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ABSTRACT 

Electro-Hydraulic Servo-Actuators (EHSA) are by far the 

mostly used type of actuators in aircraft primary flight control 

systems.  Though electrical actuation is been considered since 

long as a possible replacement of hydraulic actuation for 

aircraft systems, EHSAs are still the technology of choice in 

the primary flight control systems of new commercial 

aircrafts. Considering that 10 or more EHSAs are typically 

used in an aircraft flight control system, the development of 

an effective PHM system for this equipment could provide 

large benefits and be of great interest for the OEMs and for 

the air fleet operators.  

This paper presents the results of a feasibility study making 

up the first part of an ongoing research activity focused on 

the development of a PHM system for EHSAs used in fly-by-

wire primary flight control systems and takes as a use case 

the primary flight control actuator of a wide body commercial 

aircraft. One of the key features of the research is the 

implementation of a PHM system without the addition of new 

sensors, taking advantage of the available signals. This offers 

the possibility of implementation of the PHM system on the 

existing platforms and not only as a proposition for new 

aircrafts designed with a complement of additional sensors. 

The enabling technologies for this PHM system borrow from 

the area of Bayesian estimation theory and specifically 

particle filtering and the information acquired from EHSA in-

flight and during pre-flight check is processed by appropriate 

algorithms in order to obtain relevant features, detect the 

degradation and estimate the Remaining Useful Life (RUL). 

The results are evaluated through appropriate metrics in order 

to assess the performance and effectiveness of the 

implemented PHM. 

This paper describes the methodology of the feasibility study, 

which shows how the novel PHM technologies proposed for 

a PHM system for the EHSAs of primary flight control 

actuators can allow the migration from unscheduled / on-

condition maintenance to condition based maintenance 

targeting the perceived objectives of the OEM and of the 

aircraft operator. 

1. INTRODUCTION 

Flight control systems and their associated flight control 

servo-actuators are one of the critical aircraft systems and 

belong to the top operational disruption contributors.  

Developing effective PHM algorithms for primary flight 

control actuators that can be integrated in a health monitoring 

system for the entire aircraft flight control system will lead to 

a valuable technological advancement. 

The benefits achievable from developing an efficient health 

monitoring system able to anticipate the failures of the 

aircraft flight control system fall in two areas: 

 Improvement of the aircraft operational reliability and 

dispatch ability by avoiding: 

o Aircraft on ground immobilization 

o Takeoff delays and cancellations 

o Re-routing 

o In-flight turn back 

Sylvain Autin et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

2 

 Reduction of direct maintenance costs by: 

o Performing maintenance operations of anticipated 

failures at an airline main base  

o Improving troubleshooting of failures 

Costs related to unscheduled maintenance operation and to 

flight disruptions resulting from unexpected failures may 

vary in a relatively large range, depending on the type of 

aircraft and of its flight control system, on the operational 

environment, on the maintenance policies and on the aircraft 

usage.  Though not easily quantifiable, these costs are at 

present a large fraction of the aircraft life cycle cost.  

IATA projection for global spending in 2020 for 

maintenance, repair and overhaul is US$ 65 billion (IATA, 

2011).  Although the spending for flight control actuators will 

be only a fraction of that total figure, it is evident that the 

contribution gained from the introduction of an effective 

health monitoring system for aircraft flight control actuators 

will still contribute to a large cost saving for maintenance 

operations. Another large cost saving is obtained from the 

reduction of flight disruptions and delays.  A recent study on 

integrated disruption management and flight planning  shows 

that suitable planning can mitigate the effects of flight 

disruptions and lead to about 6% cost saving for the airline 

(Marla, Vaaben, Barnhart, 2011).  

Primary flight control systems are an engineering area where 

PHM has found so far very limited interest, although they are 

one of the critical aircraft systems.  This is attributed 

primarily to lack of relevant data, major difficulties in 

modeling and testing and a sound understanding of EHSA 

failure mechanisms.   Some work has been reported on PHM 

for electromechanical flight control actuators, but almost 

very little or nothing for electrohydraulic servo-actuators 

(EHSA) for primary flight controls. However, although 

electromechanical actuators (EMA) for primary flight control 

systems are a long-term objective, some unresolved 

technological barriers, including the sensitivity to certain 

single point of failures that can lead to mechanical jams, 

result in a reluctance to adopt EMAs for flight safety critical 

applications. EMAs for primary flight controls have so far 

been limited to UAVs (Jacazio, 2008).  For these reasons 

EHSAs remain the preferred solution for the primary flight 

control systems of new commercial aircraft as well as being 

almost universally used on the aircraft in service now and for 

the next decade.  The only exception are some electro-

hydrostatic actuators (EHA) used as a backup to conventional 

EHSAs in the flight control systems of Airbus A380, A350, 

A400M, KC390, F35 and Gulfstream G650. This makes the 

development of a PHM system for EHSAs used in primary 

flight controls a proposition able to bring large benefits to the 

operation of an aircraft fleet.   

Research and development of PHM systems for primary 

flight controls focused mostly on EMAs due to the growing 

interest in Unmanned Aerial Vehicle (UAV); moreover, the 

EMAs have a greater probability of critical failure than 

EHSAs. Byington, Watson and Edwards (2004) presented 

one of the few research papers focused on the hydraulic 

actuators for aviation. The authors examine the possibility of 

developing a PHM system for the F/A-18 stabilizer Electro-

Hydraulic Servo-Valves (EHSVs). The data-driven approach 

developed uses neural network error-tracking techniques, 

along with fuzzy logic classifiers, Kalman filter state 

predictors, and feature fusion strategies. An interesting work 

was presented by NASA Ames Research Center (Narasimhan, 

Roychoudhury, Balaban & Saxena, 2010). The paper 

proposed a combined model-based and feature-driven 

diagnosis methodology that allows the detection of the 

common EMAs fault modes. Brown et al. (2009a and 2009b) 

have shown the possibility of exploiting the particle filter for 

the diagnostics and prognostics of EHAs.   

2. MOTIVATION 

The physical and operational complexities typically 

encountered in critical EHSA systems necessitate new and 

innovative technologies whose underpinnings take advantage 

of physics of failure mechanisms, first principle models, 

novel Condition Indicator (CI) extraction and selection 

techniques, rigorous diagnostic and prognostic algorithms 

accompanied by appropriate performance metrics, and 

extensive seeded fault testing procedures. The challenges are: 

selection and placement of sensors for actuator systems, 

sensing of various actuator components for stress factors 

difficult to accomplish accurately and reliably, first principle 

or physics-based baseline and fatigue models, seeded fault 

testing for components.  All require new and innovative 

approaches. A fundamental challenge in prognosis stems 

from the “large-grain” uncertainty inherent in the prediction 

task. Long-term prediction of the fault evolution requires 

means to represent and manage the inherent uncertainty. 

