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Abstract 

Group velocity and group velocity dispersion for a wave packet in vectorial discrete Klein-Gordon models are obtained 
by an expansion, based on perturbation theory, of the linear system giving the dispersion relation and the normal modes. We 
show how to map this expansion on the multiple scale expansion in the real space and how to find nonlinear Schriidinger 
small amplitude solutions when a nonlinear on-site potential balances the group velocity dispersion effect. @ 1999 Elsevier 
Science B.V. 

1. Introduction 

One of the most popular approaches used to determine the small amplitude envelope soliton solutions in 

nonlinear models is the well-known multiple scale expansion (MSE) technique [ 11. This technique amounts 

to expanding the equations of motion on different time and space scales looking for wave-packet-like solutions; 
a wave packet is a superposition of plane waves whose frequencies and wave vectors lie in a narrow band, 

and it can be conveniently described by a plane wave with an amplitude that varies slowly in space and time. 

Increasing progressively the time and space scales one determines in a first step the carrier wave as a phonon 
mode of the linearized system, then deduces the partial differential equation that identifies the envelope phase 
velocity with the wave packet group velocity, and finally derives the NLS equation for the envelope whose 
diffusion coefficient is in fact the wave packet group velocity dispersion. An alternative method, commonly used 
in optics, consists in expanding the dispersion relations with respect to the carrier frequency and then in building 

at each order of this expansion an operator that acts on the envelope function [ 21. MSE has been successfully 
applied to various nonlinear systems with scalar fields and the corresponding method adopted in optics has 
permitted the study of optical solitons in fibers. In this latter case one deals with electric field components 
which are not coupled at the linear order of the Maxwell equations. However, many nonlinear models of interest 
involve vectorial fields with coupled components at the linear order that give rise to dispersion relations with 
more than one branch: classical examples are given by multi-atomic lattices, or by lattices in which the mass 
at each site can move in a multidimensional space. 
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In this wdrk, we show how to find small amplitude envelope soliton solutions in such vectorial lattice 

problems. The main difficulty with respect to the scalar case is to determine the relative amplitudes of the 
different components of the field. We will perform a perturbative expansion, around one wavenumber, of the 
linear system that gives the dispersion relations and the linear eigenmodes; then we will introduce an operator 

formalism analogous to that used in optics to obtain, from this expansion and from the nonlinear terms, the 

MSE equations, up to the NLS one. 
An application of the method presented in this work can be found in a forthcoming paper [ 31, where the 

envelope soliton solutions of a helicoidal DNA model described by a radial and an angular degree of freedom 

for each site are derived. 

2. Wave-packet in linear vectorial lattices 

The NLS equation is obtained when a weak dispersion is balanced by a weak nonlinearity. In order to 
characterize the dispersion, let us first restrict our attention to the linear part of the system of interest. We start 

with a one-dimensional vectorial linear lattice model given by the equations of motion, 

a2E( n, a, t) 
a,2 = - c J(n - n’, a, cu’) E(n’, a’, t), (1) 
“. 

n’.a’ 

where n, n’ are the site indices, CY, CY’ are the indices that label the components of the vectorial field E(n, a, t), 
and J( n - n’, a, a’) are the force constants depending on n - n’ for translationally invariant systems. 

Looking for plane wave solutions of the form 

AV~(~) ei(qn-w(q) 1) + c c 
. ., 

where A is the wave amplitude, the equation of motion is mapped to the operator equation in the wave numbers 

space, 

where j(q) is the Fourier transform of the matrix j(n - n’). The index 1 runs from 1 to the number of 
components of the vectorial field E( n, CY, t) ; the eigenvalues functions wF( q) give the branches of the dispersion 

relation; the normal modes VI(q) are the orthonormalized eigenvectors of the matrix j(q) - w:(q) . 

In order to investigate the dispersion, we now consider a wave-packet-like solution, i.e. a superposition of 
plane waves with wave numbers in a small interval, 

qo+Aq 

&(n, t) = I A(q) VI(q) ei(q”-O/(q) ‘) dg + C.C. (4) 

a-Aq 

For each q contributing to the wave packet the system of equations (3) must be fulfilled. The weakly dispersive 
case is obtained by considering only small deviations of q with respect to the wavevector qo corresponding to 
the center of the wavepacket. To measure this deviation, the wavevector q is written q = qo + .sql, where E << 1. 

