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Abstract—In this paper, we present a new concept for 

predicting satellite-derived land surface temperature (LST) under 

cloudy skies over vegetated areas in the Alps. Although many 

different reconstruction methods have been developed, they 

require rarely available inputs, or they restore missing pixels from 

clear-sky observations with low spatial resolution (1-5 km), which 

makes them unreliable in heterogenous ecosystems. Given these 

limitations, we propose a station-based procedure to predict cloud-

covered grids from 1-km Terra MODIS LST at 250 m spatial 

resolution. First, we explored correlations between ground-

measured LST and air temperature in conjunction with other geo-

biophysical variables under cloudy-sky conditions derived from 

ESRA clear-sky radiation model. Considering a high site 

dependency driven by different landcovers, in-situ data were 

aggregated into three groups (forest, permanent crops, grassland) 

and then, models were established. Next, the regressions were 

applied to 250-m gridded predictors to estimate cloud-covered 

LST pixels for six Terra MODIS LST images in 2014. While for 

permanent crops and forest group linear modelling was the most 

efficient, neural networks achieved the best performance for 

grasslands. The reconstructions showed reasonable LST 

distribution considering landscape heterogeneity of the region. 

The results were validated against timeseries of ground-measured 

LST in 2014. The models achieved reliable performance with an 

average R2 of 0.84 and RMSE of 2.12°C. Despite some limitations, 

mainly due to diversified character of cloudy-sky conditions and 

high heterogeneity of gridded predictors, the method can 

effectively reconstruct overcast MODIS data at subpixel level, 

which shows great potential for producing cloud-free LSTs in 

complex ecosystems. 

 
Index Terms—cloudy-sky conditions, land surface temperature, 

machine learning, reconstruction. 
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I. INTRODUCTION 

ARTH’S skin temperature is a fundamental property 

regulating the exchange of water and energy between land 

and the atmosphere. Thus, it influences water and surface 

energy budget that is needed to estimate the impacts of climate 

change on water cycling, landcover, and to examine water 

anomalies in vegetation through evapotranspiration modelling 

[1]-[3]. Moreover, it allows monitoring vegetation conditions 

and studying climate change and impacts of extreme events on 

vegetation. As a result, land surface temperature (LST) is 

required as a baseline information for many environmental 

applications, such as management of water resources, climate 

change studies, sustainable agricultural production, drought 

predictions and also land degradation monitoring [4]-[6]. 

Since the global network of meteorological stations is sparse, 

especially with regards to radiometers monitoring thermal 

infrared radiation, and LSTs vary over short distances, thermal 

remote sensing has shown large potential due to its spatial 

coverage and accessibility [7]-[9]. The rapid development of 

spaceborne thermal infrared (TIR) instruments followed by 

robust LST retrieval methods has allowed monitoring spatially 

and temporally continuous LSTs at different scales [10]. In 

particular, MODIS instrument has been frequently used due to 

its short repeat cycle (four times per day), global coverage and 

long-term image collection (since 2000) [11]. MODIS LST 

product has been applied in multiple research fields, including 

urban heat island assessment [12]-[15], drought detection [16]-

[19], agricultural management [7],[20]-[21], and energy and 

water balance modelling [22]-[25]. 

Although MODIS LST maps have been commonly used in 

many studies, thermal infrared (TIR) sensors are prone to 
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overcast conditions. TIR instruments cannot acquire spatial 

information beneath clouds that translates to invalid LST 

images with a strong impact on high-frequency cloud-

contaminated areas [26]. According to Jin [27], cloudy skies 

“represent more than half of the actual day-to-day weather 

conditions” resulting in minimum 50% blank LST scenes from 

TIR data. If we focus on mountain regions, cloud cover is much 

more common and intense, which causes substantial gaps in 

LST images in space and time. Therefore, spatially, and 

temporally continuous LST information is of great importance 

and its complete creation is an urgent issue among the scientific 

community. 

Methods for reconstructing land surface temperature at 

cloud-covered pixels have been well demonstrated in many 

research studies. In general, they can be aggregated into 

empirical and physical-based categories. The methods of the 

physical-driven group rely on the assumption that cloud-

covered pixels differ from LST values under clear-sky 

conditions. Prediction of these temperatures requires 

knowledge about physical relationship between targets and 

their adjacent cloud-free pixels. Jin [27] developed a 

“neighboring-pixel” (NP) method that uses Surface Energy 

Balance (SEB) to recover invalid values from their spatially 

(100-300 km) or temporally (≤ two days) neighboring cloud-

free pixels. Due to temporal limitations of the NP method, Lu 

et al. [28] proposed an enhanced solution based on 

geostationary satellite data from the MSG SEVIRI radiometer 

with shorter repeat cycle with respect to polar-orbiting 

satellites. Later, Yu et al. [29] adapted the NP by exploiting the 

spatio-temporal domain offered by MODIS LST product. 

Because of the physical complexity of this method and scarcity 

of the station-based inputs, such as wind speed and latent heat 

flux, some new approaches were proposed. Using MSG satellite 

data, Zhang et al. [30] predicted cloud-covered LST from a 

simplified heat transfer formula with the reduced number of 

station-based parameters. Next, Zeng et al. [31] developed a 

multisource approach that estimates invalid pixels from cloud-

free MODIS LST in reference to normalized difference 

vegetation index (NDVI) and then applies a SEB-based factor 

to obtain values under cloudy skies. After that, Yang et al. [32] 

simplified the NP and showed that applying only solar radiation 

as the auxiliary feature can well estimate missing MODIS LST 

for areas significantly covered by clouds. Meanwhile, Martins 

et al. [33] developed an operational “all-weather land surface 

temperature” product based on the clear-sky 3-km MSG 

SEVIRI scenes and LST data under cloudy conditions derived 

from the surface energy balance model through the LSA-SAF 

ET v2 algorithm. In addition to the SEB-based strategies, Fu et 

al. [34] proposed a novel reconstruction method for urban areas 

by exploiting relationship between LSTs from the physical-

based WRF/UCM system and clear-sky MODIS data using 

random forest algorithm. However, the performance of these 

approaches depends on the complexity of the study area or the 

availability of clear-sky LST, which makes it difficult to 

implement in ecosystems with extremely high variability with 

regard to weather conditions, altitude, soil, and landcover. 

Apart from the physical-based methods, cloud-covered LSTs 

can be recovered by data fusion approach by combining data 

from different resources. Many studies showed that TIR-based 

land surface temperature can be predicted by its integration with 

temporally adjacent images from passive microwave (PMV) 

instruments that are capable of penetrating clouds [35]-[39]. 

Furthermore, Long et al. [40] combined clear-sky MODIS data 

with 7-km LST dataset from China Land Data Assimilation 

System (CLDAS) using ESTARFM algorithm and obtained all-

weather 1-km MODIS-like scenes with RMSE yielding from 

2.77 K to 3.96 K. Similarly, the performances of these methods 

have limitations in terms of low spatial resolution of the cloud-

free inputs. 

The second category for LST reconstruction belongs to 

empirical methods and treats pixels obscured by clouds as those 

under clear skies. A widely used technique of this group is 

geostatistical interpolation that exploits similarities from 

neighboring clear-sky pixels in spatial, temporal, and 

spatiotemporal domain [41]-[45]. Furthermore, Crosson et al. 

[46] implemented multi-sensor approach to predict Aqua 

MODIS LST from clear-sky Terra MODIS LST and increased 

daytime and nighttime data availability of Aqua product by 

24% and 30%, respectively. In addition, Wang et al. [47] 

approximated cloudy LSTs for Terra MODIS and Landsat-8 

TIRS by spatiotemporal fusion of clear-sky multitemporal 

MODIS LST composites (MOD11A2) and synthetic surface 

temperatures with “solar-cloud-satellite geometry” derived 

from MODIS cloud and geolocation products (MOD06, 

MOD03) and Landsat-8 data. The empirical approaches, 

similarly to physical-based methods, rely on the availability of 

time-coincident cloud-free LSTs and input accuracies, which 

decreases their spatial prediction performance. To overcome 

this limitation, Ke et al. [48] exploited the relationship between 

MODIS LST and other environmental variables using 

regression kriging technique. As shown by Fan et al. [49], 

incorporation of NDVI, soil moisture and landcover 

information in conjunction with artificial neural networks and 

regression tree modelling allowed predicting missing LST with 

RMSEs ranging from 1.32 K to 1.66 K. Given the high 

capabilities of artificial intelligence (AI), new machine 

learning-based approaches have been recently developed. For 

example, Wu et al. [50] combined a convolutional neural 

network (CNN) with spatiotemporal information offered by 

geostationary instruments and obtained a prediction error of 

approximately 1 K for images with 70% cloud-contaminated 

pixels. Meanwhile, Zhao and Duan [51] proposed a random 

forest approach to predict MODIS LST by combining multi-

source remote sensing predictors with solar radiation to 

represent a cloud cover impact on missing LST pixels. 

However, the accuracies of these approaches are still highly 

influenced by the availability of clear pixels and low spatial 

resolution of satellite data that limits their application to a 

relatively homogenous terrain. 