An initial study of a PHM system for primary flight control 

actuators was performed by two of the authors of this paper 

and presented at the PHM Society Conference in 2015; the 

feasibility study described in this paper draws on the results 

of that initial work and shows how an innovative fault 

diagnosis and failure prognosis framework for EHSAs can 

successfully be developed by integrating effectively and 

mathematically rigorous and validated signal processing, 

feature extraction, diagnostic and prognostic algorithms with 

novel uncertainty representation and management tools in a 

platform that is computationally efficient and ready to be 

transitioned on-board an aircraft.  

The feasibility study was performed taking as a use case the 

EHSA of a flight control actuator of a commercial aircraft in 

revenue service whose characteristics and performance are 

well known and documented. An extensive failure modes 

identification and analysis task was carried out to focus on 

critical/severe, frequent and testable failure modes, such as 

demagnetization of the servo-valve torque motor, crack of the 

servo-valve internal feedback spring, backlash in the actuator 
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rod end.   A high-fidelity mathematical model was developed 

which accepts the injection and progression of faults 

described by a physics based model of the fault development 

as a function of usage, time, operational and environmental 

conditions.  Data relevant to a large number of flights of 10 

aircraft were generated with the EHSA in healthy and 

progressively faulty conditions.  Flights along different 

routes with different and varying environmental and 

operational conditions were considered, and the faults 

resulting as most critical from a FMECA analysis were 

addressed. 

3. METHODOLOGY 

The proposed methodology is based on an integrated 

framework for fault diagnosis and failure prognosis that relies 

on systems engineering principles and takes advantage of 

physics of failure models, Bayesian estimation methods and 

measurements acquired through the high-fidelity modeling 

effort; any available data from seeded fault testing and/or on-

board the aircraft are used primarily for validation purposes. 

Fundamental to this approach is the development of high-

fidelity physics-based failure or fatigue models and the 

optimum selection and extraction of features or Condition 

Indicators (CI’s) from raw data that form the characteristic 

signatures of specific fault modes. The latter are selected 

based on such criteria as sensitivity to particular fault modes 

and their correlation to ground truth data.  The proposed 

framework employs a nonlinear state-space model of the 

plant, i.e. critical aircraft component, with unknown time-

varying parameters and a Bayesian estimation algorithm, 

called particle filtering, to estimate the probability density 

function (PDF) of the state in real time (Orchard & 

Vachtsevanos, 2009). The state PDF is used to predict the 

evolution in time of the fault indicator, obtaining as a result 

the PDF of the Remaining Useful Life (RUL) for the faulty 

component/system. A critical fault is detected and identified 

by calling on the particle filter-based module that expresses 

the fault growth dynamics. Prognosis has been called the 

Achilles’ heel of CBM/PHM due to major challenges arising 

from the inherent uncertainty in prediction. Prognosis may be 

understood as the result of the procedure where long-term 

(multi-step) predictions - describing the evolution in time of 

a fault indicator – are generated with the purpose of 

estimating the RUL of a failing component (Roemer, 

Byington, Kacprszynski, Vachtsevanos & Goebel, 2011). We 

begin by detailing the EHSA configuration adopted in this 

research, followed by a description of the modeling effort. 

The latter constitutes the essential source for baseline and 

fault data, determination of the optimum sensor selection and 

placement, inserted to monitor the components’ behavioral 

modes, as well as validation of the diagnostic and prognostic 

algorithms. 

4. EHSA CONFIGURATION 

The EHSA used in this research is a typical electrohydraulic 

primary flight control actuator.  It is composed of the 

hydraulic and the control parts. The first consists of one 

electrohydraulic servo-valve and a linear hydraulic actuator. 

The servo-valve is of the jet pipe type and it is made up of 

two stages with the first stage receiving the current command 

as the input and using the torque motor in order to move the 

jet projector thus creating a pressure differential between the 

two sides of the second stage spool, which controls the flow 

to the hydraulic actuator. The control structure uses a linear 

position transducer as the feedback sensor for closed loop 

position control. The reference architecture for the EHSA is 

shown in Figure 1. In order to ensure redundancy of the 

drives and, consequently, greater safety, two actuators acting 

on the same flight control surface are employed with the two 

EHSAs operating in an active-standby mode. 

The EHSA is dual electrical interfacing with two independent 

electrical lanes.  When in the active mode, the solenoid valve 

is energized and a pressure pilot signal for the mode valve is 

generated that brings this valve in a position such to connect 

the servo-valve control ports to the actuator ports, thereby 

allowing the actuator to move in response to the electrical 

signals received by the servo-valve.  When the solenoid valve 

is de-energized, the hydraulic lines connected to the servo-

valve control ports are blocked while an interconnecting 

passage is created between the two ports of the hydraulic 

actuator; a damping orifice is located in the hydraulic bypass 

that is instrumental in generating a damping force on the 

actuator proportional to the actuator velocity.  This avoids the 

insurgence of possible aeroelastic instability (flutter) in case 

of failure of both EHSAs connected to the same flight control 

surface. 

In addition to the actuator position transducer, the EHSA has 

the following sensors: 

- A sensor measuring the position of the servo-valve spool 

- A sensor measuring the pressure differential between the 

two sides of the actuator 

- A sensor measuring the position of the mode valve 

These sensors are used in the existing EHSAs, together with 

other sing modalities, to implement continuous monitoring 

functions for detection of potentially flight critical failures 

(C-BIT) and to perform pre-flight checks (P-BIT) to ensure 

that no failure exists before flight. The sensor selection and 

placement problem presents significant challenges to the 

designer and is addressed via an optimization method that 

maximizes the (fault) signal to noise ratio. 

The signals generated by the whole complement of sensors, 

together with the servo-valve and solenoid valve currents are 

effectively exploited by a PHM system, as detailed in this 

paper.  
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Figure 1. EHSA reference architecture 

In the application considered in this feasibility study, two 

equal EHSAs, mounted in parallel, control the position of a 

primary flight control surface, and are operated in an active-

standby mode.  At the beginning of each flight, one EHSA is 

activated, while the other one is kept in standby mode, and is 

activated in case of failure of the first one.  The roles of the 

two EHSAs are periodically exchanged.  

5. HIGH-FIDELITY MATHEMATICAL MODEL 

A high-fidelity mathematical model is an essential tool to 

allow performing simulations of the equipment behavior in 

realistic flight conditions, thereby collecting data similar to 

those that could be obtained in flight.  The following sub-

paragraphs present the main features of the model. 

5.1. Model characteristics 

The mathematical model is a physics-based high-fidelity 

model made up by a complex set of differential and algebraic 

equations defining the relationships among the state variables 

and the physical parameters of all components of the EHSA.  

The model fully describes the set of two EHSAs working in 

active-standby mode to control the position of the flight 

control surface.  Figure 2 shows the schematics of the 

interconnection between the two EHSAs (Actuator 1, 

Actuator 2) and the flight control surface subjected to the 

aerodynamic load.  The mechanical connection between 

actuator and aerodynamic surface takes into account stiffness 

(ksa), structural damping (csa) and backlash (B).  External 

damping associated to the surface movement in the 

atmosphere (cext) is also considered as well as the inertia of 

the aerodynamic surface. 

