
Physics Letters B 296 (1992) 154-158 
North-Holland PHYSICS LETTERS B 

The confining-Higgs phase transition in U ( 1 )-Higgs LGT 
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We simulate the compact U( 1 )-Higgs model in a four-dimensional lattice. We present a numerical study for the behaviour 
around the region where the transition between the confining and Higgs phases disappears. The transition line is found to be first 
order and to end in a second-order point. We measure the critical exponents of the endpoint obtaining the mean field ones within 
errors. 

The study of the critical behaviour of lattice gauge 
theories in four dimensions is crucial to formulate 
nonperturbatively the underlying continuum quan- 
tum field theory. Even if a continuum limit is possi- 
ble, the question remains whether the obtained the- 
ory is trivial or not. 

For the selfcoupled scalar field with a quartic term 
in the action (the 204 theory) no other critical point 
in d=  4 has been found than an infrared stable gaus- 
sian fixed point at the origin 2 = 0, m = 0. This means 
that the only fixed point with infinite correlation 
length, where continuum theories may be defined, is 
also where the theory is noninteracting (trivial). 

The critical behaviour of this model around the 
fixed point is perturbatively accessible, because at that 
point the coupling vanishes. The situation changes 
when the critical point corresponds to nonvanishing 
bare couplings, as it is the case we study in this letter, 
and therefore a nonperturbative method, like Monte 
Carlo, is mandatory. 

When gauge degrees of freedom are added, as in 
the SU ( 2 ) × U ( 1 )-Higgs model, the phase transition 
structure of the parameter space becomes very rich. 
In particular, it is very important to know the critical 

properties of the second order points as they may lead 
to hounds on parameters such as the Higgs mass. A 
full discussion can be found in ref. [ 1 ]. 

In this letter, we present some results of a numeri- 
cal study of the compact U(  1 ) gauge field coupled to 
a charged scalar field with fixed modulus ( I ~12 = 1 ). 

We use the standard action 

S = - f l  ~ Re  Uplaqs.--K ~, Recb*~Ur_, . ,~r, .  (1 )  
plaqs, links 

where both the gauge and the scalar field are U ( 1 ) 
variables. 

The two-parameter space (fl, x) corresponding to 
the action ( 1 ) is known to present at most three dif- 
ferent phases (see fig. 1 ) [2,3]. The point A in fig. 1 
represents a first-order transition [4] and the point 
B (fl= ~ )  a second-order one [5]. The line A-C is 
first order while the line B-C is, for a scalar Higgs 
field of modulus one, second order. We are interested 
in the study of the transition region between the Higgs 
and confining phases, which in our case are analyti- 
cally connected. More precisely, we want to know the 
nature of the transition line D-C and especially of 
the endpoint D. 
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Fig. 1. Schematic representation of  the parameter space in U ( 1 )-Higgs lattice gauge theory. 
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Fig. 2. Latent heat z ~  (squared) as a function of 1/x/~. We find an almost linear behaviour that allows us to compute with accuracy the 
latent heat in the thermodynamic limit. It is nonzero - first order transition - for x < xc ~ 0.5275. 

The  a t t a i n m e n t  o f  numer i ca l  va lues  for the cri t ical  
exponents  at D compat ib le  with the classical ones will 
give a s t rong i n d i c a t i o n  for a non - in t e r ac t i ng  theory  
in  the c o n t i n u u m .  

We s imula te  a system wi th  the ac t ion  ( 1 ) in  lat- 

rices of  sizes ranging f rom 6 4 to 244. We use a stan- 
da rd  adap t ive  Metropol i s  a lgor i thm with discret ized 
U ( 1  ) var iables  be longing  to the Zlo24 group.  We 
measure  bo th  the plaquet te  and  l ink energies and  store 
t hem ind iv idua l ly  to cons t ruc t  the co r respond ing  
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histograms. Typically we perform 100 000-500 000 
iterations at each point, with up to 1 000 000 in some 
points. 

For each value of the ~c coupling we use the spectral 
density method [6] to compute the probability dis- 
tribution for values offl close to the one we used in 
the simulation. In this way we are able to locate as 
precisely as possible the point on the transition line, 
without having to explore a two-dimensional region 
of the parameter space. 

For each simulated point we compute the pla- 
quette energy histogram. We find distributions with 
one or two peaks. In the latter case we can adjust the 
heights of the maxima using the spectral density 
method and, then, measure the distance between the 
peaks. This quantity may be seen as the latent heat of 
the phase transition. A nonvanishing value in the 
thermodynamic limit is a clear signature of its first- 
order character. 