Eq. (3) is solved, Vql in the integration range, by a perturbative technique. 
The operator j( qo + l ql ) can be expanded in Taylor series as I( qo) + ef’( qo) q1 + s2f”( qo) qf/2 + . . . The 

quantities Ep( qo) 41, l ‘.f”(qo) qf/2 are small perturbations with respect to the unperturbed operator .!(,o), 
whose eigenvalues are of = w:(qo) and whose eigenvectors VI = V,(qo) constitute a complete basis. 



S. Cocco et al. /Phwics Letters A 253 (1999) 161-167 163 

According to standard perturbation theory [4] we write the expansions of the eigenvectors and eigenvalues, 

V/(40 + Eql) = VI + dqq, + GV;*‘q:/2 + . . , (5) 

w/(qo+Eq,) =w,+EJ’) , q, + E%J(*‘q:/2 + . . (6) 

Eq. ( 3) has to be solved at each expansion order, 

at order 8: .fV, = o;V,, (7) 

at order 6’: (.h’\” + JI’Vl)q’ = (2w,wj”Vf + wfV\‘))q’, (8) 

at order l ‘: (.f’Vj” + i,f”V, + i.fV12)) qf = (o(‘)fV, + wroj”V, + 2w,wj”Vj” + :wfVj”) qf. (9) 

At order ~8, one solves the unperturbed problem determining VI and WI. At order E, one determines Vl I). w) “: 

imposing Vl ’ ’ to be orthogonal to VI to guarantee the normalization of V,( 40 + eq’ ), the scalar product of ( 8) 
with Vz, (m # I) gives 

vn,*jlv, 
cy 0, = w; - w;; rn f 1, (11) 

and that with VT gives 

At order 6, one determines wj*) by multiplying (9) by VT, 

(13) 

We assume, for the sake of simplicity, that the eigenmodes of J (see (3)) are not degenerate, but the 
generalization of the degenerate case is possible with the standard perturbation theory. 

The phase of each component of (4) can be expanded around the central wave number 40, up to second 
order in l q, = q - qa using the values of 01(l) and 01~’ determined above, 

E,(n, t) = e i(*fln-w(qo) tlE s Atqo + l a) V/t40 + WI) 

-Adc 

x exp{ieq’ (n - WI” (40) t) - iie2q:wj2) (qa) t} dq’ + C.C. (14) 

Under this form, Elfn, t) appears as a plane wave, henceforth called the carrier wave, with an amplitude that 
depends on space and time and which corresponds to the integral of Eq. (14), E,(n, t) = F( n, t) exp[i( qort - 
w/(qo) f)] + C.C. The fact that wl’)(qo), wi*‘(qo) obey relations ( 12) and ( 13) ensures that this wave packet 
is a solution of the original Eq: ( l), up to the order of the various expansions. 

In order to extend the study to the nonlinear case it is useful to express these conditions under the form of 
an equation in the space-time coordinates for the amplitude. Let us introduce the quantity 
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+4/r 

A(n, t) = 
s 

A(qo + ELI) exp{ieqt(n - wi”(qc) t) - ~ie’q~w~“‘(qc) t}dqt. 

-4lc 

(15) 

Eq. ( 15) shows that A(n, r) slowly varies in space and time. In the spirit of the multiple scale expansion, it is 

natural to introduce the slow variables XI = en., tt = l t and t2 = e2t so that A(n, t) can be written as 

-tAYlC 

A(n,t) = A(xI,tI,t2) = 
J 

A(qo+ Eql)exp{iql(xl - wi’)(qo) TV) - iiqfwj2’(qo) t2)dq,, 

-M/C 

(16) 

or 

+AYle 

A(xI,~I,~z) =A(a,t2) = 
J 

A(qo + Eql) exp(iq1.n - $iqfwj2’(qo) tz}dql,, 

-4le 

(17) 

with the introduction of the variable st = x1 - w, (‘)(qo) tl to switch to the frame moving at the group velocity 

of the carrier wave. 