 

Figure 2: Schematics of the connection between the EHSAs 

and the flight controil surface 

The servo-valve torque motor is modelled using the Urata 

(2007a) magnetic circuit model. Applying the proposed 

equations is possible to express the torque generated as a 

function of the magnetic flux density of each air-gap. The 

model also takes into account the influence of unequal air-

gap thickness in servo valve torque motor, this is achieved by 

expressing the reluctance of the air-gap as a function of air-

gap thickness. 

The torque obtained from the modeling of the torque motor 

is combined with the dynamic equations of the servo-valve 

jet pipe. The position of the jet pipe causes a different 

pressure recovery in the receiving ducts with ensuing 

variation of the pressures at the two opposite sides of the 

second stage spool of the servovalve.  These pressures 

determined are then used in the dynamic equation of the spool 

to calculate the opening of the servo-valve metering ports. 

The equations that describe the kinematic system take into 

account the influence of the feedback spring force, coulomb 

and viscous friction and structural stiffness and damping.  

Starting from the position of the servo-valve spool, the flow 

resistance and continuity equations are written for the 

hydraulic sub-system made up by servo-valve, passageways 

and hydraulic linear actuator that allow computing the 

pressures in the two chambers of the actuator. 

A 3-Degree-of-Freedom model describes the hydraulic linear 

actuator dynamics.  In fact, the mathematical model considers 

the following state variables relevant to the positions:  

 Position of the flight control surface 

 Position of the actuator output rod 

 Position of the underlying airframe structure, that 

deforms elastically when subjected to the actuator 

reaction loads 

It must also be noted that the model takes into account the 

dynamics of the two actuators connected to the flight control 

surface (Figure 2) acting in active-standby mode. The 

actuator model also considers the effect of coulomb friction 

as a function of the dynamic condition of the rod and of the 
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geometrical and physical data of the seal as well as the 

pressures in the actuator chambers (Martini, L. J. 1984). 

The mathematical model includes the description of all 

sensors, of the analog-to-digital and digital-to-analog 

converters, of the characteristics of the microprocessor 

closing the actuator position control loop (recursion rate, 

computation time) and of the control laws with the relevant 

gains implemented in the EHSA control electronics. 

As a whole, the high-fidelity mathematical model makes up 

a virtual hardware enabling the generation of simulated data 

in healthy and degraded conditions to be used by the PHM 

system for determining the health status of the EHSA.   

5.2. Software code 

The high-fidelity mathematical model is implemented in a 

Matlab-Simulink software code, which is structured in 

different blocks according to the composition of the EHSA, 

allowing for rapid reconfiguration of the model whenever 

changes of the EHSA components are introduced.  

The software code includes the mathematical description of 

the operational scenario, thereby allowing the flights 

simulations described in section 10, and the description of the 

physical processes that cause an initial fault to progress with 

usage and time that are presented in section 11. 

The optimisation between stability and computational effort 

led to a fixed integration step of 10-4 s corresponding to 6-9 

hours to simulate a single flight. The fixed step was preferred 

to the variable step because the discretization of the signal 

during the analog-to-digital conversion was read by the 

solver as a discontinuity to be addressed reducing the time 

step. Moreover the fixed step simplifies the process to 

perform Software-In-the-Loop tests and allows the 

implementation of the actual Electronic Control Unit. 

The capabilities offered by the server hosting the simulation 

software allow to perform simultaneously the simulations of 

the flights of ten aircraft. 

5.3. Validation 

The model validation was carried out using data acquired 

from tests and which included system frequency responses 

and responses to different stimuli. As shown in the example 

of Figure 3, the response of the mathematical model to a 2 Hz 

sinusoidal command is very close to the actual behavior, 

concerning both the servo-valve and the actuator.  

6. DATA COLLECTION AND DATA MINING 

Data can be collected both in-flight and on-ground during the 

pre-flight checks that are regularly performed before flight 

initiation to verify the correct operation of all actuator 

components that could enhance the health usage and 

monitoring system effectiveness.  Furthermore, a PHM 

system for EHSAs could perform effectively by injecting 

selected stimuli in preflight.  Specific motion profiles could 

be executed during ground checkout targeted towards 

identifying faults that otherwise may be difficult to be 

detected. A PHM system could also be provided with means 

to adjust the motion profiles to be executed based on the 

analysis of the preceding ones (e.g. if a fault needs to be 

confirmed or disambiguated, or if its severity needs to be 

established).  Data collection for EHSAs for primary flight 

control actuators presents specific issues that are discussed in 

the following. 

 

Figure 3: Example of EHSA mathematical model validation 

6.1. Data collection 

Contrary to other mechanical systems that run continuously, 

primary flight control actuators are subjected most of the time 

during flight to commands of very small amplitude and 

duration, occurring randomly. Large commands are seldom 

given in flight and, therefore, techniques for signal collection 

and processing used in other systems may not be fully 

applicable.  Moreover, flight control actuators are not 

normally provided with force sensors, temperature sensor, 

and supply and return pressure sensors; hence, the responses 

to the same command in flight may be different depending on 

the actual load, oil temperature and pressure. 

Signals collected on ground during regular pre-flight checks 

(and possible additional checks) have the advantage of being 

assembled in more uniform conditions, but present the issue 

of requiring long periods to acquire a sufficiently large 
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sequence of data. Consider a long-range aircraft with a 

typical flight mission of 10 hours. A series of 50 data points 

for performing a prognostic assessment would imply a time 

length of 500 flight hours, during which a fault could develop 

and progress to failure before the PHM system could generate 

an alert.  It seems thus extremely difficult to develop an 

effective PHM system for EHSAs by relying on data 

collected on ground; a more promising approach may rely on 

a suitable combination of in-flight and on-ground data for the 

development and realization of a PHM system. 

6.2. Signals availability and data processing 

Important information, such as actuator load, oil pressure and 

temperature, is normally not available, though some 

information on the load could be inferred from the 

measurement of the pressure differential between the actuator 

chambers.  Of course, a force sensor, as well as oil 

temperature and pressure sensors could be added to the sensor 

suite and considered for future implementation, but the 

current emphasis is in the development of a PHM system 

making use of only the already available signals.  Actually, 

the load acting on the EHSA could be inferred from 

information available from other aircraft systems (dynamic 

pressure, aircraft attitude, ambient temperature), as the oil 

pressure and temperature are measured by sensors 

monitoring the aircraft hydraulic system, but that would 

require data exchange with other systems that could be 

implemented within the context of an Integrated Vehicle 

Health Monitoring (IVHM) system. Data pre-processing 

aims to improve the raw signal to noise ratio. Data 

processing, on the other hand, seeks to derive useful 

information from pre-processed signals, in terms of features 

or Condition Indicators (CIs). Details are deferred to a later 

section of this document. 