To address these limitations, in this study, we concentrate on 

the development of a new method to reconstruct cloud-covered 

1-km MODIS LST at 250 m spatial resolution over vegetated 

areas in the European Alps. Considering high spatio-temporal 

dynamics of surface temperatures, we propose a new approach 
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that integrates data-driven modelling with physical-based 

assumptions to detect long-term cloudy-sky conditions at 

subpixel level with respect to the 1-km original MODIS LST. 

The proposed method exploits relationship between ground-

based LST and commonly accessible input parameters under 

cloudy-sky conditions, like air temperature (TA), downwelling 

solar radiation (SWin), surface albedo (α), and leaf area index 

(LAI), for spatial reconstructions of cloud-covered MODIS 

LST data. To our best knowledge, gap-filling from station-

based models in conjunction with a physical-based approach to 

obtain in-situ observations under cloudy skies has never been 

performed before. We analyze the prediction performance of 

the developed method based on different machine learning 

algorithms to reconstruct missing MODIS LST values. Through 

the application of different modelling scenarios, it is feasible to 

investigate in which way algorithms and predictors can explain 

LST variability within diversified mountain ecosystems. Due to 

limitations of MODIS LST pixel size, our concept predicts 

invalid grids at 250 m spatial resolution in order to minimize 

the impact of topography and landscape heterogeneity of the 

study area. Additionally, the reconstructed maps implemented 

in this study will be combined with 250-m downscaled Terra 

MODIS LST [52] for further energy balance modelling of 

evapotranspiration with relevant implications on water 

assessment in the Alps. 

II. DATA AND METHODOLOGY 

A. The Study Site 

Our area of interest is an approximately 520-km2 region of 

Vinschgau/Venosta Valley in the northwestern part of the 

Province of Bozen/Bolzano, located in the Eastern Italian Alps 

(Fig. 1a,c). The area is predominantly mountainous with 

elevation ranging from about 700 m to 3740 m a.s.l. Alpine 

orography has a significant impact on the structure of the 

landscape with highly patched landcovers over the region. The 

area is mainly dominated by forests, grasslands, and apple 

orchards. Because of the insular location of the valley and the 

sheltering effect of the neighboring mountain ridges, the 

climate is warmer and drier than in other parts of the Alps, 

which translates to higher evaporation [53]. This results in 

unfavorable effects for vegetation, especially for grasslands and 

agricultural crops with higher demand for water. Considering 

the particular climatic conditions and agriculture-oriented land 

management, this region would particularly benefit of accurate 

reconstructed LST maps for monitoring vegetation conditions 

and water availability. 

Land surface temperature reconstruction was performed 

based on year-round station records from the Fluxnet network 

and other stations located over different vegetated ecosystems 

in the Alps (Fig. 1a-b) [54]. Eddy covariance data outside the 

Fluxnet network were processed in the framework of the project 

CYCLAMEN (https://www.eurac.edu/). 

B. Input Data 

1) Ground Measurements 

Since this work is intended for vegetation analyses over the 

Alps, in-situ measurements were collected at 17 meteorological 

sites distributed over different ecosystems, during the 

phenological cycle, between April and October (Table I). The 

station loggers had unique time-series measurements recorded 

between 2002 and 2019 with 15- and 30-min intervals. As Table 

I shows, 10 sites are located above 1000 m and covered by 

grassland or forest, while the remaining seven stations lie in 

agricultural areas at altitudes below 1000 m. 

In this study, we exploited ground-based upwelling and 

downwelling longwave radiation (LWin, LWout) to retrieve land 

surface temperature for each station record (Table II) [55]-[56]. 

In order to keep time consistency with MODIS LST data, 

longwave radiation was extracted that corresponded to the local 

MODIS observing time. To compute surface temperature, we 

calculated broadband surface emissivity from daily MODIS 

land surface emissivity (LSE) product (M*D21A1D Collection 

6) [57], as described by Wang et al. [58]. M*D21A1D was 

selected rather than daily M*D11A1, as it was created using 

physical-based temperature emissivity separation (TES) 

algorithm instead of simplified landcover-derived emissivity 

retrieval [59]. Even though 90-m ASTER LSE product offers 

finer spatial resolution, its small spatial extent, and 16-day 

repeat cycle in conjunction with frequent cloudiness over the 

study area hampered its practical applicability.  

Due to strong correlation of LST with air temperature (TA) 

and availability of daily TA maps (see Section II.B.2), 

observations of daily mean and maximum air temperature 

(TAmean, TAmax) were computed from the in-situ measurements 

and considered as the baseline input for modelling [60]-[61]. In 

mountain regions with heterogenous landscape, such as the 

Alps, LST is influenced by complex interactions between land 

and atmosphere, solar energy, topography, soil moisture and 

landcover. In this context, we exploited auxiliary ground-based 

biophysical parameters that may explain spatial variation in 

LST over the study area (Table II). In addition to TAmean and 

TAmax, we incorporated diurnal incoming shortwave radiation 

(SWin) that regulates ground heating process with an important 

impact on land‐atmosphere energetics [53]. Owing to the 

energy fluxes between atmosphere and various vegetated 

landcovers, we combined surface albedo (α) with aerodynamic 

surface roughness (z0, as in Table II) assigned for each 

landcover group separately as a complementary biophysical 

predictor for LST modelling [61]-[63]. 

All collected measurements were averaged to hourly 

resolution corresponding to MODIS acquisition time and they 

were inspected for the presence of outliers, including detection 

of inconsistent minimum and maximum station records and 

unusual temporal variations. Additionally, we performed a 

specific quality control procedure for solar radiation data by 

applying physical thresholds and step tests, specially adapted to 

Alpine conditions [64]. After these checks, the ground-based 

predictors for the LST modelling were computed (Table II). 

2) Gridded Data 

Gridded variables were generated for reconstructing cloud-

contaminated 1-km MODIS LST pixels at subpixel (250 m) 

spatial resolution from the fitted models (Table III). 

The 250-m air temperature maps for Trentino-South Tyrol 
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region were obtained by interpolating the daily meteorological 

observations provided by the regional weather station networks 

of Meteotrentino for the Province of Trento and the 

Hydrological Department of the Province of Bozen/Bolzano. 

All observations were checked for quality and homogeneity and 

harmonized in a dense archive of more than 200 station series 

covering the region. The daily grids of TAmean and TAmax were 

then derived for the period 1980-2018 by applying an 

interpolation method combining the reference mean climate, 

i.e., the climatology, and the daily temperature anomalies. Due 

to the mountainous terrain of the area, the interpolation applied 

a regression-based procedure modelling the local relationships 

between temperature spatial gradients and orographic features, 

including elevation and slope characteristics, which were 

derived from the Digital Elevation Model (DEM) Copernicus 

EU-DEM v1.1 (https://land.copernicus.eu/imagery-in-situ/eu-

dem/eu-dem-v1.1) and then aggregated to the target 250 m 

resolution [65]-[66]. Cross-validated average RMSE values in 

a spatial cross-validation approach for TAmean and TAmax 

outputs were around 1.9°C and 2.4°C, respectively. 

Daily solar radiation grids at 250 m resolution were derived 

by applying a geostatistical downscaling to the 2004-2018 daily 

DSSF product derived from MSG/SEVIRI, available on the 

LSA-SAF system (https://landsaf.ipma.pt). In particular, the 

sharpening of daily solar radiation (SWin) was performed by 

means of a regression kriging (RK) in conjunction with the 

main topographic drivers, e.g., elevation, slope steepness and 

its orientation. In this scheme, the linear regression model was 

firstly estimated, the resulting residuals were interpolated onto 

the target grid through Ordinary Kriging (OK) with automatic 

fit of the variogram, and the final daily fields were obtained as 

sum of the spatialized residuals and regression predictions at 

each target grid cell. The average RMSE (bias) error was 2.64 

MJ m-2day-1 (0.11 MJ m-2day-1) translating into the mean 

absolute percentage difference of 0.15 when compared to the 

ground-derived datasets. 

In this study, we exploited remotely sensed surface albedo 

from a 16-day Terra/Aqua MODIS Albedo product (MCD43A3 

Version 6) with 500-m pixel size [67]. The time-coincident 

MCD43A3 with good quality assurance (QA) flags were used 

for gap-filling of invalid MODIS LST. Additionally, an impact 

of landcover on LST was examined by parametrization of 

vegetation properties using aerodynamic roughness (z0) and 

LAI (see Table III for details) [68]-[69]. Spatially continuous 

LAI maps were obtained from 4-day Terra/Aqua MODIS LAI 

composites (MCD15A3H Version 6) at 500 m spatial resolution 

[70]. To increase spatial availability of LAI pixels, the 4-day 

MODIS LAI was upscaled to 14-day composite considering the 

highest quality of the QA flags as well as the closest acquisition 

time between station records and MODIS time overpass. While 

gridded albedo was only applied to the fitted models, LAI was 

used for both LST modelling and reconstruction of missing 

MODIS LSTs under cloudy-sky conditions. To keep spatial 

consistency with the reconstruction outputs, both MCD43A3 

and MCD15A3H were disaggregated to 250-m pixel size using 

nearest neighbor resampling approach. 