Using the relation (dA/dxl) = (dA/&l) = i(ql) 3 JTf$z. tqtA(qo + Eqt ) exp {iqlst - ytqlwI ” 2 ‘2’(qo) r2)dqi 

that derives directly from Eqs. ( 16) and (17), and the expansion (5) of V(q0 + Eql), the amplitude F of the 
wave can be expressed as a function of A ( SI , t2) by the relation 

F(xt,tt,t2)=~ VI-icVi$ 
( 

A(xI,~I,~~). (18) 
1 

From ( 16) and ( 17), we directly derive the equations of motions of A as a function of the slow space-time 

variables, 

( dA 

at+ 1 

and 

0, ( 19) 

dA 
iF+ 

2 

where wjl) and wj2) are then the group velocity and the group velocity dispersion of the wave packet 
determine the velocity and the spread out of the envelope function. Eq. ( 18) shows that V\ determines the 
order correction to the direction of the vectorial field solution. 

3. Nonlinear vectorial lattice 

(20) 

and 
first 

We now consider the full equation of motion, including nonlinear on-site potential terms. Extra nonlinear 
terms depending on time derivatives may also appear in the case of non-Cartesian coordinates systems, 
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#E( II, a, t) 
a+2 = - c J(n - d, ff, a’) E(n’, CY’, t) 

c;,~ (cr’, a”) Eck’ (II, a’, t) E (cl-k) 
(II, a”, t) 

+kf-k Cdqk,~j(a’,cr”,a”‘) E’.j’(n,a’,r) E(‘-‘)(n.a”,r) E(“-“(,t.d”.t). c 
d=O k=O j=O n”‘.n”<n”‘,n’<n” 

(21) 

where Et-i) (II, a, t) indicates the jth time derivative of E( II, (Y, t), and c;’ k( a’, a”), C$,, , (a’, a”, a”‘) arc the 

quadratic and cubic nonlinear terms numerical coefficients. Index d is the total time derivative order of each 
term. The terms with d = 0 are the nonlinear potential force terms; the others derive from the kinetic energy in 

the case of non-Cartesian coordinates so that d < 2. 

The quadratic terms in (21) give rise to second harmonic and constant terms that have to be included as 
additional smaller corrections if we look for a small amplitude solution, 

+E~~,IA(x,,~,,~?-)I~+O(E~). (22) 

We are interested in situations where dispersion can balance nonlinearity, and therefore they have to be measured 
by the same scaling parameter E. While the overall E factor was not important in the linear case, it must be 
explicitly included in the nonlinear case. 

We solve the equation of motion (21) on the three characteristic magnitude scales of the wave packet. At 
order E we get WI, VI from Eq. (7). 

At order c2 we get for the wave packet term expressed in the form (4) the system of equations (8‘1 for each 
qt in the integration range. After integration on the envelope distribution this gives rise to the equation in the 

anti-transformed Fourier space 

a 
Zw,V,~+(.i-w?)Vl”~+rV,- A(x,,r,,t2)=0. 

1 I dXl > 

In fact from ( 16). the average wave numbers deviation is (91) = -idA/&t and the averaged frequency deviation 
is in the same way (Awl) = (wl(“qt) = idA/&,. 

By scalar product of (23) and V,,, Y’m Z 1 we obtain the components a,,, ( 11) of Vi ‘) ( IO) on the base 

{V,,} and by scalar product of (23) and V,* we obtain Eq. ( 19) with wi” defined by ( 12). 

At the same order of expansion one determines the vectors y,, p, collecting the terms of corresponding order 

(E’) and phase in the equation of motion (2 1) in which the solution form (22) has been inserted ’ . One then 
obtains yI by solving the algebraic system 

? d 

(24) 
d=O k=O &,,‘<I+ 

where c,l,k ( LY’, LY”) is the vector of components c$.~( GJ’, LY”), each derivative with respect to f() giving a factor 
(-iwl). And p, is obtained from the system 

’ Note that if J(0) has some null columns the linear system solution is defined except for some constant components. They have to be 

added as order e terms in (22). enter in the r.h.s. of (25). and are then solved with the O(e’) equations 13 I; the final O(r) result is in 

this case a combination of oscillating envelope soliton and nonoscillating soliton contributions. 
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c~,~(LY’,c~“)[(~w,)~(-~o,)~-‘~*(c~’) VI(~) 
d=O k=O 0” d&Y” 

+ (-io,)‘(iwl)“-~V,*(cu”) F(a’)]. (25) 

At order &, from (2 1) and (22) for the terms in ei(@no-w~(~~) ‘O), one obtains the system of equations 