6.3. Interdependence among aircraft systems 

Most often, more than one actuator drives a primary flight 

control surface.  Depending on the control architecture and 

the actuators configuration, a fault in one actuator may affect 

the performance of the healthy actuators driving the same 

flight control surface.  Similarly, a healthy actuator may mask 

a fault in the parallel actuator. 

EHSAs accept the hydraulic power supply from the aircraft 

hydraulic system.  A fault in one part of this aircraft system 

may affect the performance of the flight control actuator.  For 

instance, a failure of the high-pressure filter of the hydraulic 

system will cause a degradation of the EHSA performance. 

Such interdependencies are not considered in current study 

and will be introduced in future developments. 

 

 

7. THE PARTICLE FILTERING FRAMEWORK FOR FAULT 

DIAGNOSIS AND FAILURE PROGNOSIS 

Particle filtering has a direct application in the arena of fault 

detection and identification (FDI) as well as prediction of the 

time to failure of a critical component. Indeed, once the 

current state of the system is known, it is natural to implement 

FDI procedures by comparing the process behavior with 

patterns regarding normal or faulty operating conditions. 

(Vachtsevanos, Lewis, Romer, Hess & Wu, 2006; 

Arulampalam, Maskell, Gordon & Clapp, 2002). Similarly, 

particle filtering allows for the accurate prediction of the 

remaining useful life accounting robustly for uncertainty 

issues.  

A fault diagnosis procedure involves the tasks of fault 

detection and identification (assessment of the severity of the 

fault). In this sense, the proposed particle-filter-based 

diagnosis framework aims to accomplish these tasks, under 

general assumptions of non-Gaussian noise structures and 

nonlinearities in process dynamic models, using a reduced 

particle population to represent the state pdf (Orchard, 

Kacprzynski, Goebel, Saha & Vachtsevanos, 2008). A 

compromise between model-based and data-driven 

techniques is accomplished by the use of a particle filter-

based module built upon the nonlinear dynamic state model: 

{

𝑥𝑑(𝑡 + 1) = 𝑓𝑏(𝑥𝑑(𝑡), 𝑛(𝑡))           

𝑥𝑐(𝑡 + 1) = 𝑓𝑡(𝑥𝑑(𝑡), 𝑥𝑐(𝑡), 𝜔(𝑡))

𝑓𝑝(𝑡) = ℎ𝑡(𝑥𝑑(𝑡), 𝑥𝑐(𝑡), 𝜈(𝑡))         

. (1) 

Where fb, ft and ht are non-linear mappings, xd(t) is a 

collection of Boolean states associated with the presence of a 

particular operating condition in the system (normal 

operation, fault condition) xc(t) is a set of continuous-valued 

states that describe the evolution of the system given those 

operating conditions, fp(t) is a feature measurement, ω(t) and 

v(t) are non-Gaussian distributions that characterize the 

process and feature noise signals, respectively.  

The second Equation in (1) describes the fault evolution as a 

function of time. In this document, it is represented by a 

symbolic regression model, as suggested in the sequel. At any 

given instant of time, this framework provides an estimate of 

the probability masses associated with each fault mode, as 

well as a Probability Density Function (PDF) estimate for 

meaningful physical variables in the system. PDF estimates 

for the system continuous-valued states (computed at the 

moment of fault detection) may be used as initial conditions 

in failure prognostic routines. As a result, a swift transition 

between the two modules (fault detection and prognosis) may 

be performed and reliable prognosis can be achieved within 

a few cycles of operation after the fault is declared. This 

characteristic is one of the main advantages of the particle-

filter-based framework.  

The overall workflow followed in this research study is 

summarized in the conceptual schematic of Figure 4. 
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Use cases are firstly defined that provide inputs to the failure 

analysis, the EHSA high-fidelity model and contribute to the 

development of the PHM system.  The results of the failure 

analysis are used to select the most significant failures to be 

addressed by the PHM system; the corresponding fault 

progression models are developed next.  Available actual 

operational data are used to create a representative 

operational scenario, which is used to perform flight 

simulations in healthy and faulty conditions using the EHSA 

high-fidelity model. The flight data obtained from these 

simulations are fed to the PHM system for analysis.  The 

PHM system development follows the suggested guidelines 

and receives inputs from the use case definition, the failure 

analysis, the flight data and any laboratory tests that are 

performed on equipment in which specific degradation 

conditions are introduced.  The PHM system performs feature 

identification, faults diagnosis and failure prognosis, while its 

accuracy is assessed according to appropriate PHM system 

performance metrics.  

A PHM system for primary flight control actuators presents 

some critical issues that are peculiar to this type of systems, 

as briefly discussed in the following sub-paragraph.

 

Figure 4: Research flow block diagram 

7.1. Certification issues 

Data for the EHSA PHM framework are generated by 

components that are part of the flight control actuator servo-

loop.  It must be ascertained that any possible fault(s) of the 

processor implementing the PHM algorithms as well as of the 

components transmitting the data will not have any effect on 

the operation of the flight control actuator itself. 

In case additional pre (post) flight tests are required for a 

more effective PHM system, the way these tests will be 

initiated (automatically from the Flight Control Computer? 

Upon pilot command?) must be addressed and accounted for. 

Whatever the solution, the process has safety implications 

and must be approved by the certification authorities. 

8. FAILURE ANALYSIS 

The first step in failure analysis is a Failure Modes and 

Effects Criticality Analysis (FMECA) in which all possible 

failures, their criticality and probability of occurrence were 

addressed.  Then, a rule set was defined for determining an 

overall value of the criticality of a failure and eventually rank 

them in terms of their severity. For each failure, four possible 

ranges associated with values from 1 to 4 were identified. The 

adopted convention was such that the greater the score, the 

more critical the failure mode. The evaluation of the overall 

severity of a failure, and hence, the importance of developing 

suitable PHM algorithms to alert that an incipient failure is 

progressing, and may eventually lead to the failure 

considered the following criteria, as necessary for 

implementing PHM strategies: 

 Defect rate: the higher is the probability of a defect to 

occur, the greater the need of a PHM capability to alert of 

the defect. 

 Severity: this is the criticality of the consequences of the 

failure.  It is obvious that the more critical are the 

consequences of a failure, the greater the need to develop 

a PHM system. 

 Replaceability: In case a component fails, different 

situations can occur ranging from the possibility to 

rapidly replace the failed component directly on the 

aircraft to the need to remove the entire actuator and 

replace the failed component in the shop.  As the 

operations of replace a failed component become 

lengthier, the greater advantage is provided by a PHM 

system. 
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 Testability: Depending on its type, suitably processing the 

available signals, either online, or offline can recognize a 

developing fault, or additional sensors are required to 

detect the fault.  This entails a lower or greater difficulty 

of developing a relevant PHM capability for that type of 

fault. 

The following Table 1 presents a summary of the faults 

evaluation rules.  For each fault the total score was computed 

and the faults overall severity was determined.  This provided 

an indication on the initial selections of the faults to be 

considered in the feasibility study.  

