
DOI 10.1007/s100529800720
Eur. Phys. J. C 2, 769–774 (1998) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1998

Charged lepton and neutrino oscillations

Y. Srivastava1,2, A. Widom1,2, E. Sassaroli2,3

1 Physics Department, Northeastern University, Boston, MA 02115, USA
2 Physics Department and INFN, University of Perugia, Perugia, Italy
3 Department of Physics & Laboratory for Nuclear Science, MIT, Cambridge, MA, USA

Received: 15 October 1996 / Revised version: 15 June 1997 / Published online: 20 February 1998

Abstract. Problems long present in the conventional formalism employed for neutrino oscillations are
discussed. We here develop a more satisfactory framework based on the Dirac equation and its propagators.
When 4-momentum conservation is strictly enforced, there will be induced oscillations in space (but not
between generations) for the charged leptons, e.g. µ and τ , produced in association with the neutrinos.
The oscillations are computed explicitly for the pion decay π → µ + ν̄. Leptonic decays of the W are also
briefly discussed.

1 Introduction

Neutrino oscillations have a long history beginning from
the pioneering work of Pontecorvo and co-workers [1, 2].
The essential idea is very simple. If neutrinos have masses
and if they mix, then as neutrinos propagate, the probabil-
ity to find a given flavor neutrino would oscillate. However,
it will be shown in the next section, that the conventional
formalism, see for example [3–6], used to obtain this prob-
ability distribution is incorrect as it violates 4-momentum
conservation. It is curious that for over 40 years, the well
known and well confirmed Dirac equation has not been
used for the purpose of describing neutrino oscillations.
The Dirac equation does give the correct result. It also
gives us a bonus in that a recoiling charged lepton (say,
a µ or a τ) would also show oscillation (in space) in its
decay. This cannot be avoided if 4-momentum conserva-
tion is strictly imposed. Needless to say, oscillations in a
decaying charged lepton, say a muon, would constitute an
excellent confirmation of neutrino oscillation.

Before discussing the details of how exactly charged
lepton oscillations arise, it is perhaps worthwhile to com-
ment on a general fallacy prevalent in some work in high
energy physics. Over the past three years, while discussing
our results with our colleagues both privately and in sem-
inars, we have been struck by the fact that many believed
“oscillations” to be a rather singular phenomenon to be as-
sociated only with neutral particles, such as the KK̄, BB̄
system or with massive neutrinos as very special cases. In
fact, “oscillations” describe a normal quantum interfer-
ence phenomenon, present for charged or neutral systems
whenever there is a superposition of more than one am-
plitude. There has been some disbelief that muons can
oscillate. But of course, muons can oscillate! Electron os-
cillations occur in such variety that there are industrial ap-
plications for low energy electron diffraction. Many physi-

cists seem unaware that the famous CERN experiments
[7] of the seventies measuring (g−2) of the muon is based
upon observing the frequency of oscillations in the muon
decay probability induced by an imposed magnetic field.
Schwinger showed [8] long ago that the muon mass is split
in an external electromagnetic field provided g 6= 2. Thus,
as a muon propagates, its spatial decay probability shows
an interference pattern due to the superposition of two
amplitudes. The frequency in the muon decay pattern is
then directly proportional to (g− 2). While the muon de-
cay pattern in (g − 2) experiments is sometimes thought
to merely describe magnetic field induced spin precession,
it is also true that KK̄ oscillations may also be viewed as
a formal “spin precession” inherent for quantum interfer-
ence in two state systems.

The paper is organized as follows. In Sect. 2, we shall
recall the standard treatment of neutrino oscillations (as
found in textbooks and in the research literature) and
show its inadequacy. In Sect. 3, we discuss the production
of a muon and its neutrino from a pion decay. We shall
exhibit their propagation in space time. We shall also ex-
hibit how this double distribution oscillates by virtue of
4-momentum conservation. (A similar result has been dis-
cussed previously by us where a Λ produced in association
with a K was found to oscillate). Pion and muon lifetime
effects are discussed in Sect. 4. Relevant aspects of the
muon spectra observed in previous pion decay experiments
are covered in Sect. 5. In Sect. 6, are some concluding re-
marks with a brief comment on the τ spectra from a W
decay. Finally, in an Appendix to this work, the KK̄ sys-
tem is reviewed (for completeness of presentation) using a
formal “spin precession” picture. This picture brings out
clearly why the notion of quantum interference in KK̄
oscillations is closely analogous to the physical spin pre-
cession oscillations detected in muon (g− 2) experiments.
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2 Conventional analysis