[(jj”- wj”*)v, + (jl- 2w,w, ) 1 
a* 

(‘) V”’ + (i(.f--~f)V(*))]~ +2iw,V,$ 
I 2 

+ &IAh,td1*Atw2) =O, (26) 

where 

c~,~(cx’,L~“)[(~w~)~(-~~w,)~-~~*((Y’) y,(cy”) 
d=O k=O d'.d<d' 

+ ( -2iw,)k(iwl)d-k v,*wYl(~‘)l+25 c cd,O(Lu',Q")(-iWOd~,(LY') K(a") 

d=O d',a'<a" 

+i$5 c 
C,].k,;(a', a", a"') [ (-iw,)-‘( -i@r)‘-i( iw,)d-kV,( a’) V[( a”) V,* (a”‘) 

d&l k=lJ j=O a"',a"<a"',n'Qa" 

+ (-io,).i(iwr)k-i(-iw~)d-k~(cu’) V;(cY”) F(U) 

+ (iwj).j( -iwl) k-,i (-iw/)d-kv(*(a’) &(a”) K(Ly”‘)]. (27) 

The first term of Eq. (26) corresponds to the third order expansion (9) of the linear operator equation (3) 

applied to the wave packet (terms in ei(@no-wf(@)‘o) in (22) ), in the moving reference frame used in (20), 

(41) = -iCal& )A(sl y td, and (wi2’4T/2) = (A(A(w,))) = i(a/&2)A(si,tz). 
The first two terms on the right-hand side of the nonlinear coefficients vector & arise from the double 

product, in the nonlinear quadratic force terms in (21), between O(E) and 0( Ed) components of (22) ; the 
last two terms come from the nonlinear cubic force terms in (21) when considering just the O(e) terms in 

%(n, r). 
Multiplying Eq. (26) by V; we obtain the NLS equation 

(P$+i&)A(.q,l2) +elA(sl,t2)12A(sl,t2) =O, 

where 

(28) 

(29) 

and 

(30) 

The first part of Eq. (28) is Eq. (20) for the wave packet with 2P = ~1~) given by ( 13) to which is now 
added the nonlinear part with coefficient Q. If PQ > 0 then the effect of the amplitude-dependent nonlinear 
potential well in (28) balances the wave packet group velocity dispersion giving rise to the stable envelope 
soliton solution [ 11, 



4. Summary 

The main outlines of the approach presented in this paper are the following. The envelope-soliton-like 
solutions arise in systems with weak dispersion and weak nonlinearity by two parallel series expansions driven 
by a common expansion parameter (6): on one hand the weakness of the diffusion. for a wave-packet-like 
solution, allows an expansion of the equations that regulate the space-time behaviour of the solution on different 
scales; on the other hand the weak nonlinearity, for small amplitude solutions. allows to write the equations ot 

motion at increasing orders of accuracy introducing the nonlinear terms in a progressive way. For scalar tields 

the Taylor series expansion of dispersion relations gives directly the diffusive part for the envelope equations 

of motion. Vectorial fields are instead characterized by a linear part which gives rise. in the q space, to an 

cigenvaluc (dispersion relations) and eigenvector (relative amplitude of the different components) prohlcm 
i 3): to obtain the correct expansion in multiple scales it is then necessary to apply the perturbation theory ( 5 ). 
(6). Finally, to combine this perturbative expansion with the nonlinear one, we antitransform Eqs. ( 81, ( 0) ;IS 
done in (23), (26). 

Following the approach introduced in this paper it is straightforward to derive the NLS equation for every 
nonlinear vectorial lattice with on-site nonlinearities and with an arbitrary number of components. For more 
complex systems this could even be programmed in symbolic languages to provide a fully automatic method. 

After having identified the nonlinear coefficients c:,~( (Y’, cr”) and C;,,, (a’, a”, a”‘) in the equation (11‘ motion 
(2 I ). there are only algebraic systems to solve: one has to solve the eigenvectors V,( 40) and the eigenvalues 

LO/( 90 ) of the matrix j( yo), then the systems (24) and (25) for y/ and ~1. and to derive P from I: 29 ) and 

Q from ( 27) and (30). From (28) one then obtains, if PQ 3 0, the envelope function A( _t-l. t, . t2) that. 

inserted into (22) together with the eigenvector correction ( IO), ( 1 I ) , gives the complete O( E’) solution we 
are looking for. 
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