 

Table 1: Faults evaluation rules 

Evaluation 

criteria 

Evaluation score 

4 3 2 1 

Defect rate (per 

flight hour) 

>1x10-6 Between 1x10-6 

and 1x10-7 

Between 1x10-7 and 

1x10-8 

<1x10-8 

Severity Aircraft loss /critical 

danger for passengers 

/crew 

Subsystem failure 

- degraded 

performance 

Component failure - 

system fully 

functional 

(redundancy loss) 

Component 

degraded 

performance 

Testability Impossible to observe Offline only Online, additional 

sensors required 

Online, no 

additional sensors 

Replaceability Entire actuator 

replacement required 

Subsystem 

replacement 

required 

Lengthy single 

component 

replacement 

Fast single 

component 

replacement 

 

9. PHM SYSTEM ARCHITECTURE 

The EHSA considered as a use case and shown in Figure 1 

has the following complement of sensors: 

 Two LVDT type position transducers measuring the 

actuator output position.   

 One LVT type position transducer measuring the position 

of the servo-valve spool.   

 One LVT type position transducer measuring the position 

of the spool of the mode valve.   

 A pressure differential transducer measuring the pressure 

difference between the two sides of the hydraulic 

actuator.  

In addition to the signals provided by the sensors listed above, 

the PHM system takes advantage of the knowledge of the 

following other information which is available in the 

Electronic Control Unit performing closed loop control and 

monitor of the EHSA: 

 Position command - electrical lane 1 

 Position command - electrical lane 2 

 Servo-valve electrical current - coil 1 

 Servo-valve coil 1 input voltage 

 Servo-valve electrical current - coil 2 

 Servo-valve coil 2 input voltage 

 Solenoid valve coil 1 input voltage 

 Solenoid valve electrical current - coil 1 

 Solenoid valve coil 2 input voltage 

 Solenoid valve electrical current - coil 2  

All data provided by the sensors both in flight and during 

specific tests performed on ground are properly manipulated 

to generate the features making up the basis for assessing the 

health status of the EHSA.   

The health status of the EHSA is currently monitored by 

dedicated procedures known as "C-BIT", "P-BIT" and "I-

BIT". 

The C-BITs are monitoring routines continuously performed 

in flight to detect failures that are potentially flight safety 

critical and disable the EHSA operation when the failure is 

detected 

The P-BITs are specific checks performed in pre-flight to 

make sure that there are no dormant failures in the EHSA 

components designated to bring it in a safe mode if a failure 

is detected in flight by the C-BITs.   

The I-BITs are checks performed periodically on ground to 

check the condition of a few components of the EHSA.  

The scope of the existing "C-BIT", "P-BIT" and "I-BIT" is to 

determine whether the EHSA is operating correctly, or is 

failed. They are not used to identify a progressive 

degradation, or, in case of failure, which specific part of the 

EHSA is the root cause of the failure.  The PHM system, 

which is being addressed in the present research, aims at 

responding to the following points: 

 Detect a progressive degradation of an EHSA 

component 

 Disambiguate among the possible different origins of 

the EHSA faulty behaviour 
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 Perform a prediction of the fault evolution and estimate 

the remaining useful life  

9.1. PHM system organization 

The general architecture of the health monitoring system for 

the EHSA is shown in Figure 5.  C-BITs and P-BITs are run 

in parallel to the acquisition and processing of the EHSA 

signals that generates the health indexes.  The I-BITs are not 

shown in the diagram of Figure 5 because they are not run 

continuously, or at pre-flight.  It must be noticed that a few 

features are built in a way similar to that used by C-BITs and 

P-BITs to detect failures.  However, while these built-in tests 

provide a discrete output (good or failed) and an immediate 

corrective action is taken, the values of the features of the 

PHM system are used by its other modules to detect 

degradations and map their progression.  Their outputs thus 

provide a fundamental indication of the EHSA health status, 

which allows the maintainer to properly schedule pertinent 

maintenance activities. 

 
Figure 5: General architecture of the EHSA health monitoring system 

The PHM functions can be conceptually grouped in a few 

modules indicated in Figure 5 as: 

 Feature extraction / condition assessment 

 Reasoner 

 Fault diagnostics 

 Failure prognostics 

The function of the first module (Feature extraction / 

condition assessment) is to process all available signals to 

generate the most significant features.  The same module 

applies also de-noising techniques to raw signals accepted 

from the sensors. In addition, the module receives the 

indication of the operational condition (in-flight, on-ground, 

EHSA active or in standby), that defines the relevant feature 

calculation.  

The Reasoner module receives the stream of features and 

performs the function of determining whether the EHSA is 

healthy or faulty, and in the second case, disambiguates 

among the possible different faults indicating which part of 

the EHSA is degraded.  Fault detection and classification 

takes advantage also of prior relevant knowledge.  Depending 

on the fault type, its detection is performed according to any 

of the following techniques: 

 Technique 1: Compare condition indicators with a band 

of normal range. 

 Technique 2: Compare the distribution of the perceived 

error with respect to the nominal value 

with a set of reference records - If the 

overlap between the reference and the 

actual distribution falls below 10%, then 

degradation is recognized. 

 Technique 3: Identify the degradation based on the 

Euclidean distance - The probability 

distribution of the Euclidean distance 

from the mean value for a set of 

measurements is compared for the same 

distribution for a set of reference 

measurements - If the overlap between 
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two data sets falls below 10%, then 

degradation is recognized. 

After a fault is detected, it is classified calling upon an 

appropriate methodology based on a neural network 

construct analyzing the differences between nominal and 

actual feature values. The neural network is trained using a 

Bayesian regulation backpropagation algorithm. 

A PHM system for EHSAs can be most effective by 

processing data collected in flight and on ground during 

dedicated tests as described in the following sub-paragraphs. 

9.2. Data collection in flight 

The scope of collecting data in flight is to: 

 Take advantage of the continuous streaming of data to 

generate a very large dataset that can be exploited by the 

reasoning system to generate an early warning of a 

degradation 

 Facilitate the detection of faults that are difficult to be 

identified in the ground tests 

 Provide alerts to be further investigated with specific 

ground tests between flights aimed at confirming the 

presence of a degradation and at disambiguating the fault 

modes  

9.3. Data collection on ground 

Pre-flight (or post-flight) tests are carried out to collect 

signals in response to a well-defined sequence of position 

commands.  Figure 6 shows the sequence of position 

commands to be injected into the actuators that has been 

identified as the most effective for detecting EHSA 

degradations. It must be emphasized that in addition to the 

command sequence of Figure 6, specific additional tests 

could be carried out on ground when deemed necessary 

following alerts generated in flight. 

The ground tests are performed with one actuator active, 

while the other actuator is in standby, are then repeated 

reversing the operating conditions for the two actuators.  

Since two electrical lanes control the servo-valve and the 

solenoid valve, each ground test is performed twice, each 

time with one of the two electrical lanes active.   

