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Abstract. Reinforcement Learning (RL) methods provide a solution for decision-
making problems under uncertainty. An agent finds a suitable policy through a
reward function by interacting with a dynamic environment. However, for com-
plex and large problems it is very difficult to specify and tune the reward func-
tion. Inverse Reinforcement Learning (IRL) may mitigate this problem by learn-
ing the reward function through expert demonstrations. This work exploits an IRL
method named Max-Margin Algorithm (MMA) to learn the reward function for a
robotic navigation problem. The learned reward function reveals the demonstrated
policy (expert policy) better than all other policies. Results show that this method
has better convergence and learned reward functions through the adopted method
represents expert behavior more efficiently.
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1. Introduction

Machine Learning (ML) is an application of Artificial Intelligence (Al) that provides the
ability to automatically learn and improve from experience without being explicitly pro-
grammed. ML focuses on the development of computer programs that can access data
and use it to learn for themselves.

RL is one of the ML paradigms where agents solve problems by acquiring experiences
via interactions with the environment [1]. The result of agent’s interaction is a policy
that can provide solutions to complex tasks without having specific knowledge about the
underlying problem [2] in several fields (e.g., healthcare [3]). Due to the generalization
capability of RL, it can be applied to more complex scenarios [4]. However, the specifi-
cation of a reward function in advance is a problem in RL that may cause design diffi-
culties.

Most of the time, researchers are supposed to specify the reward function manually to
infer optimal decision [5,6]. However, the reward signals may be extremely scattered un-
der this settings. Most rewards are almost zero. This technique may lead to the difficulty
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of recognition which actions are useful in obtaining the ultimate feedback [7].

IRL can solve this problem where the derivation of the reward function is performed
from expert demonstrations and behavior [8]. In the last 20 years, IRL has gained the
attention of many researchers in fields of psychology, AI, ML and control theory. In IRL
the goal is to learn the underlying rewards function for the expert demonstrations or tra-
jectories.

In this paper, we adopt a technique of maximum margin IRL [9] for finding a best-fitting
reward function for expert trajectories. The reward function can be considered as a linear
combination of features function and weight vector. Features functions are predefined
basis functions and the weight vector is computed by maximizing the margin between
both the expert feature expectations and the estimated feature expectations. The solution
is acceptable when this margin goes below a predefined threshold value. The result shows
that learned reward functions under this scheme are true underlying reward functions for
expert trajectories.

The rest of the paper is organized as follows: Related work in emerging and existing
fields is discussed in section-2 that presents an overview of the state of the art. Section-
3 comprises a brief review of the background and problem formulation, where basics
about the Markov Decision Process (MDP) and IRL linear programming are presented.
Section-4 introduces our proposed model. This section describes the problem of learn-
ing the reward function not explicitly, but through observing an expert demonstration.
Experimental setup and results are discussed in section-5. We summarize the paper in
section-6 by giving a conclusion and future directions.

2. Related work

RL has experienced growth in attention and interest due to promising results in intelli-
gent environments [10—12] and the areas like: playing AlphaGo [13], controlling systems
in robotics [14—-16], medical [17], atari [18] and competitive video . A method of in-
vestigating challenges posed by reporting procedures, reproducibility and proper exper-
imental techniques through Deep Reinforcement Learning (DRL) is discussed in [19].
Generally, Imitation Learning (IL) is categorized into three types: adversarial imitation
learning (AIL) behaviour cloning (BC) and (IRL). Behaviour Cloning (BC) [20] directly
maps states to an actions and learns policy through supervised learning. BC can avoid
interacting with the environment. However, BC introduces a compounding error without
considerable improvement during training.

In IRL [9, 21] the goal is to learn the reward function based on the expert demonstra-
tions. It models the intention and preference of the demonstrator. Maximum Likelihood
IRL (MLIRL) [22] estimate the gradient of the likelihood function. It defines that like-
lihood of the data set can be represented by the product of likelihood of the state-action
pairs.

However, as compared with IRL, BC [23] learns policy directly by minimizing the
Jensen-Shannon divergence between learned policy and expert policy [24]. Therefore
different techniques is utilized to recover both uncertainty and rewards information. In a
continuous state and action spaces Gaussian process [25] is utilized. Deep GP model [26]
mounds multiple hidden GP layers. It has the ability of learning complicated reward
structures with very limited demonstrations. Leveraged Gaussian processes [27] can
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learn from both negative and positive demonstrations. Apprenticeship Learning (AL) is
to learn a reward function that illuminates the demonstrated policy [28] a margin better
than alternative policies.