In order to identify cloud-covered areas for the LST 

reconstruction, we used invalid values that were assigned to the 

QA flags in the 1-km MODIS product. Since the focus of the 

study was on the LST reconstruction for vegetation analyses, 

daytime Terra MODIS LST (MOD11A1 Version 6) was 

utilized [71]. To examine the performance of the proposed 

method, we reconstructed missing pixels for six MOD11A1 

images acquired in different seasons in 2014 (May 2nd, Jun. 29th, 

Jul. 8th, Sep 19th, Oct. 11th and 26th). 

Areas of applicability for the reconstructed LST maps were 

determined by exploiting relationship between 250-m pixels 

within model vegetation groups (Table I) and EVI from Terra 

MODIS Vegetation Indices (MOD13Q1 Version 6) granules 

[72]. In this study, we used the detailed land use landcover 

(LULC) data with minimum mapping area equal to 1600 m2, as 

shown in Appendix A [73]. The pixel-wise selection procedure 

will be explained in Section II.C.4. In addition, we applied daily 

250-m MODIS snow cover mask to gridded predictors in order 

to exclude non-vegetated pixels from LST reconstructions [74]. 

C. Methodology 

1) Model Concept 

The Alpine region benefits from dense network of ground 

stations, which translates to time-series of climate data and 

generation of spatially continuous meteorological grids 

(https://doi.pangaea.de). To take the full advantage of these 

250-m inputs, we propose station-based modelling to 

reconstruct daytime Terra MODIS LST (MOD11A1) under 

cloudy-sky conditions at 250 m pixel size, that is a sufficient 

scale for capturing spatial details at regional level [75]-[78]. 

Subpixel mapping is considered as a reasonable solution in 

mountain regions characterized by complex structure of the 

landscape, where 1-km MODIS LST images cannot fully 

represent spatial heterogeneities of the terrain. The land surface 

temperature reconstruction was performed with two steps: 

1) Year-round LST modelling from station-based 

environmental variables under long-term cloudy skies, 

2) Applying the fitted models to cloud-contaminated MODIS 

LST pixels. 

The conceptual scheme of the proposed method is summarized 

in Fig. 2. 

The diurnal cycle of LST is highly affected by the surface 

energy balance and the surface thermal inertia that depend on 

ground characteristics, such as landcover, soil type and its 

moisture [79]. Since clouds affect the energy budget of the 

ground, the LST modelling was defined under the assumption 

that LSTs beneath clouds are different than those under clear 

skies. In this context, we used the European Solar Radiation 

Atlas (ESRA) to define sky conditions for each hourly 

observation from station records (Fig. 2a) [64],[80]-[82]. 

Determination of cloudy- and clear-sky observations was based 

on the hourly incident solar radiation (SWin) from the 

meteorological stations and its corresponding maximum 

theoretical value computed from the ESRA model [60]. A 

ground-derived SWin record was considered as a clear-sky 

observation provided that it exceeded 90% of maximum 

theoretical ESRA-based estimation, while the measured solar 

radiation with less than 50% of the maximum theoretical value 
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was assigned to the cloudy-sky group. Additionally, the 

measurements registered two hours before and two hours after 

a respective observation had to meet the cloudy-sky criteria in 

order to extract long-term overcast observations. 

Given a strong relationship between instantaneous air 

temperature (TA) and ground-derived LST, daily mean air 

temperature (TAmean) was considered as a baseline predictor in 

the LST modelling [7]-[8],[60],[83]-[84]. Fig. 3 presents the 

daytime and yearly cycle of the mean difference between hourly 

LST and daily TAmean considering cloud-free and overcast 

conditions for all available observations (Table I). 

In general, the hourly (Fig. 3a) and daily (Fig. 3b) differences 

between LST and TAmean under clear skies were noticeably 

bigger when compared to cloudy-sky variations. Overcast 

conditions alter the energy budget of land, resulting in smaller 

variations between LST and TAmean (Fig. 3a-b). As shown in 

Fig. 3a, cloud-free LST-TAmean values varied with hours, with 

the biggest deviation reaching 9.2°C close to solar noon. For 

overcast conditions, however, the discrepancies between LST 

and TAmean were smaller (≤ 2.7°C), and they were more 

consistent within a day. This resulted in hourly-based standard 

deviation equal to 0.71°C that was approximately 1.5°C smaller 

than under clear-sky conditions (Fig. 3a). Similarly, as for the 

hourly observations, the day-of-year (DOY) -based differences 

under cloudy-sky conditions were fairly stable throughout the 

year when compared to clear-sky observations (Fig. 3b). 

An additional analysis performed for the individual stations 

showed that LST tends to be greater than TAmean with increased 

values for clear-sky observations (Table IV). While there was 

one station (Davos) with TAmean greater than LST under cloudy 

skies, for the rest of the sites the mean differences were positive 

and ranged from 0.07°C (Lavarone) to 4.17°C in Torgnon 1. 

The mean variations between LST and TAmean for cloud-free 

conditions were larger than for overcast conditions for all 

stations yielding values from 2.07°C in Davos to nearly 15.2°C 

in grass-covered Mazia 4 (Table IV). The paired t-test verified 

that the clear-sky LST-TAmean observations for the individual 

stations were significantly greater (p < 0.001) than the 

corresponding differences under cloudy-sky conditions.  

Based on the abovementioned analyses (Fig. 3, Table IV), 

daily mean air temperature was examined as a principal variable 

to explain LST deviations as described in further sections of the 

paper.  

2) Algorithms 

LST observations under long-term cloudy-sky conditions 

were modelled by three different regression algorithms (Fig. 

2b). A multivariate linear regression (MLM) model was used as 

a baseline estimator to explain the relationship between ground-

based LST and independent variables. The MLM is considered 

as an intuitive tool with lower complexity for data 

interpretation, which makes it commonly used in modelling and 

pre-processing tasks [7],[9],[49]. As an alternative to the 

standard MLM, we exploited Artificial Neural Network (ANN) 

and Random Forest (RF) [85]-[87]. Selection of these 

approaches was dictated by two main reasons. First, they belong 

to two algorithm families with different assumptions, which 

make them useful for comparison analysis [88]. Secondly, the 

ANN and RF have ability to account for both linear problems 

and nonlinearities between predictors and dependent variable. 

The algorithms have been successfully used in many studies, 

including spatial mapping and remote sensing enhancement 

tasks [9],[52],[89]. More detailed information about the 

algorithms is provided by Kuhn et al. [86]. 

3) Model Calibration and Evaluation 

Spatio-temporal predictive tasks entail an appropriate data 

management and modelling strategies to retrieve reliable 

estimations for new locations. One of the most common 

problems regarding modelling from geographical features is the 

existence of dependence between predictors and time-

neighboring observations resulting in model overfit that is 

revealed by well-fitted regression for training data and poor 

predictions beyond known points [9],[90]. 

Prior model training process, dependencies between 

predictors were investigated by exploiting Variance Inflation 

Factor (VIF) to solve multicollinearity issue among features 

[91]. The VIF is defined as follows: 

 

𝑉𝐼𝐹𝑘 =
1

(1−𝑅𝑘
2)

 (1) 

 

where the 𝑅𝑘
2 indicates the unadjusted coefficient of 

determination calculated by regressing the kth independent 

variable on the remaining predictors. 

For regression tasks in spatio-temporal domain the 

overfitting problem is not only related to the redundant features 

but also to an incorrect model calibration or inappropriate 

predictor selection [9]. In this context, a model regularization 

needs to include these two aspects. Spatial cross-validation 

(SCV) with a “leave-one-station-out” approach that excludes all 

observations of one station iteratively using station-fold splits 

(as k-fold subsets), and then compares all fold-driven 

simulations, could allow evaluating prediction power beyond 

training data, while simultaneously reducing autocorrelation 

between observations. On the other hand, Forward Feature 

Selection (FFS) estimates the significance of predictors by 

inspecting possible model combinations and selects only those 

features which improve model performance in terms of 

accuracy metrics [92]. In this study, we combined the FFS and 

SCV to determine the final features considering the highest 

model prediction performance in terms of its accuracy [9],[93]-

[94]. Average RMSE and R2 together with their corresponding 

standard deviations (SDRMSE and SDR
2) were calculated as 

evaluation metrics to choose the best modelling approach.  

As mentioned previously, the regularization was performed 

by applying forward feature selection to all predictor variables 

in conjunction with the leave-one-station-out SCV [9]. The 

tuning was additionally conducted to obtain optimal algorithm 

hyperparameters for the models [95]. In the case of the ANN 

and RF, parameters for each model were evaluated within the 

iterative SCV process using tuning search grids (Table V) [96]-

[97]. In addition, we applied elastic net (eNet) model to test 

regularization impact on the MLM. We performed multiple 

modeling for each vegetation group (Table I) considering 

different combinations of hyperparameters in the search grids. 
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The optimal values were chosen according to SCV accuracy 

scores. 

Since the main aim of the calibrated models was to apply 

them to unseen gridded data, the test subsets were created 

during the spatial cross-validation approach to estimate model 

robustness beyond training points. The spatial predictive 

performance of all models (MLM, eNet, ANN, RF) was 

compared by conducting multiple paired t-tests. 

