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The pathogenesis of acute myeloid leukemias involves complex 
molecular events triggered by diverse alterations of genomic DNA. 
A limited number of initiating lesions, such as chromosomal 
translocations generating fusion genes, are constantly identified 
in specific forms of leukemia and are critical to leukemogenesis. 
Leukemia fusion proteins derived from chromosomal trans-
locations can mediate epigenetic silencing of gene expression. 
Epigenetic deregulation of the DNA methylation status and of 
the chromatin “histone code” at specific gene sites cooperate in 
the pathogenesis of leukemias. The neutralization of these crucial 
oncogenic events can revert the leukemia phenotype. Thus, their 
identification and the study of their molecular and biological 
consequences is essential for the development of novel and specific 
therapeutic strategies. In this context, we recently reported a link 
between the differentiation block of leukemia and the epigen-
etic silencing of the microRNA-223 gene by the AML1/ETO  
oncoprotein, the product of the t(8;21) the commonest AML-
associated chromosomal translocation. This finding indicates 
microRNAs as additional epigenetic targets for leukemogenesis and 
for therapeutic intervention in leukemias.

In a large number of leukemias the primary mutational events 
involve chromosomal translocations, leading to the formation of 
fusion genes.1 The molecular and biological consequences of this 
event depend on the nature of the genes involved in the fusion. Often 
these genes encode transcription factors, whose function is altered 
by the fusion.2 Many of these factors are able to modify chromatin 
structure. The notion that alterations of chromatin structure can 
initiate the carcinogenic process derives from studies carried out on 
acute promyelocytic leukemia (APL), an acute myeloid leukemia 
(AML) subtype. In most APL cases, the chromosomal translocation 
t(15;17) generates a fusion gene encoding the PML/RARα fusion 
protein, that is fundamental for leukemogenesis.3 The APL-fusion 

product was the first example of an oncogenic transcription factor 
acting by recruiting to its target genes a chromatin modifying protein 
complex. The oligomerization capability of the PML/RARα fusion 
protein generates a multimeric complex, including multiple PML/
RARα molecules and the retinoid receptor RXR, which stabilizes 
the recruitment of a number of chromatin remodeling proteins.4-7 

Among the chromatin remodeling proteins participating to the 
PML/RARα complex there are corepressors, such as N-CoR and 
SMRT, histone deacetylases, histone methyltransferases, poly-
comb group proteins and others.8-12 All these proteins heavily 
modify the chromatin “histone code” to repress transcription. In 
addition, the PML/RARα oncogenic complex also comprises DNA- 
methyltransferases and methyl-CpG binding activities, which induce 
stable DNA methylation on the promoters of PML/RARα target 
genes.13-15 The mechanistic model derived from the PML/RARα 
oncoprotein highlighted the importance of epigenetic changes in 
the altered gene regulation mediating the pathogenesis of leukemia 
and have guided the investigation regarding other leukemia fusion 
proteins.

The most frequent chromosomal rearrangement in AML is the 
t(8;21) chromosomal translocation, that produces a chimeric gene 
and a fusion protein generated by a portion of the AML1 (also named 
RUNX1) transcription factor fused to the corepressor ETO protein. 
The molecular and biological activities of the resulting AML1/
ETO protein have been intensively studied. The AML1 moiety of 
the fusion protein retains the DNA binding activity, whereas the 
ETO moiety conveys several new properties to the fusion molecule 
including: (1) several docking sites for the corepressors SMRT,  
N-CoR and Sin3A and the histone deacetylases HDAC1, 2 and 
3; (2) a dimerization domain that initiate the formation of omo- 
oligomers of the fusion protein, that increase its effects on target 
genes and associated proteins. Thus, the AML1/ETO protein can 
function as a transcriptional repressor of AML1-regulated genes. 
However, this is only part of the story. The AML1/ETO fusion 
protein appears to exert its effects in different manners (Table 1 
lists some examples). Actually, a direct transcriptional repression 
by AML1/ETO through the AML1 DNA-binding activity has 
been demonstrated for few genes, notably the cell cycle regulator 
p14ARF and the tumor suppressor neurofibromatosis-1 (NF1).16,17 
A number of transcription factors are repressed because of their 
physical interaction with the AML1/ETO protein. Likely, the 
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repressor protein complex carried by AML1/ETO is driven to target 
genes of these transcription factors and affects their activity. This 
control mechanism involves key regulators of hematopoietic differ-
entiation, such as the CCAAT/enhancer binding protein C/EBPα, 
PU.1 and the retinoid receptor RARα-RXR heterodymer.18-20 The 
same mechanism, based on a direct protein:protein interaction 
and displacement of p300/CBP coactivators, blocks the activity of 
hematopoietic regulator GATA-1 and of a subset of E-box binding 
proteins (E proteins), including E2A, HEB and E2-2.21,22 Further 
complexity to the functional activity of AML1/ETO, is added by 
studies, mostly originated by microarray screenings, showing that 
the expression of this fusion protein can induce upregulation of 
gene expression. Significantly, more in depth analysis of the mecha-
nisms underlying AML1-ETO induced gene upregulation revealed 
that, in some cases, this effect depends on the corepressor binding 
moiety of AML1/ETO, thus suggesting that unidentified epigenetic 
mechanisms mediate the transcriptional effects. Among the genes 
upregulated by AML1/ETO, the induction of Jagged1, suggests that 
the Notch pathway may be affected, while induction of Plakoglobin 
and β-Catenin indicate that AML1/ETO can increase the activity 
of the Wnt signaling system.23,24 In this context, it is biologically 
relevant that the expression of AML1/ETO into hematopoietic 
stem/precursor extend their self-renewal potential, while it blocks 
the proliferation and differentiation of committed myeloid progeni-
tors in vitro, and causes pre-leukemic myeloproliferative disorders in 
vivo.16,25-27

