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a b s t r a c t

In order to evaluate the reliability of numerical simulations in geophysical applications it is necessary to
pay attention when using the root mean square error (RMSE) and two other indicators derived from it
(the normalized root mean square error (NRMSE), and the scatter index (SI)). In the present work, in fact,
we show on a general basis that, in conditions of constant correlation coefficient, the RMSE index and its
variants tend to be systematically smaller (hence identifying better performances of numerical models)
for simulations affected by negative bias. Through a geometrical decomposition of RMSE in its compo-
nents related to the average error and the scatter error it can be shown that the above mentioned behav-
ior is triggered by a quasi-linear dependency between these components in the neighborhood of null bias.
This result suggests that smaller values of RMSE, NRMSE and SI do not always identify the best perfor-
mances of numerical simulations, and that these indicators are not always reliable to assess the accuracy
of numerical models. In the present contribution we employ the corrected indicator proposed by Hanna
and Heinold (1985) to develop a reliability analysis of wave generation and propagation in the Mediter-
ranean Sea by means of the numerical model WAVEWATCH III!, showing that the best values of the indi-
cator are obtained for simulations unaffected by bias. Evidences suggest that this indicator provides a
more reliable information about the accuracy of the results of numerical models.

" 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Discussion and analysis of the behavior of statistical indicators
employed for the evaluation of the performances of numerical
models is often neglected due to their apparent simplicity. In some
circumstances, anyway, their use can lead to conflicting and incon-
sistent results in trying to reproduce physical phenomena such as
atmosphere dynamics or ocean wave generation and propagation
(e.g., Willmott and Matsuura, 2005). Mentaschi et al. (2013)
showed that some problem related to performances evaluation
may occur if the analysis is based on the widespread indicator
NRMSE defined as

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðSi # OiÞ2PN

i¼1O
2
i

s

ð1Þ

where Si is the ith simulated data, Oi is the ith observation and N is
the number of observations available for the analysis. The problem
arose clearly during a validation procedure of the wave model

WAVEWATCH III! (WWIII, Tolman, 2009) for storm conditions in
the Mediterranean Sea. The model has been run employing different
parameterizations in order to find the optimal set for wave simula-
tions in an enclosed basin. Namely, the source terms of wave
growth-dissipation introduced by Ardhuin et al. (2010) have been
used in its standard parameterizations BJA (Bidlot et al., 2007)
and ACC350.1 Hence a sensitivity analysis has been performed in
the parameters space in the neighborhood of the default values of
ACC350 parametrization, varying each parameter keeping the others
at their reference value. Source terms of growth-dissipation pro-
posed by Tolman and Chalikov (1996), hereinafter TC, have been also
used. An overall number of 43 different parameterizations have been
tested on 17 different case studies corresponding to wave storms in
the Mediterranean Sea. Simulated data have been compared against
measurements obtained by 23 buoys belonging to the Rete Ondame-
trica Nazionale (RON, Italy) and to Boyas Puertos del Estado (Spain).

Results obtained in the framework of this research reported an
underestimation of about 11% for significant wave height, and of
about 8% for mean period when the TC parameterization was used.
Conversely the ACC350 parameterization led to results relatively
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unaffected by bias, overestimating the significant wave height of
about 2%, and the mean period of about 1.5% (see Table 2). As an
example of this trend, Fig. 1 reports the observations of La Spezia
buoy for significant wave height together with TC and ACC350 re-
sults, for February 1990 storm.

Values of correlation coefficient q were roughly the same for
the two parameterizations, revealing a similar scatter component
of the error. Therefore an indicator combining information on the
average and the scatter error, like NRMSE, was expected to identify
ACC350 as the best overall parameterization. However the value of
NRMSE hinted at better results for TC than for ACC350 (see Table 2
where the overall value of normalized bias NBI ¼ ð!S# !OÞ=!O, corre-
lation coefficient q and NRMSE are reported for the two
parameterizations).

In the present contribution we show that this issue can be ex-
tended generally to the RMSE error indicator, defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðSi # OiÞ2
vuut ð2Þ

and to its normalized form (NRMSE). Furthermore, subtracting the
average component of the error we obtain the scatter index SI
defined here as

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1½ðSi # !SÞ # ðOi # !OÞ&2
PN

i¼1O
2
i

vuut : ð3Þ

where !S and !O are the average simulation and observation values
respectively.

