel 2 images. The dataset was built following three
phases: I) Principal component analysis to select the best
bands combination for our goal; II) re-binning the Sentinel-2
images from 10m GSD to 70m GSD; III) using the Sinergise
s2cloudless algorithm to construct a label/ground truth mask
for the input images.

The training of the network aimed to obtain the highest
accuracy while maintaining a low number of false positives.
Maintaining a low false positive rate is of paramount im-
portance for the application, as images wrongly classified
as cloudy would be not transmitted to ground, resulting in
a potential loss of interesting data. The CloudScout neural
network was tested on both synthetic images on ground, and
subsequently in-orbit on Φ-Sat-1 for live images acquired
from the HyperScout-2 sensor. In both cases the solution
demonstrated an accuracy in excess of 95.9% with respect
to the tile level and a commensurate low FP rate, achieving a
96% accuracy when performing cloud detection on live images
on-satellite as stated in Tab.V.

The Φ-Sat-1 mission represents the first AI on-board
demonstrator able to autonomously select non-cloudy images
for transmission to ground. Thanks to its in-flight measured
performances, Φ-Sat-1 has demonstrated the capability of AI
to perform reliable and accurate on-board image processing.
This technological advancement in the field of space AI, and
the use of low-power COTS hardware-accelerated inference,
paves the way for the exploitation of on-board AI in future EO
and remote sensing applications, enabling the development of
smarter and more efficient satellites for Earth Observation.
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