The conventional analysis of neutrino oscillation proceeds
as follows. Neutrinos of various flavors ( νl, where l = e,
µ and τ ) are related to the mass (ma) eigenstates of
neutrinos ( νa, where a = 1, 2, 3 ) through the rotation
matrix

|νl >=
∑

a

Rla|νa >, (2.1)

The amplitude to find a neutrino of flavor l′ at time t, if
a flavor l were produced at time 0, is then written as

< νl′(t)|νl(0) > = < νl′(0)|e−iHt|νl(0) >

=
∑

a

R∗
l′aRlae

−iEat, (2.2)

where the energy of the ath neutrino is taken to be

Ea =
√

q2 + m2
a, (2.3)

with q assumed to be the common 3-momentum of the
neutrinos.

The above expression showing neutrino oscillations is
elegant, compact and wrong. We can easily see that it
is wrong because it violates Lorentz invariance. (We can
suspect that it is not quite right because the 3-momentum
of the neutrinos cannot be the same in all Lorentz frames).
Let us show it explicitly for the case of a pion of
4-momentum kλ which decays into a charged lepton (say,
a muon) of mass Mµ and a muon neutrino. In terms of
the 4-momenta of the muon and the mass eigenstates of
the neutrinos, overall 4-momentum conservation implies

kλ = p(a)λ + q(a)λ, a = 1, 2, 3 (2.4)

where the muon 4-momenta p(a)λ and the neutrino 4-
momenta q(a)λ must be different for each of the three
channels [9, 10, 11]. This contradicts (2.3) with the as-
sumed common 3-momentum for the neutrinos.

Equation (2.4) not only lays bare the fallacy in the
usual expression used for neutrino oscillations, but it also
shows that the recoiling muon momenta are also differ-
ent for each of the three channels. This implies that if
we observe the muon produced in association with a neu-
trino at some spatial distance away from the pion decay,
it will also show an interference pattern (i.e., “oscillate”
in space) since it would be in a superposition of different
4-momenta [12]. This is our central result: muons would
oscillate whenever they are produced in association with
neutrinos which have masses and which mix.

A similar result, called Λ oscillations, was shown by us
previously [13] where a Λ recoiling against a neutral kaon
(a linear combination of KL and KS which have differ-
ent masses ) also shows spatial oscillations for exactly the
same reasons.

Apart from the algebraic shortcoming, there is another
serious problem with (2.2). An inner product implies an
integration (or summation) over some variable. What is
being integrated upon is not specified there. We may guess
that there is a spatial integral, i.e., both the bra and the

ket had a common position which is being summed. But
that would be very odd for most neutrino oscillation anal-
yses. Let us consider the case of solar neutrinos. At best
we may know roughly where it was produced and where
on earth it is detected. So the variable best specified is
spatial and what one is really trying to measure is some
oscillation in space. The reader will agree that one should
not integrate over space if one is interested in spatial in-
terference (or oscillation).

The above lacunae are rectified if we follow the stan-
dard procedure of following the particles from their pro-
duction, to their propagation and where necessary their
subsequent decays. In the next two sections we shall de-
velop the complete formalism starting from the Dirac
equation and its propagators, to obtain the precise for-
mula for the double distribution of a charged lepton pro-
duced along with a neutrino. All this would be exhibited
for arbitrary wave packets [14]. We shall also show that
pion width does not alter the “oscillation” pattern, only
the overall envelope.

3 Dirac equation and propagators

For definiteness and its obvious practical utility, let us
consider a pion decay into a muon and a muon neutrino.
All the algebraic steps would be explicitly written out lest
these results appear obscure.

In the standard model, the action for a charged pion
decay is given by

Sint =
∫

(d4x)(
GFFπcosθc√

2
)∂φπ(x)

·ψ̄(µ, x)γ(1 − γ5)νµ(x), (3.1)

with GF the Fermi coupling constant, Fπ the pion decay
constant, θc the Cabibbo angle, φπ the pion wave function,
ψ(µ, x) the muon wave function and νµ the neutrino wave
function.