In the next section the drawback of RMSE is analysed using a
synthetic series of data and then analytically, presenting a system-
atic approach to outline and define the problem. A geometrical
decomposition of RMSE in its scatter and bias components is pro-
vided to better understand the dependency between these compo-
nents and the proof of the shortcoming and the relative inaccuracy
for SI, NRMSE and RMSE is developed. Section 4 is dedicated to
show how to improve the evaluation of the performances by
means of the corrected indicator introduced by Hanna and Heinold
(1985), hereinafter HH from the name of the authors. Finally con-
clusions are drawn in Section 5.

2. The idealized problem

The drawback of using the RMSE as an indicator of the perfor-
mances of a numerical simulation can be easily reproduced using
an idealized time series. Let us for example consider an observation
series given by:

Oi ¼ 1þ sin ti; 0 < ti < p ð4Þ

where ti represents the time discretized in 120 time steps. We de-
fine a first mock simulation, given by

Sui ¼ Oi þ modði;2Þ ( 1:4# 0:7½ & ð5Þ

where the function modði;2Þ vanishes when i is even and it is equal
to one when i is odd. The first mock simulation is thus given by the
observation series plus a sawtooth function, and is clearly unaf-
fected by bias, since the number of time steps is even (the super-
script u in Sui stands for unbiased). We then define a second mock
simulation multiplying the first one by a factor 0.87: Sbi ¼ 0:87 ) Sui
. Simulation Sbi has the same correlation coefficient as the observa-
tion series Oi and Sui , but is affected by a strong negative bias. The
two mock simulations are shown in Fig. 2, together with the obser-
vation series. The black continuous line represents the observation
series Oi, the blue line corresponds to the unbiased simulation Sui
while the red line represents the biased simulation Sbi . Clearly the
best simulation between Sui and Sbi is the unbiased one, Sui . Nonethe-
less the computation of NRMSE and SI returns better values for Sbi ,
as shown in Table 1 where the values of correlation coefficient
and bias are also reported.

3. Formulation of the problem

Let us consider a set of N observations Oi of a measurable quan-
tity (in our case the significant wave height and the mean wave
period) and the corresponding values obtained by numerical model
simulations. The use of different parameterizations for the numer-
ical models results in different sets of N simulated values Si, char-
acterized by varying statistical parameters such as mean, standard
deviation and higher order moments. Therefore the observations
and their statistical parameters can be considered as invariant of
the problem, while simulation results and their statistical parame-
ters are the system variables. In order to measure the accuracy of
the simulations we use the following statistical indicators:

* The bias

BI ¼ !S# !O ð6Þ

which is an index of the average component of the error. A value
closer to zero identifies a better simulation.
* The correlation coefficient

q ¼ 1
N

PN
i¼1ðSi # !SÞðOi # !OÞ

rSrO
ð7Þ

where rS and rO are the standard deviations of the simulations and
the observations respectively. This quantity, which ranges between
#1 and 1, is an index of the scatter component of the error, and a
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Fig. 1. Comparison between significant wave height data measured by La Spezia buoy and those simulated by WWIII (ACC350 and TC parameterizations; February 1990
storm).
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value closer to 1 indicates a smaller scatter of the simulated values
around the observed ones.

The correlation coefficient has been chosen as the main indica-
tor of the scatter component of the error since it remains roughly
constant for all the simulations, outlining a constant behavior of
the random error in our experiments. In the rest of the manuscript
we therefore assume that changes in the parameters of the model
do not alter the correlation coefficient. The behavior of other indi-
cators will be analysed varying the bias in the neighborhood of null
bias.