Recent evidence suggests microRNA (miRNA) genes as new 
epigenetic targets in cancer. Their altered regulation by oncogenic 
proteins and specifically by leukemia fusion proteins is potentially 
of great relevance in the pathogenesis of leukemia. MiRNAs are 
noncoding RNA of 19–24 nucleotides encoded by phylogenetically 
conserved genes. MiRNAs derive from long, capped and polyadenyl-
ated stem-loop precursor (pri- and pre-miRNAs) processed by the 
RNase III endonuclease Drosha and Dicer. The precursor RNAs can 

be transcribed from independent transcriptional unit or derive from 
intronic/exonic gene regions. MiRNAs inhibit protein translation or 
induces mRNA degradation, respectively through an imperfect or 
perfect base pair binding to the 3- untranslated (UTR) sequences of 
target mRNAs.28,29 The imperfect matching between miRNAs and 
their targets implies that each miRNA can bind different mRNAs. 
Moreover, recent evidences suggest that miRNAs can bind to the 
5' UTR and, in specific conditions upregulation of translation 
can result from their binding to mRNA.30,31 Overall, in normal 
cells every miRNA posses an enormous regulatory potential. To 
date, >500 miRNAs are known in humans. They are involved in 
diverse physiological processes including development, cell differ-
entiation, proliferation and apoptosis. MiRNA expression is indeed, 
highly regulated according to the cell’s developmental lineage and 
show restricted expression profiles in adult tissues, including the 
haematopoietic cell system.28,29,32 MiRNA expression profiles have 
shown unique miRNA signatures relevant for the pathogenesis, 
diagnosis and prognosis of myeloid and lymphoid leukemias.33-35 
Interestingly, similarly to lineage-specific hematopoietic transcrip-
tion factors, miRNAs expressed in hematopoietic cells have been 
found mutated or altered by chromosomal translocations in diverse 
leukemias, indicating their role in the pathogenesis of these malig-
nancies.36 MiRNAs and their targets genes are now regarded as a 
potential new class of tumor suppressors or oncogenes. Moreover, 
a potential oncogenic role of altered miRNA activities has been 
reported as a consequence of hypermethylation of their genomic 
regions, thus unraveling a still largely unexplored area dealing with 
the epigenetic transcriptional silencing of miRNA genes in tumor 
development and progression.37-40

Very little is known, however, about transcriptional regulation 
of miRNA genes and on the factors responsible for their basal and 
tissue-specific expression. Evidence indicates that the information for 
transcription and sequential processing of miRNAs are present in the 
upstream regions of their genes. In general, these regions contain a 

Table 1  Examples of putative or established epigenetic targets of AML1/ETO

	 Target	 Biological	function	 Mechanism	of	targeting	by	AML1/ETO
↑ Plakoglobin Hematopoietic stem/progenitor cells self-renewal Unidentified epigenetic deregulation23

↑ Jagged1  Unidentified epigenetic deregulation24

↓ C/EBPα Hematopoietic lineage regulators Physical interaction blocking C/EBPα auto-regulation18