In this study, for model creation we used Caret and CAST 

packages available in the R statistical software that contains the 

MLM, eNet, ANN and RF model implementations from other 

R libraries [96]-[99]. 

4) Extension to Gridded Data 

After the definition of the models, based on ground station 

data, they were applied to gridded predictors to reconstruct 

cloudy LSTs from MODIS LST at 250 m spatial resolution 

(Fig. 2c-e). Since year-round modelling was split into separate 

LULC-driven estimators, we defined potential areas for each 

model by considering similarities in predictor variable space. 

In order to estimate model transferability, we made a 

quantitative comparison between data used for model training 

and gridded features representing new locations for the LST 

reconstruction. Similarity measure between a target pixel (i.e., 

a new point to predict) and training data was assessed by 

minimum Euclidean distance in the multidimensional predictor 

space with respect to an average distance between points used 

during training process [90]: 

 

𝑑𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 = 𝑚𝑖𝑛[𝑑(𝑖, 𝑗)] (2) 

 

where min[·] represents minimum function, d(i,j) indicates 

distance between a new point i and jth observation from training 

data, and di
target is a minimum distance between a new location 

ith and a point used in the modelling [96]. 

Based on this, a standardized distance (dσ
target) for each new 

location was derived, as shown in (3): 

 

𝑑𝑡𝑎𝑟𝑔𝑒𝑡
𝜎 =

𝑑𝑡𝑎𝑟𝑔𝑒𝑡
𝑖

𝑑𝑚𝑒𝑎𝑛
 (3) 

 

where dmean indicates an average Euclidean distance from a 

target i to all training points. 

Areas of applicability (AOA) for the considered models were 

defined based on the concept developed by Meyer and Pebesma 

[90]. We selected this approach because it deals with a problem 

of model transfer into unknown environments that have never 

been seen by fitted regressions. This approach is relevant to 

reduce uncertainties in spatial predictions beyond the training 

data, especially in mountainous regions with fragmented 

landscape for which cross-validation provides only global 

accuracy metrics limited to feature variability covered by 

training observations [100]-[101]. Therefore, AOA were 

determined considering the range of the predictor values used 

for establishing the models. Specifically, the AOA was derived 

from standardized distances based on training data records 

(dσ
training) with respect to the spatial cross-validation folds as 

follows:  

 

𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝜎 =

𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑗

𝑑𝑚𝑒𝑎𝑛
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (4) 

 

where dj
training represents minimum Euclidean distance between 

a jth training observation and a point from remaining station-

fold subsets, and dmean
training indicates a mean distance between 

a jth location and other points included in other CV splits. 

It means that dσ
training was derived based on training points 

that did not appear in the same station-fold subset in the CV 

(see Section II.C.3) as we assumed that the model performance 

estimates (Table VI) apply to dσ
target which is comparable to 

dσ
training values. 

Model transfer to new geographic locations was realized by 

applying the 0.95 quantile of the dσ
training as a threshold for the 

target standardized distances (dσ
target) [90]. Gridded data beyond 

that range were flagged as outliers (outside AOA), and thus, 

those areas were excluded from further LST reconstruction. 

Estimation of the AOA was performed in the CAST package 

implemented in the R software [98]. 

In addition to AOA, we determined potential locations for 

LST prediction by investigating spectral similarities between 

pure pixels represented by LULC-driven groups (see Section 

III.A) and mixed grid cells. Previous studies showed that land 

surface temperature is highly correlated with vegetation indices 

(VI) that capture spectral differences between plant species 

[31],[102]-[103]. Thus, MODIS EVI (MOD13Q1 Version 6) 

was used for similar pixel extraction for vegetation groups 

defined in Table I. First, we extracted homogenous EVI with a 

minimum threshold of 80% within 250-m mask obtained from 

the LISS-2013 landcover (Appendix A, Fig. A1). We exploited 

time-series of EVI images acquired from 2014 to 2017 within 

months with phenological vegetation cycle. Target pixels were 

classified to the closest vegetation group using the following 

condition: 

 

|𝛽𝑖
𝑇 − 𝛽𝑡𝑎𝑟𝑔𝑒𝑡

𝑇 | < √∑ (𝛽𝑛
𝑇−𝛽𝑚𝑒𝑎𝑛

𝑇 )
2𝑛

𝑛=1

𝑛(𝑛−1)
 (5) 

 

where βT
i indicates the closest homogenous pixel i to a target 

pixel βT
target, T is a DOY corresponding to MODIS acquisition 

time, βT
mean represents an average EVI value of available pure 

pixels βT
n for a given DOY, n is number of homogenous pixels 

for each model group. 

Pixels were assigned to a biome group if the majority of the 

individual βT
target from the multiyear classification fulfilled the 

above constraint. Considering high landcover heterogeneity 

over the study area, some EVI pixels may contain fractional 

landcover, which hampers delineation of areas of applicability 

for the models. Many authors showed that LST of a non-pure 

pixel can be a linear mixture of subpixel components [104]-

[105]. In this context, when target pixels were classified to more 

than one group, fractional vegetation mask from the LULC map 

was generated, and weighted average values of surface 

temperature from respective biome-based models were 

computed (Appendix A, Fig. A2). 
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III. RESULTS 

A. LSTmean – TAmean Comparison under Cloudy Skies 

Considering the complex character of the surface–

atmosphere processes in the Alps, we first examined the overall 

relationships between ground-based LSTmean and TAmean under-

cloudy-sky conditions for each station independently. Fig. 4 

illustrates the LSTmean - TAmean scatterplots for sites located in 

forests and grasslands. 

The regressions show a site-dependency driven by landcover 

of the stations (Table I). The scatterplots represented by forest, 

however, approximated a 1:1 relationship more closely than 

sites covered by grasslands (Fig. 4). For forest sites (Fig. 4a-c) 

LSTmean and TAmean under cloudy skies ranged roughly the same 

values regardless their elevation, while TAmean for grass-

covered areas may underestimate surface temperatures (Fig. 4d-

f). In particular, LSTmean over grasslands tends to be higher than 

TAmean and the difference grows with temperature, especially at 

higher altitudes (Fig. 4e-f). Considering different LSTmean – 

TAmean behavior among the landcover types, the LST models 

were built based on aggregated stations that represent similar 

environmental conditions (Table I). Forest, grasslands, and 

permanent crops were considered as three separate model 

groups for the final LST reconstruction. 

B. Selected Predictors 

Although LST can be explained from TAmean, the biophysical 

impact of landcover on LST, as shown in Fig. 4, suggested 

incorporation of additional variables that can describe complex 

interplay between ground and atmosphere. The final features 

for each model group, as explained in Section II.C.3, were 

selected using forward feature selection (FFS) procedure in the 

spatial cross-validation (SCV) approach. Fig. 5 displays 

selected explanatory variables for each model group based on 

all algorithms applied. Their relevance was evaluated by Root 

Mean Square Error, averaged with respect to MODIS-like time 

splits (RMSEmean). 

As can be observed in Fig. 5, LSTs over grassland and forest 

ecosystems, regardless of the algorithm used, were explained 

by one and three unique sets of predictors, respectively. During 

the FFS procedure for forest group, parameters were mainly 

reduced to air temperature (TAmax, TAmean) and daily incoming 

solar radiation yielding RMSEmean ranging from 1.82°C to 

1.92°C, while for grass-covered areas vegetation structure 

parameter (z0·h-1
SD00) was additionally selected as significant 

predictor in all MODIS-like time models (Fig. 5b-c). Due to 

complex structure of the permanent crops, which influences 

temporal variability in LST, eight different combinations of 

features were chosen, and they varied between algorithms (Fig. 

5a). Considering all predictor sets of permanent crops, albedo-

based product – log(z0)·(α)-1 and air temperature reported the 

highest frequencies yielding 69% and 100% of times they 

occurred in the models, respectively. 

C. Model Comparison and Assessment 

Along with the predictor selection procedure, performance of 

the proposed LST reconstruction method was compared for 

each vegetation group separately (Table I). As mentioned 

previously in Section II.C.3, we checked regression overfit on 

test data in the SCV approach to evaluate predictive strength of 

the fitted models. Table VI shows averaged accuracy scores 

obtained from each algorithm with combined MODIS-like time 

splits. 

As can be observed in Table VI, the proposed LST 

reconstruction concept gave quite similar accuracy statistics for 

each vegetation classes with small differences between the 

tested algorithms. Considerably uniform RMSE (R2) metrics, 

regardless of the algorithm used, were present for forest and 

grassland ranging from 1.84°C to 1.91°C (0.86 to 0.88) and 

2.05°C to 2.12°C (0.77 to 0.78), respectively (Table VI). The 

greatest errors appeared over permanent crops yielding overall 

cross-validated RMSEs from 2.61°C (MLM) to 3.05°C using 

random forest (RF) algorithm. Similar situation applied to 

standard deviation of RMSE (SDRMSE) and R2 scores (SDR
2), 

resulting in higher values for all tested algorithms when 

compared to forest and grass-covered model groups (Table VI). 

The multivariate linear regression was found as the best LST 

estimator with SCV RMSEs (SDRMSE) of 2.67°C (1.62°C) and 

1.84°C (0.42°C) for permanent crops and forest, respectively. 