The RMSE indicator combines informations on the average and
on the scatter components of the error since it can be expressed in
terms of bias and correlation coefficient

RMSE2 ¼ BI2 # 2qrSrO þ r2
S þ r2

O: ð8Þ

The behavior of RMSE in the neighborhood of null bias is not imme-
diately arguable from (8) because the average and the standard
deviation of the simulation are not independent. The dependency
arises once the correlation coefficient is assumed to be constant.
A set of simulations with constant q is obtained multiplying an
unbiased simulation S0 by an amplification factor a ¼ ð1þNBIÞ,

Si ¼ ð1þ NBIÞS0i ð9Þ

!S ¼ ð1þ NBIÞ!O ð10Þ

rS ¼ ð1þ NBIÞrS0 ð11Þ

where rS is the standard deviation of S;rS0 is the standard deviation
of the corresponding unbiased simulation and NBI has been defined
in the introduction.

Validity of (9)–(11) implies a constant value of q and, vice versa,
a constant q implies the validity of (10) and (11). Let us assume a
generic linear relationship between rS and !S in the neighborhood
of null bias:

rS ¼ k!Sþ c ð12Þ

where k and c are arbitrary constants. We can now demonstrate
that a constant value of q requires a zero value of the coefficient
c, showing that rS and !S are proportional. This proportionality
means that relations (10) and (11) must hold. To this purpose, if
we consider two different simulations, S0i and S00i , such that their
average values are related by a coefficient a; !S00 ¼ a!S0 and
!S00O ¼ a !S0O, employing (12) it is possible to rewrite the standard

deviation of S00i as a function of !S0:

rS00 ¼ ka!S0 þ c: ð13Þ

Using the above assumptions and the fact that SO ¼ !S!Oþ qrSrO, we
find that a constant value of q requires a null coefficient c in rela-
tionship (12). Hence in the neighborhood of zero bias we obtain
rS ¼ k!S ) rS=!S ¼ constant .

Using relationships (10) and (11) in (8) and differentiating with
respect to NBI one finds a positive value of @RMSE

@NBI jNBI¼0, meaning that
RMSE does not present a minimum for null bias, but decreases to-
gether with NBI. This fact shows the drawback of using the RMSE
as an indicator of the simulation performances, since for a constant
value of the correlation coefficient the RMSE attains lower values
for simulations that underestimate the average (negative bias).

3.1. RMSE geometrical decomposition

The RMSE indicator can be decomposed in its components pro-
portional to the average deviation between simulations and obser-
vations and to the scatter of the values around the average. This
decomposition provides a geometrical insight into the fact that
the described drawback is due to a dependency between the two
components. Let us define the scatter component SCRMSE as the root
mean square deviation between the simulation and the observa-
tion series subtracted of their average values

SCRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1½ðSi # !SÞ # ðOi # !OÞ&2

N

s

: ð14Þ

In the case of an unbiased simulation, SCRMSE and RMSE coincide. If
simulations and observations have the same standard deviation and
their correlation coefficient is equal to 1, SCRMSE vanishes. It can be
easily shown that the RMSE can be expressed as the quadratic sum
of the scatter component and the bias BI

RMSE2 ¼ SC2
RMSE þ BI2: ð15Þ

Expression (15) shows that from a geometrical point of view the
two contributions are orthogonal and RMSE can be represented as
a vector in SCRMSE # BI Cartesian space (see Fig. 3). Moreover, the
scatter index SI can be written in terms of the SCRMSE as:

(a)

Observation Oi
Unbiased simulation Su

i

(b)

Observation Oi

Biased simulation Sb
i

Fig. 2. (a) Unbiased mock simulation Sui and (b) biased mock simulation Sbi
represented against observations (black lines).

Table 1
Statistical error indicators of Sui and Sbi relative to Oi .

Simulation q NBI (%) NRMSE SI

Sui 0.407 0 0.421 0.421

Sbi 0.407 #13 0.389 0.367

Fig. 3. RMSE represented as a vector in SCRMSE # BI Cartesian space.
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SI2 ¼
PN

i¼1½ðSi # !SÞ # ðOi # !OÞ&2
PN

i¼1O
2
i

¼ SC2
RMSE

!O2 þ r2
O

: ð16Þ

It is easy to derive a relationship analogous to (15) for NRMSE:

NRMSE2 ¼ SI2 þ BC2
NRMSE ð17Þ

where BCNRMSE is the bias component of the NRMSE, proportional to
the NBI

BCNRMSE ¼ NBI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!O2

!O2 þ r2
O

s

: ð18Þ

Expression (17) provides a representation of NRMSE as a vector in
SI# BCNRMSE space. It is useful to remark that RMSE and its variant
NRMSE present the same behavior in all respects, and the draw-
backs of RMSE are identically shared by NRMSE.