↔ PU.1  Physical interaction20

↔ GATA-1  Inhibition of GATA-1 acetylation21

↓ E proteins  Displacement of coactivators at E-box site22

↓ microRNA-223  Binding to AML1 consensus40

↓ GM-CSF Colony-stimulating factors Inhibition of AML-1b activity53

↓ Interleukin-3  Binding to AML1 consensus54

↓ c-FMS Macrophage colony-stimulating factor receptor Binding to the intronic AML1 consensus55

↓ Lysozyme Myelomonocytic granule protein Unidentified epigenetic deregulation56

↔ RARα-RXR Retinoid receptors Physical interaction19

↓ p14ARF Cell cycle and apoptosis regulators Binding to AML1 consensus16

↑ BCL-2  Binding to AML1 consensus57

↓ NF1 Oncogenes or oncosuppressor Binding to AML1 consensus17

↑ c-jun  Activating Jun N-terminal kinase (JNK) pathway58

The arrows indicate the up (↑), down (↓) or unchanged (↔) expression levels of putative or established AML1/ETO-epigenetic targets classified according their biological function. Reference numbers are indicated.
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larger number of regulatory motifs when compared to the promoters 
of protein-coding genes.41 Interestingly, miRNAs and transcription 
factors regulating their function can control each other function 
in negative feedback loops.40,42-46 We recently described a direct 
correlation between the transcriptional and epigenetic regulation 
of miRNA-223, a miRNA highly specific for hematopoietic cells, 
and the differentiation fate of myeloid precursors.35,42,47,48 During 
myelopoiesis miRNA-223 levels rise progressively and the suppres-
sion of this increase blocks granulocytic maturation. We found that 
miRNA-223 levels are modulated by the competitive binding to its 
upstream region of two CCAAT-box binding proteins, the Nuclear 
Factor I (NFI-A)49 and the C/EBPα,50 for CAAT elements present 
on the pre-miRNA-223 promoter.42 NFI-A maintains miRNA-
223 at low levels, while its replacement by RA-induced C/EBPα 
activation results in miRNA-223 upregulation and granulocytic 
differentiation. Moreover, we identified and validated NFI-A as a 
miRNA-223 target.42 Of note that C/EBPα is a transcription factor 
involved in myeloid differentiation and in the repression of genes 
promoting cell growth, whereas NFI-A has been implicated in DNA 
replication and in the control of cell growth.49-51

The importance of miRNA-223 in the regulation of myeloid 
differentiation prompted us to investigate the possibility that 
leukemia fusion proteins could epigenetically inhibit its expres-
sion. We found that miRNA-223 is a direct transcriptional target 
of the AML1/ETO.40 The expression of AML1/ETO triggers 
the heterochromatic silencing of genomic regions generating the 
miRNA-223 by recruiting diverse chromatin remodeling enzymes at 
an AML1-binding site present on the pre-miRNA-223 gene. Thus, 
miRNA-223 is one of the genes that can be directly repressed by 
the AML1/ETO fusion protein by virtue of its own transcriptional 
activity. The effects of AML1/ETO on miRNA-223 gene include 
both histone deacetylation and DNA methylation. Epigenetic 
miRNA-223 gene silencing can be reversed by pharmacological 
treatment with demetylating agents that also restored myeloid 
differentiation in t(8;21)-AML blasts in vitro. The relevance of the 
miRNA-223 silencing was also highlighted by the consequences of 
its ectopic expression that, alone, is sufficient to reprogram myeloid 
differentiation in distinct myeloid leukemia subtypes, indepen-
dently from the presence of a specific genetic lesion.40,42 Therefore, 
miRNA-223 appears as an additional pathogenetic target for a 
leukemia fusion protein, which may represent a key event linking the 
epigenetic silencing of a miRNA locus to the differentiation block of 
myeloid precursors underlying leukemogenesis.

The potential biological implications of this regulation are far-
reaching. Since each miRNA represses the expression of multiple 
target proteins, the suppression of its expression expands the onco-
genic activity of the fusion protein, involving genes that are not 
regulated by AML1/ETO with any of the mechanisms described 
above. In addition, novel mechanisms of action of miRNAs are 
being discovered, including their nuclear localization, their binding 
to the 5' UTR, their ability to modify mRNA stability and to 
increase protein expression.30,31,52 The complexity of the biological  
activities of either miRNAs or AML1/ETO oncoprotein may 
explain the complex patterns of protein coding and non-coding 
genes found in microarray-based or proteomic expression screenings. 
Transcription factors, miRNAs and chromatin remodeling activities 
may act as ultimate determinants for the correct organization of 

cell-type specific gene programs in hematopoietic differentiation, 
whose de-regulation cause the differentiation block underlying the 
pathogenesis of different myeloid leukemia subtypes.
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