Although slightly lower RMSE over permanent crops was 

identified for the eNet, we selected MLM due to its smaller 

SDRMSE score (Table VI). For forest group eNet and ANN gave 

the same results (RMSE = 1.84°C) when compared to the linear 

model, however we excluded these algorithms because of their 

longer computation time to tune hyperparameters (Table V-VI). 

On average, for the grassland models, we obtained the highest 

predictive performance from ANN yielding 0.78 and 2.05°C for 

R2 and RMSE, respectively. Slightly lower accuracy statistics 

were noted for MLM and eNet with a 1.5% increase in RMSE. 

Random forest depicted the poorest predictive performance 

among all LULC model groups (Table VI). 

The performance of the regressions differed at the level of 

landcover classes. For forest we found smaller errors, while 

larger deviations in LSTs appeared over grasslands and 

permanent crops with 12% and 48% increases in RMSE when 

compared to forest accuracy metrics (Table VI). Due to the 

unique atmospheric coupling of forest, this class maintained the 

strongest LST-TA relationship (R2 ≈ 90%) among all model 

groups (Fig. 5, Table VI) [61],[106]. LSTs over grassland and 

permanent crops with a relatively smaller impact of turbulent 

mixing were additionally explained by other biophysical 

parameters, e.g., surface albedo, leaf area index and 

aerodynamic roughness. Instability of crops model group 

revealed by higher SDRMSE and SDR
2 values documented in 

Table VI, can be related to the limited number of samples and 

heterogeneities of the combined land-use types (orchards and 

vineyards) incorporated in the modelling. 

Considering the averaged accuracy statistics in Table VI, we 

achieved the strongest performance from ANN for grassland, 

while linear model gave the best results for permanent crops 

and forest groups. Therefore, only these algorithms were 

considered in the further analyses to reconstruct MODIS LST 

pixels obscured by clouds. 

To compare prediction performance of the vegetation groups 

we investigated distribution of ground-based LST with their 
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corresponding values predicted by the selected algorithms (Fig. 

6). On average, the interquartile ranges (IQR) of observed LSTs 

for all vegetation groups were in accordance with predicted 

data. We found that the models were incapable to reconstruct 

observations beyond the IQRs, especially over grasslands and 

permanent crops (Fig. 6a,c). These patterns were mainly present 

for very low and high values (shown as circles) which appeared 

rarely in the models. Generally, this demonstrates that the 

chosen algorithms were able to capture LST variability with 

respect to different landcovers. 

D. LST Reconstruction under Cloudy-sky Conditions 

In the second part of the LST reconstruction the regressions 

were applied to gridded variables to estimate missing 250-m 

MODIS LST under cloudy-sky conditions. The outcomes of 

restoring invalid MODIS LSTs are presented in Fig. 7. 

As demonstrated in Fig. 7, the approach proposed in this 

paper provided a satisfactory data recovery over the study area. 

Invalid values were effectively predicted and LST downscaling 

to 250 m spatial resolution allowed simulating LST variability 

at subpixel level. For all images, regardless their acquisition 

date and observing time, more than 92% of blank pixels were 

filled properly. The highest reconstruction rate was observed 

for scenes recorded in late summer and autumn (Fig. 7d-e) and 

ranged from 97.59% to 99.66% on October 26th and 11th, 

respectively. For other three dates (Fig. 7a-c), however, we 

noticed larger number of unrecovered pixels (≤ 7.16%) that 

were classified as outliers by the models. On June 29th and July 

8th areas of non-applicability were identified for forests located 

in the center of the main valley and on its edges (Fig. 7b-c). 

Slightly less unpredicted pixels (3.75%) were found on May 2nd 

which corresponded to high-mountain grasslands and 

permanent crops in the main valley (Fig. 7a). We found that the 

increased proportion of invalid LSTs, as seen in Fig. 7, may 

have occurred because of the smaller number of samples with 

cloudy-sky conditions and limited variability of observations to 

fit the models. This can be explained by different 

meteorological conditions in summer, with less intense and 

shorter cloud cover periods when compared to spring and 

autumn seasons. In addition, some pixels were not predicted 

due to coarse resolution of gridded parameters, such as MODIS 

LAI or albedo products. These factors had a negative impact on 

the LST reconstruction over the entire study area.  

The reconstructed maps generally follow thermal patterns of 

the study area with higher temperatures in the valleys and colder 

conditions at high altitudes. On average, pixels of permanent 

crops located in the southwestern part of the region had 

relatively higher temperatures when compared to other biome 

groups situated at higher altitudes. We found that lower LST 

values were obtained over grasslands and forests. In contrast to 

the permanent crops, these biomes exhibited higher spatial 

heterogeneities with regard to terrain and thermal variability. 

This was confirmed in grass-covered areas with high deviations 

in elevation and LST equal to 546 m and 3.65°C, respectively. 

Although for forest and grassland we noted similar thermal 

variability, standard deviation of elevation for the latter 

vegetation group was over 200 m greater than for forest. 

In addition, the reconstructed LST maps were compared with 

clear-sky MODIS LST grids acquired on temporally adjacent 

days (May 4th, Jul. 1st, Sep. 22nd, Oct. 27th). Table VII shows an 

overview of statistical measures obtained from LSTs under 

cloudy skies (Fig. 7) and their corresponding original MODIS 

images.  

As shown in Table VII, the averaged differences in LST 

between clear-sky MODIS and the reconstructed grids revealed 

a cooling role of thick cloud cover that reduces amount of 

incoming shortwave radiation. In general, mean surface 

temperatures for clear-sky MODIS maps were higher than for 

the reconstructed grid cells, although the differences varied 

between time acquisitions. The largest deviations could be 

observed during spring and summer, with a maximum 

difference of 4.54°C between June 29th and July 1st (Table VII). 

Although higher values of the clear-sky MODIS LSTs 

generally indicate a stronger impact of solar radiation on the 

surface heating process, LSTmean on October 26th was very close 

to the average from MODIS LST acquired one day later (Table 

VII). 

Due to the complex land surface interactions in highly 

heterogenous mountain ecosystems, the restored LST pixels 

could have been additionally explained by other predictors that 

influence surface thermal properties, such as landcover classes, 

biomass content or surface albedo (Fig. 5, Table VI). On the 

other hand, 1-km MODIS data may not represent LST 

variability at the subpixel scale of the reconstructed maps 

resulting in lower LST values over the study area. 

E. Validation with In-situ Data 

To assess the effectiveness of our LST reconstruction, we 

performed a quantitative assessment by comparing station-

based LSTs with their corresponding gap-filled pixels at 250 m 

spatial resolution for the entire year of 2014. Validation results 

are illustrated in Fig. 8. 

The evaluation results indicate a close agreement between 

ground measurements (LSTobs) and the LST reconstructions 

(LSTpred). Considering all available in-situ observations for the 

time acquisitions in 2014, the proposed approach was able to 

predict missing values with average R2 of 0.73 and RMSE equal 

to 2.50°C and (Fig. 8a-b). As can be observed in the scatterplots 

(Fig. 8a-c), the estimated grids have a relatively strong 

coherence with the stations, however, some observations 

depicted divergence from a 1:1 relationship. The largest 

deviations occurred for the agricultural (Caldaro) and grass-

covered sites (Mazia 1, Mazia 2) with higher values of the 

RMSE and instantaneous SWin (over 500 Wm-2), which reflects 

no presence of long-term cloudy skies during MODIS 

acquisition times (Fig. 8b). From this aspect, we eliminated 

those points from further analysis and achieved better 

evaluation results yielding 2.12°C and 0.84 for RMSE and R2, 

respectively (Fig. 8c). Considering each station separately, 

accuracies of the LST reconstruction under long-term cloudy-

sky conditions differed between stations with the lowest errors 

for Lavarone and Mazia 2 (RMSE = 1.24-1.57°C) and higher 

ones for Mazia 1 and Caldaro (RMSE = 2.42-2.81°C) (Table 

VIII). Similarly, biases between observed and predicted LSTs 
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were dependent on the site location. In general, for Caldaro and 

Mazia 1, regardless of sky conditions, the model led to 

overestimation ranging from -2.85°C to -2.38°C and -0.29°C to 

-1.47°C, respectively (Table VIII). While LST under all cloudy-

sky conditions (long-term & short-term cloudy sky) was 

underestimated at some sites (specifically at Lavarone and 

Mazia 2), on average LST predictions under long-term cloudy 

skies were higher than the observed values. Overall, the 

reconstructions perform better for long-term cloudy-sky 

observations with lower RMSE values when compared to all 

cloudy-sky conditions (Table VIII). 

Such discrepancies as shown in Fig. 8 and Table VIII, may 

have appeared because of differences in cloud cover conditions 

defined by the models and MODIS QA layer. A possible 

explanation is that although MODIS cells were classified as 

overcast during satellite observing time, those LSTs might not 

have been influenced by the long-term cloudy-sky conditions 

of our approach. This led to lower values of the reconstructed 

temperatures when compared to the ground measurements 

(Table VIII, Fig. 8). In addition, spatial heterogeneities of land 

surface over the Alps could not have been captured by coarse 

resolution of gridded predictors, such as solar radiation, LAI, 

and albedo products (Table III). These factors would have 

impacts on the accuracy of the gap-filling models leading to 

biases in the computation of the actual LSTs (Table VIII).  