3.2. Scatter index, NRMSE and RMSE systematic deviation

SI and BCNRMSE appearing in expression (17) are orthogonal but
not necessarily independent and a relationship can be found for a
set of simulations presenting a constant value of q.

The scatter component of NRMSE, SI, can be expressed in terms
of the standard deviations of observation and simulation

SI2 ¼ r2
S þ r2

O # 2qrOrS
!O2 þ r2

O

: ð19Þ

Hence using (10) and (11) SI can be expressed as a function of NBI,
and assuming that rS0 + rO, i.e., the standard deviations of the
unbiased simulation and of the observation series are roughly
equal, it is possible to write

SI2 + r2
O

!O2 þ r2
O

½NBI2 þ 2ð1# qÞNBIþ 2ð1# qÞ&: ð20Þ

The first derivative of SI2 with respect to NBI in the neighbor-
hood of null NBI is always positive, hence SI is not minimum for
null bias. A first order expansion of SI in the neighborhood of
NBI ¼ 0 returns

SI + SI0 1þ 1
2
NBI

" #
ð21Þ

where SI0 is the scatter index of the unbiased simulation.
Relationship (21) fits quite well the results of our experiments

as shown in Fig. 4, where each point represents a different param-
eterization: blue ones refer to ACC350, black ones to TC and the red
ones represent the results of the sensitivity analysis in the param-
eter space in the neighborhood of ACC350 (see Section 1).

In panels (a) and (b) the correlation coefficient q is plotted ver-
sus the NBI for both significant wave height and mean period,
showing that q is roughly constant as required by the consider-
ations done in Section 3. In panels (c) and (d) results are plotted
in the SI# BCNRMSE space revealing that they lie roughly on the blue
line which represents expression (21). Quite surprisingly the
parameterization most affected by negative bias, i.e., TC, is the
one with the best value of the scatter index for both significant
wave height and mean period. This finding reveals that, under
the assumptions outlined in Section 3, the scatter index tends to
be systematically better for simulations characterized by a nega-
tive bias. Furthermore, it is well evident that NRMSE is affected
by the same drawback since the latter can be represented as a vec-
tor in the SI# BCNRMSE space. Indeed the simulation with the best
possible value of the NRMSE is not the unbiased one but the one
perpendicular to the line of the points in SI# BCNRMSE space satisfy-
ing relationship (21), as reported in Fig. 5. Considerations drawn
for NRMSE can be easily generalized to RMSE, given the correspon-
dence between relations (17) and (15).

The behavior of RMSE described in this section tends to be more
pronounced when the correlation coefficient is significantly smal-
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Fig. 4. Panels (a) and (b): correlation coefficient versus normalized bias for significant have height and mean period. Panels (c) and (d): BCNRMSE versus SI for significant have
height and mean period. Blue lines represent expression (21). Red triangles represent the sensitivity analysis in the neighborhood of ACC350. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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ler than 1. This can be deduced observing that the scatter index, ex-
pressed by relation (20), assumes a minimum value for
NBI ¼ q# 1. Therefore the drawback of using RMSE is more rele-
vant when the scatter component of the error is large.

4. A corrected indicator

The discussion presented in Section 3 clearly shows that lower
values of RMSE, NRMSE and SI are not always associated to better
performances of numerical models and that those indicators are
not always reliable estimators of simulations accuracy. Notwith-
standing this kind of behavior their use is widespread in many sci-
entific fields (e.g., Komen et al., 1994; Fekete et al., 2005; Persson,
2011). To overcome this problem Hanna and Heinold (1985) pro-
posed the exploitation of a corrected statistical indicator defined as

HH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðSi # OiÞ2PN

i¼1SiOi

s

: ð22Þ

It is straightforward to show that HH can be expressed in terms of
simulation and observation average values, standard deviations and
correlation coefficient as follows