The muon wave function satisfies the Dirac equation
with a source η(µ, x)

(iγ · ∂ −Mµ)ψ(µ, x) = η(µ, x), (3.2)

where the muon source is computed from (3.1) to be

η(µ, x) =
δSint

δψ̄(µ, x)
= (

GFFπcosθc√
2

)∂φπ(x)

·γ(1 − γ5)νµ(x), (3.3)

The propagation of a muon, i.e., the amplitude for finding
a muon at a space-time point x, with a source at x′ is
given by

ψ(µ, x) =
∫

(d4x′)SF (µ;x, x′)η(µ, x′), (3.4)

where SF (µ;x, x′) is the Feynman-Stükelberg propagator
for the muon

(iγ · ∂ −Mµ)SF (µ;x, x′) = δ4(x− x′). (3.5)



Y. Srivastava et al.: Charged lepton and neutrino oscillations 771

It is more useful to rewrite (3.4) in the second order for-
malism in terms of the scalar muon propagator D(µ;x, x′)
defined through

SF (µ;x, x′) = (−iγ · ∂ −Mµ)D(µ;x, x′), (3.6)

so that (3.4) reads

ψ(µ, x) = −
∫

(d4x′)DF (µ;x, x′)

×(iγ · ∂′ +Mµ)η(µ, x′). (3.7)

The scalar propagator D(t, r;Mµ) for a mass Mµ has the
well known following form in the “energy” representation

D(t, r;Mµ) =
∫ +∞

−∞
(
dE

2π
)(
e−iEt+ip(E)r

4πr
),

p(E) =
√
E2 −M2

µ. (3.8)

Let us now turn to the neutrinos. The neutrino propagator
is a 3 by 3 matrix, being diagonal in the mass eigenstate
basis. For each mass ma, we have the scalar propagator
D(y, y′;ma), of the identical form as above. Thus, we fol-
low exactly the arguments given above to find that for a
muon neutrino source η(νµ, y

′) at space time point y′, the
amplitude to find a given neutrino flavor l at y is obtained
through

ν(l, y) = −
∑

a

RalRµa

∫
(d4y′)D(y, y′;ma)

×(iγ · ∂′ +ma)η(νµ, y
′). (3.9)

Once again, the neutrino propagation far away from its
production is most easily seen through the representation
given in (3.8) but here for a mass ma.

These expressions are sufficient to investigate all pos-
sible “oscillations” for the leptons. If we are interested in
the “double distribution”, i.e., suppose we wish to com-
pute the amplitude for detecting both leptons: a muon at a
spatial position r and a possibly different flavor neutrino l
at spatial position r′. For this we would require the source
for both the muon and a neutrino which is given by

ηα
β (µ, x; νµ, y) =

δ2Sint

δψ̄α(µ, x)δψβ(νµ, y)

= (
GFFπcosθc√

2
)
∫

(d4z)δ4(x− z)δ4(y − z)

×∂z
λφπ(z)[γλ(1 − γ5)]αβ (3.10)

The amplitude for obtaining a muon at x and a neutrino
of flavor l at y is given by

χα
β(µ at x; νl at y) =

∑
a

RalRµa

∫ ∫
(d4x′)(d4y′)

×D(x, x′;Mµ)D(y, y′;ma)Qα
β(x′, y′), (3.11)

with

Qα
β(x′, y′) = [iγ·∂x′+Mµ]αρ [iγ·∂y′+ma]σβη

ρ
σ(x′, y′). (3.12)

Employing the energy-space decomposition for the scalar
propagators given in (3.8), we find

χα
β(µ at x; νl at y) =

∑
a

RalRµa

∫
(d4x′)(d4y′)

×
∫
dE

2π
dE′

2π
e−iE(tx−tx′ )−iE′(ty−ty′ )χα

β(x, E;y, E′; a),

(3.13)

where

χα
β(x, E;y, E′; a) =

exp
(
ip(µ,E)|x − x′| + ip(νa, E

′)|y − y′|)
4πrr′

×Qα
β(x′, y′). (3.14)

We are interested in the asymptotic limit of large dis-
tances r = |x − x′| and r′ = |y − y′|. The result in this
limit gives us the energy conserving delta function and is
proportional to the initial pion 3-momentum distribution
(corresponding to a “wave packet”)

rr′χα
β(x, E;y, E′; a) → (

−iπ
16π2 )

×δ(Eπ − E − E′)
Aπ(k = p + q)√

(k2 +M2
π)

tαβ , (3.15)

where Aπ(k) is an arbitrary initial pion 3-momentum dis-
tribution defined through the pion wave function as

φπ(x) =
∫ ( d3k

(2π)32Eπ(k)

)
e−ik·xAπ(k),

Eπ(k) =
√

k2 +M2
π , (3.16)

satisfying the normalization condition∫
(d3k)|Aπ(k)|2
(2π)32Eπ(k)