To test the potential impact of the meteorological input 

uncertaintities on the model outputs under cloudy skies, we 

additionally predicted LSTs using the gridded datasets that 

were perturbated with input uncertainties of Type B by 

including their ±100% values to the input grids for the year 

2014 [108]. The reconstructed pixels were assessed in terms of 

RMSE and percentage LST change with respect to in-situ 

observations and original LST predictions, respectively. In 

general, among all predictors analyzed, we observed the biggest 

model deviations influenced by TAmax ranging from ±16% for 

Lavarone (forest) to ±8% for grassland (Mazia 1, Mazia 2) and 

permanent crops in Caldaro (Appendix A, Fig. A3). For other 

variables we observed smaller impact on the LST estimations. 

As shown in Fig. A4, RMSEs obtained between ground-derived 

and modelled LSTs (using both source and modified 

parameters) depended on model biome with the largest absolute 

differences (~1°C) for permanent crops (Caldaro) when TAmean 

and TAmax were perturbated. 

IV. DISCUSSION 

A. Advantages of the Proposed Reconstruction 

Thermal remote sensing images are prone to overcast 

conditions resulting in spatial gaps in LST data. Although many 

LST reconstruction methods were developed, their 

implementation is hampered either due to rarely available 

biophysical parameters or coarse resolution outputs, which 

makes them irrelevant in heterogenous environments. To 

overcome these limitations, the main objective of this work was 

to develop a robust procedure for restoring invalid coarse-

resolution MODIS LSTs at 250 m spatial resolution by 

combining data-driven modelling from meteorological stations 

with physical-based approach to retrieve variables under long-

term cloudy-sky conditions. The restored LST maps for six 

selected MOD11A1 images demonstrated the effectiveness of 

the AI-based reconstructions among all vegetation groups. The 

fitted models were able to identify parameters playing a key role 

in explaining LST variability driven by different landcovers. 

Spatial cross-validation (SCV) with high coefficients of 

determination and relatively small errors confirmed the strong 

model performance, yielding on average an R2 of 0.80 and a 

RMSE of 2.19°C. From a visual assessment of the restored 

maps, regardless of different seasons, no notable irregularities 

in LST patterns were observed. 

Due to lack of in-situ measurements in 2014 for all sites, the 

gap-filled LST images were validated with observations from 

four available stations (Fig. 8, Table VIII). Results 

demonstrated that predicted LST data were in accordance with 

ground-based records obtaining R2 of 0.84 and RMSE of 

2.12°C. Compared with other reconstructions dealing with 

mountainous areas, our approach showed satisfactory 

evaluation scores. On average, Ke et al. [48] and Sun et al. 

[109] obtained lower accuracy with RMSEs ranging from 1.42 

K to 3.16 K. Similarly, the SEB-based methods implemented 

by Yu et al. [29] and Yang et al. [32] led to weaker correlation 

between observed and predicted LSTs resulting in increased 

RMSEs ranging from 3.16°C to 4.78°C. However, we should 

keep in mind that these outcomes depend on site locations and 

are affected by accuracy of input data and spatial heterogeneity 

of study area. 

This study demonstrated that surface temperatures under 

cloudy-sky conditions differ significantly from those under 

clear skies leading to greater differences between LST and daily 

TAmean (Fig. 3, Table IV) [60],[110]. Although they are correct 

from geostatistical point of view, they should not be used for 

retrieval of actual thermal conditions of the surface. On 

average, quantitative comparison between reconstructed maps 

and temporally adjacent clear-sky MODIS pixels showed that 

LSTs under cloudy-sky conditions were smaller when 

compared to valid datasets (Table VII). This indicates an impact 

of clouds on amount of incident shortwave radiation, which 

regulates the land heating process. In this case findings from the 

present study are not in agreement with spatio-temporal gap-

filling proposed by Weiss et al. [44], Sun et al. [109], Li et al. 

[111] and Sarafanov et al. [43] who predicted overcast surface 

temperatures from adjacent cloud-free pixels.  

The developed AI-based approach provides more accurate 

understanding of additional controls on land surface 

temperature at local scale. Although strong correlations 

between LST and TAmean under overcast conditions were 

observed (Fig. 4), applying auxiliary variables to the models 

helped to explain LST variations among different vegetation 

groups. Based on preliminary tests, a split into separate 

landcover classes, which was also found favorable by Huang et 

al. [7], improved the accuracy of the models resulting in unique 

selection of final algorithms and predictors for each analyzed 

biome (Fig. 5, Table VI). Permanent crops and forest models 

achieved the most satisfactory results from multivariate linear 

regression, while for grasslands the highest prediction 
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performance was obtained using neural network algorithm. 

Forward feature selection revealed impacts of different factors 

controlling LSTs in heterogenous ecosystems. Similar to the 

results of Bertoldi et al. [53] and Mildrexler et al. [61], forest 

maintained the strongest relationship with daily air temperature 

(TAmean/TAmax), while agricultural and grass-covered areas 

were additionally influenced by incident shortwave radiation 

and surface properties, such as albedo, aerodynamic roughness, 

and biomass content (Fig. 4-5). The method developed in this 

study works well for the areas with clouds, which makes it 

comparable to physical-based LST reconstructions [30],[112]. 

Additionally, it does not require rarely available input 

parameters to describe complex physical mechanisms between 

ground and atmosphere.  

Although our reconstruction approach showed a strong 

performance, about 7% of pixels of the study area were not 

predicted due to intentionally imposed constraints on the 

models (Fig. 7). Prediction power of the reconstruction is 

limited by spatial cross-validation strategy (SCV) and similarity 

factors (Euclidean distance and spectral similarities in predictor 

variable space) that compare coherence between station-based 

training dataset and gridded predictors. These factors reduce 

areas for LST estimation to known environments where 

reconstruction errors apply. In this context, this approach seems 

to be objective in terms of spatial predictive tasks into new areas 

by avoiding locations with non-standard observations identified 

by models [9],[90],[109]. 

B. Limitations 

The proposed gap-filling approach exhibits large potential 

for producing high quality LST maps. Nevertheless, reliable 

reconstructions of LST in the Alps still pose challenges, mainly 

due to landscape heterogeneities and thermal variability in 

complex mountain environments.  

Despite strong correlation between gridded data and ground 

measurements, the RMSE is 2.12°C, which reflects that for 

some points prediction performance was still poor. Such 

discrepancies are likely related to input parameters leading to 

overestimation or underestimation of the restored maps. 

Differences in spatial scales between station records and 

gridded predictors, e.g., surface albedo, solar radiation, and air 

temperature can explain errors in the reconstructed data. 

Furthermore, the black anti-hail net used to protect the orchards 

(Caldaro) may introduce some bias in the final LST output. In 

addition, some remotely sensed variables, including leaf area 

index and surface albedo were obtained from composite 

products (4-day MCD15A3H and daily 16-day MCD43A3 

products), which introduces uncertainties associated with 

neglected temporal variations. In this context, more advanced 

daily interpolation methods could be explored [113]-[115]. 

When comparing the cross-validation results (Table VI) with 

other data-driven methods [50]-[51], we found that our 

evaluation measures had less satisfactory scores. Wu et al. [50] 

obtained considerably stronger model performance with the 

CNN algorithm, attaining RMSE below 1°C. Similarly, good 

results were reported by Zhao and Duan [51]. The authors 

applied random forest model from clear-sky pixels to cloud-

covered MODIS LST with RMSE of 1.14°C and R2 equal to 

0.94. Such discrepancies between our method and the above 

mentioned [50]-[51] could be explained by a relatively small 

number of observations for the agricultural landcover class, 

which led to instability of the model reflected by greater 

deviations in RMSE between cross-validated ensembles. In 

fact, diversified character of the permanent crops (orchards and 

vineyards) and the resulting data randomness had an additional 

impact on the model performance. Therefore, further study will 

concentrate on the extension of ground data by augmenting the 

timeseries of underrepresented training data for modelling prior 

to LST reconstructions [116]-[117]. Since Recurrent Neural 

Network (RNN) can learn patterns and associations between 

sequential data over time, deep learning models, such as the 

Long Short-Term Memory (LSTM) algorithm exhibit a great 

potential in generating high-quality observable variables for 

better model training effects [118]. In addition, combining 

ancillary ground observations outside the study area along with 

post-processed outputs from physical models would be 

beneficiary to learn new spatio-temporal input parametrizations 

of predictors [119]. On the other hand, the performance of the 

discussed methods [50]-[51] relied on low-resolution satellite-

based inputs and random cross-validation strategy, which 

makes them less strict and more prone to autocorrelation than 

our “leave-one-station-out” SCV method [9]. Additionally, our 

approach exploits data that capture spatial detail at station level, 

which translates to stronger thermal variability when compared 

to heterogeneous information from coarse resolution MODIS 

and MSG/SEVIRI LST pixels. Therefore, the prediction errors 

for our method can be generally acceptable. 