HH2 ¼
!S2 þ r2

S þ !O2 þ r2
O

!S!Oþ qrSrO
# 2: ð23Þ

Hence HH can be expressed as a function of NBI using (10) and (11),
and assuming that rS0 + rO we can write

HH2 +
!O2 þ r2

O
!O2 þ qr2

O

 !
NBI2 þ 2NBIþ 2

NBIþ 1

 !
# 2: ð24Þ

The first derivative of HH2 with respect to NBI results

@HH2

@NBI
+

!O2 þ r2
O

!O2 þ qr2
O

 !
NBI2 þ 2NBI

NBI2 þ 2NBIþ 1

 !
ð25Þ

which vanishes for null bias. The second derivative of HH2 with re-
spect to NBI is

@2HH2

@NBI2
+

!O2 þ r2
O

!O2 þ qr2
O

 !
2

ðNBIþ 1Þ3

 !

ð26Þ

which is always positive for NBI ¼ 0. Therefore HH is approximately
minimum when the bias is null. This finding clearly does not imply
the equivalence between bias and HH because, unlike bias, HH is
able to capture the scatter component of the error.

This behavior can be noticed quite clearly in some wave gener-
ation/propagation simulations in the Mediterranean Sea, as re-
ported in Figs. 6 and 7 where the corrected indicator HH is
plotted versus NBI for all the parameterizations employed in the
sensitivity study. Indeed, numerical simulations with the lowest
value of HH tend to be closer to the line of null bias, while results
with higher value of HH tend to be farther away from the vanishing
bias conditions (compare results obtained with ACC350 and TC
presented in Figs. 6 and 7 and those presented in Fig. 4). These
findings are reported quantitatively in Table 2 showing the differ-
ent error estimations for the corrected HH indicator and for the
other statistical indicators. The use of HH allows to correctly inter-
pret the performances of numerical model simulations and their
agreement with field observed data.

5. Conclusions

Small values of the widespread error indicators RMSE, NRMSE
and SI are not always associated with the best performances of a
numerical model reproducing natural processes such as atmo-
sphere dynamics, ocean circulation or wave generation and propa-
gation. In particular RMSE and its variants tend to assume values

Fig. 5. Hypothetical unbiased simulation versus minimum NRMSE simulation in
SI# BCNRMSE Cartesian space. Given expression (21) (the blue line), minimum
NRMSE simulation is affected by negative bias. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6. HH versus NBI for significant wave height. Red points represent the
sensitivity analysis in the neighborhood of ACC350. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

0.24 0.245 0.25 0.255 0.26 0.265 0.27

−0.1

−0.05

0

0.05

0.1

HH

N
BI

ACC350 BJA

TC

Tm

Fig. 7. HH versus NBI for mean period. Red points represent the sensitivity analysis
in the neighborhood of ACC350. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 2
Results of statistical indicators for significant wave height Hs and mean period Tm

obtained for parameterizations ACC350, TC and BJA. Values computed for the
ensemble of all storms and all buoys (29620 observations).

ACC350 TC BJA

Hs Tm Hs Tm Hs Tm

NBI 2.1% 1.5% #11.9% #8.4 % #4.6% 1.0%
q 0.883 0.640 0.889 0.659 0.885 0.639
NRMSE 0.2864 0.2424 0.2798 0.2395 0.2800 0.2485
HH 0.3460 0.2505 0.3634 0.2604 0.3502 0.2574
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typical of better performances for simulations which underesti-
mate the measured physical quantities (i.e., wind speed, wave
height. . .). Through a geometrical decomposition of the RMSE indi-
cator in its average and scatter components it has been possible to
demonstrate that the above mentioned drawback relies on a linear
dependence between the two components in the neighborhood of
null bias. It has also been shown that this deviation is more notice-
able when the scatter component of the error is large, i.e. when the
correlation coefficient is appreciably lower than unity. To over-
come this issue the error indicator HH, introduced by Hanna and
Heinold (1985) has been employed. It has been shown that HH at-
tains a minimum value for null bias when rS0 + rO is assumed. Evi-
dences from wave generation and propagation analysis in the
Mediterranean Sea suggest that the HH indicator provides a more
reliable and accurate information about the accuracy of a numeri-
cal simulation than the RMSE indicator.
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