9.4. Data processing 

Data Pre-Processing - Raw sensor data (current, voltage, 

pressure, temperature, etc.) must be pre-processed in order to 

reduce the data dimensionality and improve the (fault) Signal 

to Noise Ratio (SNR). Typical pre-processing routines 

include data compression and filtering, Time Synchronous 

Averaging (TSA) of vibration data, FFTs, among others. We 

introduce a de-noising methodology based on blind 

deconvolution. The process of blind deconvolution attempts 

to restore the unknown signal by estimating an inverse filter, 

which is related to the fault at hand.  

Condition Indicator Extraction and Selection - Condition 

Indicator (CI) selection and extraction constitute the 

cornerstone for accurate and reliable fault diagnosis. The 

objective is to transform high dimensional raw data into 

tractable low dimensional form (information) without loss of 

useful information. Feature selection is application 

dependent. We are seeking those CIs, for a particular class of 

fault modes, from a large candidate set that possesses 

properties of fault distinguishability and detectability. CI 

extraction, on the other hand, is an algorithmic process where 

features are extracted in a computationally efficient manner 

from sensor data, while preserving the maximum information 

content.  Examples of features are the servo-valve mechanical 

gain and null bias. 

 

Figure 6: Command sequence for on-ground tests 

The final step is to map the computed condition indicators to 

the known fault values inserted during the seeded fault test. 

10. FLIGHT SIMULATIONS 

A fundamental step in this research work was to run a very 

large number of realistic simulations representative of flights 

of several aircraft with equipments in healthy and faulty 

conditions.  This firstly required to set up an operational 

scenario which could reproduce as closely as possible the 

variable conditions encountered during an aircraft flight as 

outlined in the next sub-paragraphs. 

10.1. Operational scenario 

An operational scenario was developed with the intent of 

allowing simulations of aircraft flights in the range of 

variable environmental and operating conditions that can be 

encountered in real operations, with the end objective of 

generating data equivalent to those that could be collected in 

actual flights. 

The operational scenario was built taking as a basis data on 

commands, loads, aircraft altitude, etc., collected in several 

flights, and a random variability within an expected 

maximum range was introduced for each input variable 

during each simulated flight in order to reproduce the 
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different operating conditions to which the EHSA could be 

subjected during each flight. 

The operational scenario defines at each instant of the 

simulated flight the position command, the load acting on the 

actuator, and the environmental and operational conditions. 

The time sequence of commands is comprised of three terms: 

x(t) = xb(t) + xv(t) + xl(t)          (2) 

where: 

xb(t) is a basic sequence of position commands which is given 

during a typical flight  

xv(t) is a variable sequence of position commands which is 

varied in each flight 

xl(t) are commands generated from the flight control 

computer in response to the disturbances to the aircraft 

attitude created by variations of the external loads 

(gusts, turbulence) 

The load FA acting on the actuator is the sum of a term 

proportional to the actuator position xc (and hence to the 

position of the aerodynamic surface) and of a disturbance 

resulting from wind turbulence: 

FA = kL(xc+xo) + Fd         (3) 

where: 

FA = Load acting on the actuator 

kL = Ratio between force acting on the actuator and actuator 

position 

xc =  Actuator position 

xo =  Additional term allowing to take into account that the 

force acting on the actuator in flight is different from 

zero when the actuator position xc is equal to zero 

Fd = Load on the actuator resulting from wind turbulence 

The coefficient kL is not constant, but is a variable during 

flight. After having defined a maximum value kLmax, the 

coefficient kL is assumed to vary linearly with time from 

0.3kLmax at takeoff to kLmax at cruising altitude, then decreasing 

linearly with time form kLmax to 0.3 kLmax during the descent 

phase.  The Dryden turbulence model represents the wind 

turbulence, which is a mathematical model of continuous 

gusts. The Dryden model treats the linear and angular 

velocity components of continuous gusts as spatially varying 

stochastic processes and specifies each component's power 

spectral density. 

The operational scenario takes into account via appropriate 

models the possible variations during flight of the following 

quantities: 

 Temperature of the hydraulic fluid 

 Supply and return pressures 

 Vibrations 

 Electrical noise 

10.2. Operation on ground 

When the EHSA is commanded through the specified 

command sequence, the variability of conditions on ground 

is taken into account, again considering the effects of wind 

turbulence, variation of hydraulic fluid pressure and 

temperature, and electrical noise. 

10.3. Operation with healthy actuators 

After having defined the operational scenario, representative 

of actual aircraft flights, flight simulations were run for 10 

different aircrafts with the same EHSA of each aircraft in a 

healthy state, but the values of the characteristic parameters 

of each EHSA were different from each other, albeit within 

the normal tolerance band.  In total, 100 flights of 5 hours 

were simulated for each aircraft, with each flight in different 

operating and environmental conditions, thereby 

accumulating data for 5000 flight hours. This very large 

database of the EHSA signals made up the reference for 

healthy actuators in the ensuing PHM analysis. 

10.4. Fault injection 

A number of fault cases were selected among the most critical 

ones resulting from the failure analysis discussed previously. 

For each fault case, it was assumed that an initial small fault 

appears at a certain instant in time, then progressing with 

usage and time according to a physics based model describing 

the fault-to-failure mechanism for that specific type of fault 

(Equation 1).  It must be emphasized that the fault which is 

simulated is not the variation of a performance parameter of 

the EHSA (for instance: variation of null bias, increased 

actuator leakage, etc.), but the actual degradation of a 

physical characteristic, such as variation of the radial 

clearance between spool and sleeve of the servo-valve due to 

wear resulting from relative movements in the presence of 

contaminated hydraulic fluid, etc. For each of the fault cases 

considered, the same fault was injected in the EHSAs of three 

different aircraft, and flights were then simulated paralleling 

the healthy conditions.  That was important to best assess the 

merits of the PHM algorithms in recognizing the fault and, 

eventually, predicting the remaining useful life. In this 

feasibility study, the presence of only one fault at a time was 

considered because the simultaneous occurrence of multiple 

faults is an event of very low probability. However, the 

methodology followed in this study could be extended to the 

case of multiple faults. 

10.5. Feature selection 

For each of the fault cases addressed, the feature(s) best 

describing the fault progression was identified and selected 

to alert of a developing degradation.  Features are extracted 

from the raw data after subjecting them to a de-noising 

process, as suggested previously.   

11. FAULT DIAGNOSIS AND FAILURE PROGNOSIS 

Several faults of different components of the EHSA have 

been addressed, which were selected based on the results of 

the failure analysis described in Section 8.  Here below, the 

https://en.wikipedia.org/wiki/Continuous_gusts
https://en.wikipedia.org/wiki/Continuous_gusts
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procedure followed for fault diagnosis and failure prognosis 

is described, then two significant fault cases are presented. 

11.1. The modeling framework 

Degradation detection and prediction algorithms rely on data, 

a model of the degradation process and an estimation method 

that, given the current state of the system, predicts its 

evolution over the next time step. Such models are typically 

based on first principles while others are built on the basis of 

data. We exploit in this effort a modeling framework called 

Symbolic Regression.  