While the predictions were robust in areas with high-

frequency cloudy-sky conditions, in some cases cloud-covered 

pixels from MODIS QA layer could lead to disagreement 

between reconstructions and their actual temperatures. When 

comparing our estimations to ground data, we found that 

increased proportion of solar radiation caused underestimation 

of restored values (Fig. 8, Table VIII). While LST 

reconstruction was resilient in areas with high-frequency 

cloudy-sky conditions, the method was limited for short-term 

cloudy skies. The proposed method assumes that overcast 

conditions are present when minimum 5-hour constant 

cloudiness is recorded. Thus, the approach is suitable for long-

term overcast conditions with thick clouds. Otherwise, it can 

lead to underestimation of LST values, which is related to less 

intense insolation blocked by clouds. Thus, developing an 

extended approach for diversified overcast conditions could 

bring to significant accuracy improvements to the LST 

reconstruction over complex Alpine ecosystems. 

Finally, the developed relationships are tuned to the 

ecosystems that characterize the study area. However, they 

could be easily extended to different regions if new 

observations (e.g., representing unique climatic conditions and 

surface properties) were provided. From this point of view, the 

method is less general than other data-driven approaches 

utilizing spatial information from remote sensing 

measurements [50]-[51],[120]-[121], because it specifically 

aims to gap-fill LST over Alpine regions, which are often 
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under-represented in wide-ranging models. Nonetheless, LST 

reconstruction over different areas is still feasible, provided that 

required variables are available. 

V. CONCLUSIONS 

Cloud cover has a significant impact on quality of remotely 

sensed LST observations, especially in high-frequency overcast 

areas, such as complex mountain regions. Therefore, a robust 

reconstruction of actual LST is a major research priority. 

To address this problem, we presented a new method to 

reconstruct MODIS LST values under cloudy skies from 

station-based models at subpixel (250 m) spatial resolution. The 

proposed approach reconstructs actual thermal conditions of 

land surface under cloudy skies as an alternative way to the 

SEB-based methods that require complex parameters and are 

computationally expensive. Results demonstrate that the 

proposed data-driven analysis is capable of restoring invalid 

MODIS maps in a very robust way. 

The reconstructed maps have reasonable LST values when 

compared to temporally neighboring clear-sky MODIS days. 

The validation against in-situ data confirmed the strong 

agreement between estimations and ground observations. The 

performance of the models had satisfactory results. Prediction 

power showed landcover dependency resulting in individual 

predictors for each biome. Overall differences in RMSEs 

between machine learning algorithms and linear regression 

were minor for forest and permanent crops, while for grassland 

neural networks slightly improved the performance. At level of 

single vegetation groups, RMSE values ranged from 1.84°C in 

forest to 2.67°C for permanent crops.  

Notably, it should be mentioned that the restored maps 

represent LSTs under long-term cloudy skies and may 

underestimate LST cells affected by brief overcast conditions. 

Therefore, future research should include an implementation of 

a hybrid approach for recovering missing pixels affected by 

short-term and long-term cloud contamination. Moreover, 

additional work will focus on the development of the enhanced 

reconstructions under long-term cloudy-sky conditions to 

increase spatial prediction performance of the established 

models. In parallel to the gap-filling procedure, data 

enhancement will be also applied to clear-sky observations of 

1-km MODIS LST data to produce the full collection of 250-m 

resolution images considering different sky conditions. 

Furthermore, the proposed reconstruction method by applying 

the AI-models can be extended to other low-resolution TIR 

sensors, such as Sentinel-3 SLSTR to provide data continuity 

for the study area. The availability of a spatially and temporally 

continuous set of thermal data would allow monitoring multi-

temporal trends of thermal conditions of the surface. These 

outputs could be value-added products for studies related to 

climatology, drought detection and sustainable agriculture 

production where land surface temperature is a baseline 

information for monitoring ecosystem dynamics over high 

frequency cloud-covered areas, such as mountain regions. 

APPENDIX 

 
 

 
 

 

 
Fig. A1.  Detailed land use landcover (LULC) map from the LISS-2013 

cropped to the reconstruction area. 
 

 

 
Fig. A2.  250-m fractional vegetation map from the LISS-2013 for the 

landcover-based reconstruction models. Group “mixed” indicates 250-m 
pixels with more than one vegetation biome. 

 
Fig. A3.  Mean change in modelled LSTs with respect to surface temperature 

estimations from source meteorological input and the selected models (Table 

VI) for the year 2014. Each climate predictor (TAmax, TAmean, TAmax-TAmean, 
SWin) was perturbated by its uncertainty and included in the model together 
with remaining (unchanged) variables.  
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TABLE I 

METEOROLOGICAL STATIONS UTILIZED IN THE LST MODELLING 

Model LULC Group Station 
Fluxnet 

site  

Altitude 

[m a.s.l.] 
Time span 

(1) Grassland Grassland 

Rotholz (1) 

Chamau (2) 
Früebüel (4) 

Neustift (17) 

Oensingen (5) 
Monte Bondone (10) 

Mazia 1 (11) 

Mazia 2 (12) 
Mazia 3 (8) 

Mazia 4 (9) 

Torgnon 1 (14) 

AT-Rtz 

CH-Cha 
CH-Fru 

AT-Neu 

CH-Oe1 
IT-MBo 

- 

- 
- 

- 

(IT-Tor) 

523 

393 
982 

970 

452 
1553 

1450 

1550 
1909 

2688 

2160 

2008 

2006 
2006 

2002 

2003 
2003 

2014 

2014 
2019 

2016 

2008 

2012 

2012 
2012 

2012 

2008 
2013 

2017 

2017 
2019 

2019 

2017 

(2) 
Apple Orchard  

Vineyard 

Permanent 

crops 

Caldaro (6) 

Valle dell’Adige (16) 

- 

IT-VdA 

240 

206 

2014 

2008 

2015 

2010 

(3) 

Evergreen needleleaf 
forest  

Deciduous needleleaf 

forest 

Forest 

Lavarone (7) 
Davos (3) 

Renon (13) 

Torgnon 2 (15) 

IT-Lav 
CH-Dav 

IT-Ren 

IT-TrF 

1349 
1639 

1730 

2091 

2003 
2006 

2004 

2010 

2014 
2011 

2013 

2016 
*Numbers in parentheses in the 4th column refer to station locations presented in Fig. 1b 

TABLE II 
STATION-BASED PARAMETERS FROM YEAR-ROUND OBSERVATIONS AND THEIR CORRESPONDING VARIABLES USED FOR LST MODELLING 

Source data Variable Short description 

Outgoing and incoming 

longwave radiation 

Land Surface Temperature [°C] 

(
LWout − (1 − ε)LWin

σε
)

1/4

 

LST formula based on Stefan–Boltzmann law [55], 

where σ is the Stefan–Boltzmann constant, ε is the 

surface emissivity from M*D21A1D [57], and 
LWout/LWin is the outgoing/incoming longwave 

radiation retrieved from ground observations 

Air temperature 
Mean air temperature (TAmean) [°C] 

Maximum air temperature (TAmax) [°C] 

daily mean and maximum air temperature derived 

from in-situ data 

Solar radiation 
Daily incoming shortwave radiation 

(SWin) [MJ m-2day-1] 
daily cumulative SWin retrieved from ground 
observations 

Surface albedo 
Vegetation parameter [-] 

log⁡(𝑧0)

𝛼
 

aerodynamic roughness length (z0) and albedo (α) to 

describe canopy structure 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3147356, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

16 

 
 

 
 

TABLE III 
GRIDDED DATASETS USED IN THIS STUDY 

Source data Variable Pixel size Short description 

Prediction of missing MODIS LST pixels 

In-situ weather station 

records  

Daily grids of: 
Mean air temperature (TAmean) [°C] 

Maximum air temperature (TAmax) [°C] 

250 m 
Maps derived from daily station observations through a 

spatial interpolation scheme 

MSG/SEVIRI DSSF  
Downscaled daily incoming shortwave 

radiation maps [MJ m-2day-1] 
250 m 

Downscaled MSG downwelling surface shortwave flux 
(DSSF) through RK interpolation 

MCD43A3 
Vegetation parameter [-] 

log⁡(𝑧0)

𝛼
 

500 m 
Relationship between aerodynamic roughness length (z0) 

and albedo (α) from MCD43A3 composites 

MCD15A3H1 
f1(z0, LAI): z0·(h)-1 

CM88 [-] 
f2(z0, LAI): z0·(h)-1

SD00 [-] 
500 m 

Vegetation structure parametrization (f1, f2) with roughness 

length (z0) and leaf area index (LAI) obtained from 

MCD15A3H. Parameter h refers to vegetation height, and 
CM88 and SD00 subscripts indicate adopted formulas of 

Choudhury & Monteith [68] and Schaudt & Dickinson [69], 

respectively 

MOD21A1D2 

MYD21A1D2 
Emissivity bands: 29,31,32 [-] 1000 m 

Daily emissivity maps from M*D21A1D composites for 

station-based LST retrieval (see Table II for more details ) 