BC and RL [29,30] are two major methods used now a days in robotics, autonomous car
driving and healthcare sector. Dynamic Treatment Regime (DTR) [31-34] oversimplify
personalized medicine and treatment is frequently tailored to a patient’s dynamic-state.
When the Electronic Health Record (EHR) are optimal and plentiful, BC can effectively
recover the doctor’s policies.

3. Preliminaries
3.1. Markov Decision Process.

MDP is used for decision making (e.g. [35]) and is based on Markov property, which
does not consider past information when taking actions and depends on only current
state. MDP is a form of tuple (S,A,T,R, ) [36]. Where S = (s1,52,53,.....8,) represent
set of states that exist in the given environment. The agent can move to any of these
states based upon the chosen action and transition function. A = (ay,az, .....a,) is a set of
actions that the agent can take in a state at every time step. 7'(s;,a;,s(¢ + 1)) is a transition
function which tells the probability of ending up in a state 57 + 1) if you take action a in
state s in time step ¢. y € [0, 1] : is a discount factor that takes the value between zero and
one. A value of zero gives more weight to immediate rewards and a value close to one
gives more weight to long term rewards.

3.2. Reinforcement Learning

The rationale of RL is to interact with the environment without having any prior knowl-
edge and to learn how to achieve a goal as stated in Figure 1. The component that in-
teracts with the environment is called Agent. An agent takes an action a, in a state s;
at time step ¢ and the environment returns the next state and reward. The aim of the RL
agent is to learn an optimal Policy, which tells which action to take in a state in order to
maximize a long term reward. The aggregated reward is estimated as given in Eq. (1).

V(s) = Ex{R;|s; = s}
= Y n(s.a) Y, TS Ar(s.a)+ W (1)) M

acA(s) Si+1€S

Where V7 is the value function to estimate the accumulated reward when you start
in state s, and follow the current policy 7. R; is the reward function which is calculated
as given below.

Ri=rp1+ Y2+ rs+ ... Z Yririr (2
k=0

Similarly, the Q value function can be written as:
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Figure 1. The Reinforcement Learning Problem

Q”(s,a) = Z{Rt|st =s,a; = a} 3)

T

Q function is the expected aggregated return when you take action a in state s under the
current policy 7 for all state-action pairs afterwards. The goal is to find an optimal policy
m*. The state value function (V) or the state-action value function (Q) for optimal policy
m* using Bellman optimality equations are given below:

V = max, Z SSH,I ss,ﬂ +YV (SH—I)) 4)
Si+1€8
=) Tg,,, (R, + ymaxar 1V (si41,ar41)) (5
Si+1€8

Egs. (4) and (5) explains the target of the optimal policy i.e. is to learn the policy that
provides the maximum reward return and it is also considered as the fundamental strategy
for several IRL methods.

3.3. Inverse Reinforcement Learning (IRL)

IRL is the problem of learning the preferences of an expert (agent) by observing its
behaviour and avoiding the manual specification of a reward function. IRL flips the RL
problem and attempts to extract the reward function from the observed behaviour of an
agent. We have some expert trajectories that are supposed to generate the optimal policy.
Therefore, the goal here is to find the reward function that is being implicitly optimised
by the optimal policy 7*.

IRL is expressed as an optimization problem and Linear Programming (LP) [37] can
be adopted to solve it by considering three types of state spaces. These state spaces are
discussed next.

3.3.1. LP for finite state space

First, consider the optimal policy 7* for a MDP with a finite state space S and the policy
transition matrix 7,,,7. For each state only one action provides an optimal solution from
the set of K possible actions and all other £ — 1 actions are non-policy actions hence non
policy transition matrix are 7% = (T',...T*~1). An action is considered optimal only
when the reward function satisfies the following equation.

(T"—T™)(I—yT™)"'RO (6)
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3.3.2. LP for infinite state space

In infinite state spaces, transition probabilities can not be expressed in terms of matrix.
The expected value based on sampled subset so C S is estimated and it is guaranteed
that actions through the estimated policy always generate a lower expected value than
the expert’s policy actions.