= 1. (3.17)

The spin algebra is all contained in tαβ

tαβ = [(γ ·p+Mµ)(γ ·p+γ ·q)(1−γ5)(γ ·q+ma)]αβ . (3.18)

The neutrino mass dependences are only important in the
phases. Hence we ignore the other unimportant neutrino
mass dependences to simplify the subsequent expressions.
Under this approximation, and upon performing the spin
polarization sums, the outgoing muon and neutrino (of
flavor l) double distribution is found to be

d6N(µ at r; νµ → νl at r
′)

(drdΩ)(dr′dΩ′)
≈ (

GFFπcosθc√
2

)2

×[
Mµ(M2

π −M2
µ)

(8π)
]2|M|2, (3.19)

where the matrix element M is given by

M =
∫ ∞

−∞
(
dE

2π
)
∫ ∞

−∞
(
dE′

2π
)
Aπ(k = p + q)√

(k2 +M2
π)

δ(Eπ − E − E′)

×
∑

a

RµaRale
−iϑa , (3.20)
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Fig. 1. Shown is a plot of P (r, r′) in (3.22) for two flavor
mixing with a rotation angle θ = 20o. The joint probability
distribution oscillates along the muon neutrino r′ axis as well
as along the muon r axis. The length scale is determined by
the neutrino mass squared difference L = |m2

1 − m2
2|/p

in which the phase ϑa from each of the channel a reads

ϑa = ϑ(µ, a)+ϑ(ν, a) = (
M2

µ

|p(µ, a)| )r+(
m2

a

|q(ν, a)| )r. (3.21)

The presence of the rotation matrices R and the depen-
dence of the muon momentum p(µ, a) on the neutrino type
a, which occurs thanks to the exact 4-momentum conser-
vation, explicitly proves the presence of oscillations in the
muons recoiling against the various flavor neutrinos. This
important result for the muon has been missed by pre-
vious workers since they had failed to employ the exact
energy-momentum constraints.

To make explicit the probability P = |∑aRµaRal

e−iϑa |2 via (3.20), let us consider a model in which only
two flavors of neutrino mix. The electron and muon neu-
trinos are rotated through an angle θ. With r denoting
the muon position and r′ denoting the muon neutrino po-
sition, the joint probability distribution in the pion rest
frame of the decay may be written as

P (r, r′) = e−r/Λ
(
cos4θ+ sin4θ+ 2sin2θcos2θcosφ(r, r′)

)
,

(3.22a)

φ(r, r′) ≈
(m2

1 −m2
2

p

)
(r − βr′), (3.22b)

p =
M2

π −M2
µ

2Mπ
≈ 29.8 MeV, β =

M2
µ(M2

π +M2
µ)

(M2
π −M2

µ)2
≈ 4.95,

(3.22c)
1
Λ

=
ΓµMµ

p
. (3.22d)

Here, Γ−1
µ is the muon lifetime. Equations (3.22) are plot-

ted for small mixing angle in Fig. 1.
The reader would please note that our result is valid for

arbitrary wave packets, i.e., any initial momentum distri-

bution of the pion specified by Aπ(k). It may not be super-
fluous to add that Aπ(k) is all that is generally specified
in an experiment. It would be incorrect to specify both
the 4-coordinates of the pion as well as its 4-momentum
with arbitrary accuracy.

4 Pion and muon lifetime effects

As stated in the introduction, one may suspect that given
the tiny mass differences expected for the various neu-
trino types, the effect obtained in the last section may not
survive any “smearing” of the distribution due to the fi-
nite pion lifetime. Fortunately, such is not the case. Before
proceeding to demonstrate it mathematically, let us first
consider the following qualitative argument why the inter-
ference phases are untouched by the pion width. A width
is in the imaginary part of a “mass operator” whereas
interference phases are in its real part. Hence, widths in
general reduce the overall probabilities but do not destroy
the interference phases.

Now to a more quantitative demonstration. The pion
propagator including its width Γπ may be written as

Dπ(x;Γπ) =
∫

d4k

(2π)4
e−ik·x

M2
π − k2 − iMπΓπ

. (4.1)

It is convenient to use the Schwinger proper time repre-
sentation [15], to convert the above into

Dπ(x;Γπ) =
∫ ∞

0

( ds

16π2s2

)
e−i(M2

π−iMπΓπ)s−i(x2/4s).