Symbolic Regression searches the space of mathematical 

expressions to find the model that best fits a given dataset, 

both in terms of accuracy and simplicity. No particular model 

is provided as a starting point to the algorithm. Instead, initial 

expressions are formed by randomly combining 

mathematical building blocks such as mathematical 

operators, analytic functions, constants, and state variables. 

New equations are then formed by combining previous ones, 

using genetic programming. In linear regression, the 

dependent variable is a linear combination of the parameters 

(but need not be linear in the independent variables).  

Nonlinear Symbolic Regression and other regression 

techniques incorporating uncertainty are based on similar 

principles. We take advantage of the Symbolic Regression 

tool provided by Schmidt and Lipson (2009) to represent the 

features as function of time. The model parameters can be 

tuned on-line as data is streaming in, following an iterative 

procedure featuring a recursive least square algorithm over 

properly sized moving time windows.  Fitting quality and 

most significantly the time required to converge to the real 

data sequence depend on the initial guess for the model 

parameters and on the size of the moving window. 

11.2. Fault detection through data driven approach 

The approach for fault detection is a purely data-driven one. 

A baseline representing the feature behavior under healthy 

conditions is built upon the first 100 data points and an 

automatic, customizable threshold is set to a value covering 

95% of the baseline probability distribution. Simulation data 

are then streamed in and compared to the initial baseline; the 

anomaly detection flag is raised when the new distribution 

differs from the baseline by a customizable confidence level 

equal to or greater than 95%. 

The fault detection is performed through a purely data-driven 

method, comparing the current feature distribution with a 

predefined baseline representative of the healthy conditions 

as shown in the examples of fault cases presented in 

paragraphs from 11.4 to 11.7. 

11.3. Failure prognosis 

The prognostic framework takes advantage of a nonlinear 

process (fault / degradation) model, a Bayesian estimation 

method using particle filtering and real-time measurements 

(Orchard & Vachtsevanos, 2009). Prognosis is achieved by 

performing two sequential steps, prediction and filtering. 

Prediction uses both the knowledge of the previous state 

estimate and the process model to generate the a priori state 

pdf estimate for the next time instant, 

𝑝(𝑥0:𝑡|𝑦1:𝑡−1)

= ∫ 𝑝(𝑥𝑡|𝑦𝑡−1)𝑝(𝑥0:𝑡−1|𝑦1:𝑡−1) 𝑑𝑥0:𝑡−1 

 

Unfortunately, this expression does not have an analytical 

solution in most cases. Instead, Sequential Monte Carlo 

(SMC) algorithms (Roemer, M., Byington, C., Kacprszynski, 

G., Vachtsevanos, G., & Goebel, K. 2011), or particle filters, 

are used to numerically solve this equation in real-time with 

efficient sampling strategies. Particle filtering approximates 

the state pdf using samples or “particles” having associated 

discrete probability masses (“weights”) as,  

𝑝(𝑥𝑡|𝑦1:𝑡) ≈ �̃�𝑡(𝑥0:𝑡
𝑖 )𝛿(𝑥0:𝑡 − 𝑥0:𝑡

𝑖 )𝑑𝑥0:𝑡−1  

where xi
0:t is the state trajectory and y1:t are the measurements 

up to time t. The simplest implementation of this algorithm, 

the Sequential Importance Re-sampling (SIR) particle filter 

(Orchard, 2007), updates the weights using the likelihood of 

yt as:  

𝑤𝑡 = 𝑤𝑡−1𝑝(𝑦𝑡|𝑥𝑡)  

Long-term predictions are used to estimate the probability of 

failure in a system given a hazard zone that is defined via a 

probability density function with lower and upper bounds for 

the domain of the random variable, denoted as Hlb and Hup, 

respectively. The probability of failure at any future time 

instant is estimated by combining both the weights w(i)
t+k of 

predicted trajectories and specifications for the hazard zone 

through the application of the Law of Total Probabilities. The 

resulting RUL pdf, where tRUL refers to RUL, provides the 

basis for the generation of confidence intervals and 

expectations for prognosis, 

�̂�𝑡𝑅𝑈𝐿
= ∑ 𝑝(Failure|𝑋 = �̂�𝑡𝑅𝑈𝐿

(𝑖)
, 𝐻𝑙𝑏 , 𝐻𝑢𝑝)

𝑛

𝑖=1

  

As shown in Figure 7, this approach makes use of degradation 

models that are tuned or their parameters adjusted to compute 

the current a-priori state of the system, 𝑝(𝑥𝑡|𝑦1:𝑡−1), and to 

perform the iterative calculation that leads to the long term 

prediction 𝑝(𝑥𝑡+𝑘|𝑦1:𝑡). Auto-tuned models are required to 

describe and follow changes in the degradation process and 

to describe, in the best possible way, the process and 

measurement noise. So, in order to match the model behavior 

to the real system, as closely as possible, one time-dependent 

tunable model is used.  

The use of particle filter techniques for prognosis involves 

the a-priori definition of: 

 The non-linear degradation model (a symbolic 

regression model, as mentioned above) and feature 

mapping  

(4) 

(5) 

(6) 

(7) 
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 A Bayesian estimation method – particle filtering 

 Streaming data 

 Process and measurement noise 

 Threshold for failure declaration 

 

Figure 7 - The prognostic framework 

11.4. Fault case #1: Crack of the servo-valve internal 

feedback spring 

If for any reason a crack is generated in the internal feedback 

spring of the servo-valve, the stresses developed in the crack 

as the servo-valve operates may cause a growth of the crack 

with a corresponding progressive reduction of its stiffness 

and a variation of the servo-valve and hence of the whole 

EHSA performance. This process can be described by 

applying the basic principles of fracture mechanics. The 

crack propagation depends on the cyclic variation of the 

stress intensity factor, which on its turn depends on the torque 

developed by the torque motor as a function of the time 

sequence of commands received by the Flight Control 

Computer during the flight. The main effect of the crack 

propagation on the system performances is the progressive 

increase of the mechanical gain of the servo-valve, defined as 

the ratio between the spool displacement and the commanded 

servo-valve current. This behavior can be well observed 

through the analysis of the pre-flight checks reported in 

Figure 6. The mechanical gain behavior has been investigated 

through the analysis of the simulated in-flight data as well, 

showing good correlation with the fault growth and relatively 

high signal-to-noise ratio as described in Figure 8. 

The fault detection is performed through a purely data-driven 

method, comparing the current feature distribution with a 

predefined baseline representative of the healthy conditions 

An example of its behavior is reported in Figure 9. The 

average fault size at detection is 15.3 %. 

 

Figure 8: Spool position (a) servo-valve currents (b) 

The analysis of mappings and noise has been performed 

through the study of large data sets while taking advantages 

of symbolic regression techniques. The threshold for failure 

declaration has been defined as the 50th percentile of the 

feature distribution associated with a crack progression equal 
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to 30% of its critical value.  After this value, the crack growth 

becomes extremely fast in the studied case due to the 

inception of instability conditions in the actuator.  