Determination of spatial applicability of the reconstructed LST maps 

MOD11A1 Cloud cover [-] 1000 m 
Cloud cover from daily Terra MODIS LST product to 

identify cloudy pixels 

Snow Cover Area 

(SCA) 
Snow cover [-] 250 m 

Daily snow maps based on Terra and Aqua MODIS 

Reflectance for masking areas covered by snow 

LISS 2013 - Land 
Information System 

South Tyrol 

Vegetation mask [-] - 
Vegetation mask for identification of homogeneous 
landcovers within 250-m pixels (80% threshold of 

homogeneity) 

MOD13Q1 Enhanced Vegetation Index (EVI) [-] 250 m 
EVI grids from Terra MODIS Vegetation Indices product to 

delineate pixel-wise areas of applicability for the models 

1Data used for both the station-based modelling and the reconstruction of missing MODIS LST pixels; 2Data used for station-based LST retrieval 

 
TABLE IV 

MEAN DIFFERENCE BETWEEN HOURLY LST AND DAILY TAMEAN UNDER 

CLEAR AND LONG-TERM CLOUDY SKIES FOR EACH STATION 

Station 
LST-TAmean [°C] 

Cloudy-sky Clear-sky 

Rotholz 
Chamau 

Früebüel 

Neustift 
Oensingen 

Monte Bondone 

Mazia 1 
Mazia 2 

Mazia 3 
Mazia 4 

Torgnon 1 

Caldaro 
Valle dell‘Adige 

Lavarone 

Davos 
Renon 

Torgnon 2 

2.60 
1.29 

1.06 

2.76 
3.70 

4.07 

2.76 
3.84 

4.08 
3.74 

4.17 

1.43 
1.53 

0.07 

-1.04 
0.97 

1.20 

7.66 
6.45 

6.69 

8.51 
10.16 

12.86 

9.63 
13.31 

13.04 
15.23 

13.18 

4.13 
7.83 

2.82 

2.07 
5.01 

5.60 
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TABLE V 
RESULTS FROM THE HYPERPARAMETER OPTIMIZATION FOR THE MODELS WITH THEIR FINAL VALUES 

Algorithm Short description 
Hyperparameter search 

grid 
Final value 

eNet 
alpha: elastic mixing parameter 

lambda: regularization parameter 

alpha: 0.0-1.0 

lambda: 0.001-0.6 

alphaforest: 1.0 

alpha agri: 0.8, 1.0 

alphagrass: 1.0 

lambdaforest: 0.05 

lambdaagri: 0.0, 0.05, 0.7 

lambdagrass: 0.0 

ANN 
size: units per hidden layer 

decay: weight penalty parameter 

size: 1-10 

decay: 0.0-0.5 

sizeforest: 1, 9 

sizeagri: 1, 2, 3 

sizegrass: 1, 2, 3 

decayforest: 0.0, 0.4 

decayagri: 0.0 

decaygrass: 0.0, 0.1, 0.2, 0.5 

RF 

mtry: number of prediction variables 

randomly sampled as candidates at 

each split 

mtry: 1-4 

mtryforest: 2, 3 

mtryagri: 2, 3, 4 

mtrygrass: 2 

ANN = feed forward network with one hidden layer, RF = random forest based on 1000 trees, eNet = elastic net model used as an alternative to the 

MLM. The abbreviation agri refers to permanent crops.  

TABLE VI 
SUMMARY OF THE MODEL EVALUATION MEASURES FROM MULTIVARIATE LINEAR REGRESSION, ELASTIC NET, NEURAL NETWORKS, 

AND RANDOM FOREST 

Group Algorithm RMSE [°C] SDRMSE [°C] R2 SDR
2 Final predictors 

Permanent crops 

MLM 2.67 1.62 0.74 0.15 TAmean, TAmax 

eNet 2.61 1.74 0.76 0.16 TAmax - TAmean 

ANN 2.74 1.51 0.72 0.13 SWin 

RF 3.05 1.49 0.69 0.11 log(z0)α
-1 

Forest 

MLM 1.84 0.42 0.88 0.04 TAmean, TAmax 

eNet 1.84 0.45 0.88 0.04 SWin 

ANN 1.84 0.42 0.88 0.04 TAmax - TAmean 

RF 1.91 0.41 0.86 0.04  

Grassland 

MLM 2.07 0.32 0.77 0.07 TAmean, TAmax 

eNet 2.08 0.32 0.77 0.07 TAmax - TAmean 

ANN 2.05 0.33 0.78 0.07 SWin 

RF 2.12 0.32 0.77 0.07 z0·(h)-1
SD00 

Underlined records represent final algorithms for reconstructing cloud-covered MODIS LST and their corresponding predictors (7th column) 

selected in the forward feature selection approach (see Section III.B and III.C for more details) 
 

TABLE VII 

ANALYTICAL COMPARISON BETWEEN THE RECOVERED LST AND THE TIME-COINCIDENT ORIGINAL MODIS DATA, AVERAGED 

FOR THE STUDY AREA 

Reconstructed cloudy LST Clear-sky MODIS LST 

date LSTmean [°C] date LSTmean [°C] 

2 May 2014 8.50 4 May 2014 10.41 

29 June 2014 12.95 1 July 2014 17.49 

19 September 2014 12.56 22 September 2014 13.60 

26 October 2014 8.69 27 October 2014 8.72 

Clear-sky MODIS LST maps for the remaining recovered days (2014 Jul. 8th, 2014 Oct. 11th) were not available 
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TABLE VIII 
LOCAL COMPARISON OF RMSE AND BIAS VALUES BETWEEN IN-SITU DATA AND RECONSTRUCTED GRIDS FOR CLOUD-COVERED 

MODIS LST PIXELS (DERIVED FROM QA FLAGS) FOR THE FOUR STATIONS BASED ON TIMESERIES FROM 2014 

Station 

Reconstructed LST 

RMSE [°C] (BIAS [°C]) 

all cloudy-sky conditions 

(long- & short-term)  
long-term cloudy-sky conditions 

Caldaro 
3.26 

(-2.85) 

2.81 

(-2.38) 

Lavarone 
1.37 

(0.12) 

1.24 

(-0.44) 

Mazia 1 
2.40 

(-0.29) 

2.42 

(-1.47) 

Mazia 2 
2.88 

(1.10) 
1.57 

(-0.71) 

The reconstruction results are shown for all cloudy-sky conditions and for observations under long-term cloudy-sky conditions (see 

Fig. 4 and Fig. 8c) 

 
Fig. 1.  Overview of the study case: (a) Location of Province of Bozen/Bolzano, (b) Positions of the stations utilized in the ground-based LST modelling. 
Some stations were situated outside the official border of the Alps (in red) (http://www.eurac.edu/). Since they were located in areas with similar climatic 

conditions, they were included in the modelling. (c) Satellite image of the experimental area for the LST reconstruction in Vinschgau/Venosta Valley obtained 
from the Express Kosmosnimki service (http://kosmosnimki.ru/). 

 
Fig. 2.  Workflow for LST gap-filling procedure under cloudy-sky conditions for MODIS data. While rectangular boxes refer to data used, ellipse shapes 

represent processing steps. 
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Fig. 3.  Mean differences between hourly LST and daily TAmean for all stations used in the study grouped by: (a) 

hour corresponding to approximate daytime Terra MODIS acquisition time and (b) day of year (DOY) between 
April and October. 

 

 
Fig. 4.  Scatterplots between LSTmean and TAmean under cloudy skies for six example weather stations covered by forest (in dark green) 
and grassland (in light green). LSTmean was calculated as an average from hourly LSTs recorded between 9 am and 1 pm as an 

approximate range for daytime Terra MODIS acquisition time over the study area. Dashed lines in the scatterplots depict divergence 

between LSTmean and TAmean. 
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Fig. 5.  Selected combinations of predictors evaluated by the averaged RMSE (RMSEmean) from all algorithms for: (a) permanent crops, (b) 
forest, and (c) grassland during the forward feature selection (FFS) procedure. RMSEmean was computed considering hour-round LST models 
corresponding to MODIS acquisition time.  

 
Fig. 6.  Comparison between observed and predicted LSTs from the final models for: (a) permanent 

crops, (b) forest, and (c) grassland, considering combined MODIS-like time splits. 

 

 

 (a) (b) (c)  

 1 
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Fig. 7.  Results of the proposed subpixel LST reconstruction of 1-km daytime Terra MODIS LST for long-term cloudy skies acquired on (a) 2 May 

2014, (b) 29 June 2014, (c) 8 July 2014, (d) 19 September 2014, (e) 11 October 2014, and (f) 26 October 2014 in Vinschgau/Venosta. The attached 
table presents rate success of reconstructions for each vegetation group (see Appendix A.2). According to the QA layer all original MODIS LST matrices 

were 100% covered by clouds.  
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Fig. 8.  Scatterplots between LST from ground measurements (LSTobs) and recovered values (LSTpred) based on the MODIS acquisition dates for the year 

2014 with respect to: (a) instantaneous solar radiation (hourly SWin), (b) sky conditions, (c) available stations with reduced number of observations. Non 
cloudy-sky conditions in Fig. 8b refer to station records that were neither classified as long-term cloudy-sky nor clear-sky observations. The validated sites 

are located in relatively uniform areas with minimum 85% of homogeneity for related land-cover types within 250 m pixel [73],[107]. 