(4.2)
For large time-like arguments, Mπτ >> 1, where the pion
proper time τ =

√
x2, the above is evaluated using the

steepest descent method to give

Dπ(x;Γπ) → e−Γπτ/2Dπ(x; 0). (4.3)

Thus, in the limit of interest to us, the width provides
an overall multiplicative reduction factor for the entire
amplitude leaving the oscillating phases intact in the “zero
width” propagator. This justifies our neglect of the pion
width.

The most natural way to include the muon width (that
is, the muon life time effects) is to recast (3.21) in terms
of proper times. Let us recall that the neutral K mesons,
for which oscillations in strangeness have been experimen-
tally verified, are indeed described in terms of proper times
[16]. The muon has three possible proper times each cor-
responding to a neutrino mass eigenstate

Mµτa = E(µ, a)t− |p(µ, a)|r, (4.4)

so that the muon part of the phase (for channel a), in a
manifestly Lorentz invariant form reads

ϑ(µ, a;Γµ) = (Mµ − i

2
Γµ)τa. (4.5)

The above oscillation in the muon spatial probability part
of the double distribution induced by the neutrino mixing,
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has an exact counterpart in processes where a particle is
produced recoiling against a mixed KL-KS system. As we
have shown previously [13], in the reaction π− + p → Λ +
K, the recoiling Λ should display oscillations in its spatial
development for the above reasons.

NOMAD, CHORUS and other neutrino baseline ex-
periments, where the object is to discover signals for a
“wrong” flavor neutrino far away, ought to be supple-
mented with coincident observations of spatial oscillations
in the muon, as given by (3.20-21) and (4.4).

5 Muon spectra from previous pion decay
experiments

In the past, several experiments have been performed on
decays of stopped pions and pions in flight. For example,
in [17–20] produced muons were observed in space. (For a
theoretical analysis of this experiment, see [4]). The aim of
these single distribution experiments was not to look for
neutrinos. Only muons were detected. Such experiments
might commonly be thought to involve “summing over
the final neutrinos”. The produced muons are subjected
to a magnetic field, and one measures their radii accu-
rately. Since the radius of curvature in a magnetic field
depends linearly on the 3-momentum of the muon, and
since these momenta depend upon the neutrino channel
(see (2.4) and Sect. 3), the object of these experiments was
to find (possibly several) peaks in the muon momentum
corresponding to (different) neutrino masses. The exper-
iments were unsuccessful in resolving these peaks in mo-
menta since momentum differences (if any) are expected to
be extremely tiny for small neutrino mass differences. For
example, the difference in momentum ∆p ≈ 10−10 eV/c
for ∆m2

ν ≈ 10−2(eV/c2)2.
Precisely because the differences in momenta are small,

and by direct momentum experiments impossible to re-
solve, quantum mechanics dictates to us that we try to
observe these via its complementary variable, i.e., in space.
Two (or, possibly three) very close peaks in momenta
would appear in space as spread out spatial oscillations
as in Fig. 1. For example, for neutrino mass difference in
the above range, oscillations in the muon decay probabil-
ity should be observable over a few decay lengths of the
muon. Some further numerical results may be found in
[12].

As already alluded to in the introduction, it is often
forgotten that the famous g− 2 experiments for the muon
performed at CERN over two decades ago [7] are actually
muon oscillation experiments. There the muon oscillates
because, as Schwinger showed [8], in an external magnetic
field the muon acquires two different “masses” if (g 6= 2).
But the induced energy splitting is so tiny for available
magnetic fields, that it would be hopeless to measure it
directly. In fact, in the CERN experiments, the induced
spatial observations in the muon decays were measured
(and so also for the ongoing Brookhaven experiments [21]).
For a recent discussion of muon oscillations in g − 2 ex-
periments, see [22]. Exactly, what we are advocating here:

to look for oscillations in the muon spatial decays due to
the neutrino masses and their mixings.

6 Conclusions

We can summarize our results as follows. If 4-momentum
conservation is strictly imposed in a pion decay into a
muon and its neutrino, then if neutrinos have masses and
they indeed do mix, the recoiling muons must also os-
cillate. Explicit expressions for such double distributions
have been presented for an arbitrary initial pion wave
packet. It has also been noted that direct measurements
of the muon momenta (via its trajectory in a magnetic
field) is not very fruitful for neutrino mass induced effects.
A more promising avenue, and one which in an analogous
context has been extremely successful [7, 22], is through its
spatial oscillations manifested in the decays of the muon.