An example of the output of the prognostic framework is 

reported in Figure 11. The performance of the prognostic 

routine are investigated through the  analysis reported in 

Figure 12 and the associated prognostic horizon is 44 flight 

hours. The mean Relative Accuracy (RA) is 88%, while the 

Cumulative Relative Accuracy (RA) is 84.5%. 

 

 

Figure 9: Mechanical gain for degrading servo-valve feedback spring 

 

Figure 10: Fault detection for crack of the servo-valve feedback spring 

 
Figure 11: Example of prognosis through particle filtering 

 



 15 

 

Figure 12:  analysis for crack of the servo-valve feedback 

spring 

11.5. Fault case #2: Demagnetization of servovalve 

torque motor 

Demagnetization of the torque motor leads to a reduction of 

the torque motor gain, which is the ratio between torque 

developed and input current. Demagnetization can be 

originated by different causes, one of which is the increase of 

the temperature T above a limit To. The temperature 

prevailing in the torque motor magnets is a function of the 

temperatures of ambient and hydraulic fluid, on the time 

history of the current through the torque motor coils and on 

the heat transfer between magnets, hydraulic fluid and 

ambient. A model for the degradation of the magnetic 

properties of the torque motor was hence prepared and used 

for representing this fault case. The main effect associated 

with the demagnetization of the torque motor is the decrease 

of the mechanical gain, which can be observed during pre-

flight checks through the behavior of the servo-valve spool 

position and currents, as in Figure 13. The selected feature is 

the complementary to one of the mechanical gain; its 

behavior for in-flight data is reported in Figure 14.  

 

Figure 13: Spool position (a) servovalve currents (b) 

The fault detection algorithm is able to observe the fault 

inception at 18.9% of its critical value. The threshold for 

failure declaration has been set at 80% of the fault 

progression that is the value associated with the loss of the 

actuator control. The analysis, of which an example is 

reported in Figure 15, allows observing a prognostic horizon 

of 42 hours. The RA is equal to 86.2%, while the CRA is 

83.4%.   

It must be noted that although the  diagram becomes 

accurate only in the last phases of the fault progression, it still 

provides the comfortable prognostic horizon of 42 hours.  

This is due to a very early detection of the fault, which then 

takes long time to progress and become a failure.  

 

Figure 14: Feature for degrading magnets in the torque-

motor 

 

Figure 15:  analysis for torque motor demagnetization 

11.6. Fault case #3: Distorted jet pipe of the servo-valve 

A distortion of the jet pipe can occur in several ways; 

however, its main consequence is a non-symmetrical 

direction of the jet pipe flow when the servo-valve current is 

equal to zero. This entails a change of the servo-valve null 

bias from its initial value.  

The distortion of the jet pipe can be originated by different 

causes; strong vibrations of the aircraft are one potential main 

cause.  In fact, it is possible that due to a small construction 

flaw, sudden accelerations of the aircraft structure induced by 

gusts cause a permanent deformation of the jet pipe in one 

direction, but not in the other, hence leading to a progressive 

increasing distortion. This fault can be described by relating 

a permanent deformation increase of the jet pipe to the load 

generated on the actuator by gusts when such loads are 

greater than a limit value.  

The most significant effect of the jet pipe distortion fault 

mode is the generation and increase of a null-bias current in 
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the servo-valve, which the system is forced to command to 

offset the asymmetry induced in the hydraulic amplifier.  

The null-bias increase can be observed on-ground as the 

mean value of the servo-valve current during the sinusoidal 

command, while it can be computed in-flight by a properly 

sized moving average of the servo-valve current, as shown in 

Figure 16 and Figure 17, where it is reported in a non-

dimensional form with respect to its maximum value of 4 

mA. The data-driven fault detection algorithm is able to 

recognize the anomaly inception for an average fault size of 

13.4% of its critical value.  

The RA for prognosis is 82.28%, while the cumulative value 

is 80.15%. 

 

Figure 16: Servo-valve currents for distorted jet-pipe 

conditions 

 
Figure 17: Feature for distorted jet-pipe  

 

The following Figure 18 shows the  analysis for jet-pipe 

distortion. 

 
Figure 18:  analysis for jet-pipe distortion 

11.7. Fault case #4: Backlash in the actuator rod end 

The spherical bearings of the actuator rod ends are sized such 

to be subjected to a small backlash increase over the actuator 

service life. However, failures have occurred in which an 

anomalous wear of the spherical bearing caused a large 

backlash increase leading to high airframe vibrations in 

flight. A model of wear of the bearing was created providing 

the description of the backlash increase as a function of the 

combination of actuator loads and bearing rotation. Due to 

the active-stand by configuration, the backlash effects can be 

observed only through the on-ground tests by comparing the 

signals of the LVDTs integral with the two actuators, as 

shown in Figure 19. 

 

Figure 19: Actuators position with degrading rod-ends  

The reliance on pre-flight data only would be an issue for the 

other investigated degradations due to data scarcity; the 

degradation of the hydraulic actuators rod-end usually 

follows a much slower degradation pattern (van den Bossche, 

2009), making this solution suitable for effective prognosis. 

On an average degradation lasting 20000 flight hours, the 

fault detection algorithm is able to detect defects within 8.7% 

of the critical size, while the prognostic routines provides an 

average prognostic horizon higher than 500 flight hours, with 

RA 74% and CRA 86.6%. The associated  analysis is 
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reported in Figure 20. The algorithm has been hence tested 

on faster degradations (up to 8000 flight hours), providing 

consistent results. 

 
Figure 20:  analysis for wear in the rod-ends  

12. CONCLUSION 

The feasibility study presented in this paper is focused on 

demonstrating the possibility of creating an effective PHM 

system for EHSAs used in primary flight control systems. A 

rigorous and fully comprehensive approach was undertaken 

for describing the faults and their progression based on 

physics models, identifying the most significant features, 

simulating aircraft flights in a realistic environment, 

collecting data, processing them, and developing data-driven 

fault detectors capable of detecting the occurrence of faults 

in their incipient stages for a safety critical aircraft actuation 

system. Furthermore, a particle filtering estimation method 

was adopted for prediction of the remaining useful life of the 

EHSA. An overview of the PHM architecture was presented 

and applied to a few EHSA fault modes based on a FMECA 

study. The fault modes were modeled using physics-of-

failure mechanisms indicating the primary failure effects. 

Features were derived using statistical analysis to quantify 

the primary failure effect. Then, simulation data were 

acquired to validate the models.  Although the feasibility 

study is focused on EHSAs for primary flight controls, the 

overall PHM architecture developed in this study can be 

applied to an entire range of systems and application 

domains. In fact, similar techniques, which allow for early 

fault detection with acceptable performance in the presence 

of faults, are being developed for a wide variety of system 

actuators in both manned and unmanned air vehicles. 

Therefore, the concept of using system health information 

(diagnosis and prognosis) is at the forefront of modern space 

and aviation applications requiring increasingly sophisticated 

diagnostic and prognostic systems that are robust, reliable, 

and relatively inexpensive.  
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