The spectral density method can also be used to 
move in the two-dimensional parameter space. It is 
possible to combine both the plaquette and link ener- 
gies to evaluate the fluctuation matrix from which we 
can compute its eigenvalues and eigenvectors. A de- 
tailed analysis of the whole measured data is in prep- 
aration and will be presented elsewhere [7 ]. In this 
letter, we will limit ourselves to the discussion of the 
results obtained from the latent heat of the plaquette 
energy as well as the dispersion in that energy. 

First let us consider the thermodynamic limit for a 
given value of ~c. In fig. 2 we plot the square of the 
latent heat as a function of the inverse of the square 
root of the lattice volume. The statistical errors have 
been computed by a jack-knife method, We observe 
a clear nonzero V~ov limit for x~<0.525, so we can 
conclude that the transition line D-C is first order 
near D. We have also performed some simulations 
far from D in the same line checking that the first 
order nature remains along the whole line. For 
tc>~ 0.5275 we find that the jump vanishes before the 
V - ~  limit. 

The pattern that we obtain - a first-order transi- 
tion ending at a finite value of the parameters - is 
similar to that of the 2D Ising model with nonvanish- 
ing magnetic field or of the liquid-vapour system. In 
our system the plaquette energy behaves as an order 
parameter, playing the role of the magnetization in 
the Ising model, with a jump at the transition line 

equal to the latent heat. The dispersion of the pla- 
quette energy in the absence of phase coexistence may 
then be related with the dispersion of the magnetiza- 
tion, or magnetic susceptibility in the Ising case. No- 
tice however, that we could have chosen other order 
parameters like the link energy or a linear combina- 
tion of both energies, giving equivalent results re- 
garding the critical behaviour. We refer to ref. [ 7 ] for 
a detailed discussion on this subject. 

If we use ~ to parametrize the C-D line, we con- 
clude that the evolution of the latent heat ALE will fol- 
low the power law 

AE =A (~cc -K)  ~ , (2) 

with fl the usual magnetization exponent. 
For every lattice size, we fit the obtained values of 

AE to the function (2). We stress the dependence of 
~c on L (see figs. 3 and 4). We have used ~c in the 
interval [0.51, 0.532]. Our result for the exponent fl 
from the L = 16 data is 

f l=0 .47(9) .  (3) 

To reduce the statistical errors we have fitted simul- 
taneously the L = 12 and 16 data with a single fl value 
obtaining 

f l=0 .54(6) .  (4) 

The values (3), (4) point towards the classical value 
fl=0.5. In fig. 3 (upper side) we plot the square of 
the latent heat as a function of ~c, which clearly shows 
a linear behaviour. 

In fig. 3 (lower side) we plot the "susceptibility" 
)(, i.e. the dispersion in the plaquette energy. We can 
check the second-order nature of the point D from 
the divergence in %. We have fitted our L~oo  esti- 
mations to the law Zoc [tc-~¢cl-Y finding the value 
1.04 but with a large error (about 20%). The solid 
line in the lower part of fig. 3 is a fit to a linear 
divergence. 

The exponent v can also he computed directly from 
the shift in the apparent critical point ~c~ as a func- 
tion of L. We compute from a fit to the function (2) 
with the same fl for all lattices. Taking a fixed value 
fl= ½ we obtain 

u=0 .47 (4 ) .  (5) 

Changing fl in the interval [ 0.4, 0.6] we observe vari- 
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Fig. 3. Latent heat squared as a function of x (upper side). The dotted line is the infinite volume limit. On the lower side we plot the 
plaquette energy susceptibility as a function of x, when x> x~ (absence of phase coexistence). 
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I n  fig. 4 w e  p l o t  x¢ L as  a f u n c t i o n  o f  1 / L  2. T h e  l in-  

e a r  f i t  ( d a s h e d  l i n e )  c o r r e s p o n d s  to  t h e  v a l u e  u =  ½. 
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Fig. 4. Apparent critical point x~ as a function of 1/x/V. The straight line corresponds to the value v= ½. 
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f irs t-order  t ransi t ion line in the region xe  [0.51, 
0.5275] is less than 1%. 

As a result of  the previous analysis we conclude that  
at the end poin t  D there is a second-order  phase tran- 
sit ion with crit ical exponents  compat ib le  with the 
mean field ones within errors. 
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