It is obvious that other decays can be treated similarly.
For example, in a W decay into a τ and ντ , the τ decays
in space would also show oscillations, albeit over much
shorter distances. For a W decay at rest, the distance r
corresponding to Γττ = 1 is of the order of 0.2 cm., for a
τ momentum of the order of 40 GeV/c. The oscillations
would be visible here only provided ∆m2

ν is of the order
of 1011 (eV/c2)2.
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Appendix

Our purpose here is to review the notion of kaon oscilla-
tions using a modification of the Bloch equations for ro-
tations in the kaon “quasi-spin”. Our notion of (K0, K̄0)
quasi-spin follows very closely the discussion of T. D. Lee
[23]. A single particle kaon quantum state, as a function
of proper time τ , may be written

|ψ(τ) >=
(
aK0(τ)
aK̄0(τ)

)
, (A1)

where aK0(τ) and aK̄0(τ) represent the amplitudes for the
kaon to be, respectively, a K0 and K̄0. The equation of
motion for these amplitudes is given by

i
∂|ψ(τ) >

∂τ
= M|ψ(τ) > . (A2)

Under the assumption that TCP = 1, T.D. Lee [23]
has shown that the complex mass matrix may be written
in the form

M =
(
M − i

(Γ
2

)) (
1 0
0 1

)

+
(
m− i

(γ
2
)) (

0 eβe−iθ

e−βeiθ 0

)
, (A3)
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where the two real parameters β and θ are usually ex-
pressed in terms of a single complex parameter ε via

ε =
( sinhβ − i sin θ

coshβ + cos θ

)
. (A4)

The strength of CP violation (or equivalently T violation
if TCP = 1) is expressed by the finite size of β 6= 0. The
conventional discussion of kaon oscillations makes use of
mass eigenstates M|j >= (Mj − (iΓj/2))|j >. Here j = L
for a “long” lived kaon and j = S for a “short” lived kaon.
The states are normalized to < S|S >=< L|L >= 1, but
they are not orthonormal, i.e. < S|L >= (ε+ε∗)/(1+ |ε|2)
due to β 6= 0 CP violation. States which are initially a su-
perposition of long and short kaons, i.e. |ψ >= cS |S >
+cL|L >, will exhibit oscillations at a frequency deter-
mined by the mass splitting ∆M = ML −MS . There are
many ways to appreciate such oscillations.

From the viewpoint of quasi-spins, we follow T.D. Lee
[23] and introduce the quasi-spin Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A5)

Equation (A3) has the form

M =
(
M − i

(Γ
2

))
+

1
2

(
ω · σ − iν · σ

)
, (A6)

where ω3 = 0 and ν3 = 0 as a consequence of TCP = 1.
The density matrix, corresponding to the pure state (A1),
may be defined

ρ(τ) = |ψ(τ) >< ψ(τ)|
=

(
a∗

K0(τ)aK0(τ) a∗̄
K0(τ)aK0(τ)

a∗
K0(τ)aK̄0(τ) a∗̄

K0(τ)aK̄0(τ)

)
. (A7)

It obeys an equation of motion corresponding to (A2),

i
∂ρ(τ)
∂τ

= (Mρ(τ) − ρ(τ)M†). (A8)

Seeking a solution of (A8) the form

ρ(τ) =
1
2

(
P0(τ) + P(τ)·σ

)
, (A9)

yields from (A6),(A8) and (A9),

dP0(τ)
dτ

= −ΓP0(τ) − ν · P(τ), (A10a)

dP(τ)
dτ

= ω × P(τ) − ΓP(τ) − νP0(τ). (A10b)

Equations (A10) for the mean quasi-spin precession
vector P(τ) and the total kaon survival probability P0(τ)
are the central results of this Appendix. The quasi-spin
Bloch Equations (A9) and (A10) reduce to the quantum
Lee Equations (A1) and (A2) for the case where a kaon
beam is described as a pure quantum state. The kaon “os-
cillations” are then described by the quasi-spin precession

term ω × P in (A10b). Equations (A10) still hold true for
kaon beams which are only partially coherent. Partial co-
herence is present, for example, in kaons produced by high
energy beam dumps.

We have reviewed quantum oscillations for the kaons
in a density matrix quasi-spin precession language in order
to clarify the very close analogy between kaon oscillations,
and muon oscillations. The muon spin precession enters
into (g−2) muon decay experiments, while the Kaon quasi-
spin precession enters into kaon decay experiments.
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