Vsoess Vacat Egr(sisas 1V ()} = Es 15501V " ()} (M

3.3.3. LP with sampled trajectories

It deals with the scenario where the knowledge about an exact policy is not given. An op-
timal policy based on some unknown reward function generates these trajectories. How-
ever, the goal is to calculate the empirical value of a trajectory rather than the expected
value of the policy. We assume that there is a vector of features ¢ over states and by
using the current estimated reward function R the corresponding value estimate V;(s) for
each value function can be calculated as:

ViS)=Y 7i(s)) (8)

S.,'ES

It is also considered that the optimal expert policy 7* always generates an higher empir-
ical value V(r*) than any other policy 7.

V(x*) > V(x) )

4. System Model

Given the expert trajectories 7%, the goal is to find the reward function that represents
the best explanation of the expert behavior.

i [(s%,a%,sé,a%,..,s},,ab), (s%,a%,s%,a%,..,sﬁ,aé), -
(10)
=[t', 73,7

The rewards function can be considered as a linear combination of k known, fixed and
bounded basis functions ¢.

R(s,a) =wi¢1(s,a) + wada(s,a)+...... + widi(s,a) (11)

R(s,a) =Y {witi(s,a)} (12)

i

Where feature function ¢; : § — R and weights w; € R. The policy 7 is defined as
mapping states to an action and the value of a policy V is the sum of all the discounted
rewards that is possible to collect by following that policy as given in Eq. (8). Expectation
of a value function V7 is defined as:
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Figure 2. Proposed Layout for Max-Margin Algorithm

EV* (s0) = EIX. R (13
= E[Y. wo(s)l (14)

= EIL 901 (15)

— Wiy (16)

Algorithm-1 is used to find a weight vector w that minimizes the difference between
the expert feature expectations tr and the estimated feature expectations uz. Let con-
sider an MDP without reward MDP/R. Given the expert trajectory t°, we calculate ex-
pert’s feature expectations (g. We also estimate the feature expectation u(#) specifically
by exploring a random policy #. To find a policy & such that ||ug — u#||» < € [38]:

‘R(s;)| 7] a7

s

E[gtR(St)ﬂE] |

t=1
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Algorithm 1 Max-margin Algorithm

1: Given: Expert trajectories ¥ generated by behavior policies 7¥, discount factor 7,
termination criteria €,

2: Initialize: Feature matrix ¢, number of iteration, n = oo, Expert feature expectation
HE = E[T7'Rls,) ]

3: Randomly pick some policy #°.

4: while (7 > €) do

5 Compute ¢ by using Eq. (20) and let the w’ be the value to attain this maximum.

6:  Compute Reward function R(w())7 ¢.

7 Using RL Algo. find policy #()for this Reward

8 Estimate Feature expectation i (%) = E[Y;>; V¢ (s;)| %]

9: Seti=+1.

10: end while

11: Return: R = (w))T ¢

= W ug — wu(f)| (18)

< [W, [ (%) = uell2
<e

(19)

Where w: (||w][1 < 1).
Maximum values of w that minimize the distance between the expert feature expectations
and the estimated feature expectations are the true values for w [39].

"= e ey M- 20)
wil[wll2<1 je{0..(i-1)} (e () — pell2)

The value of w generates the reward function through dot multiplication with the basis
function ¢.

The optimal policy for this reward function is computed through a RL algorithm. The
estimated feature expectations for this kind of policy is calculated and compared with the
expert feature expectations. We want to explore a policy which minimizes the euclidean
distance stated in Eq. (20). A reward function for such a policy will be the true under
laying reward function for the expert policy.

If the algorithm terminates with 1(**1) < ¢ then it means that there is at-least one policy
from the set whose performance is as good as the expert’s policy minus €. For a solution
U is separated from p’ by a margin of at most €.

whu! >wlup —e, Yw with [|w]] < 1 (21)

min [|pg —p'll> < e (22)

In this section we have introduced an approach of max-margin algorithm. Layout of pro-
posed model is presented in Figure 2. At the initial stage, some policies are randomly
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End
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picked and feature expectation is calculated. The value of the threshold ' is then com-
puted and compared with a predefined value of €. In case the value of ' is not satisfac-
tory, then the weight vector w' is updated. The weight vector defines the values of the
underlying reward function using dot multiplication with feature vector ¢.

The optimal policy for the current reward function is estimated by utilizing the RL al-
gorithm. The feature expectations for this policy are calculated and found the new value
of ' as in the previous step. Updating weight vector and learning optimal policy for the
current reward function through RL is carried out repeatedly until it is found a policy
whose feature expectations i are nearly similar to the expert feature expectations Uz
and satisfies the equation given bellow:

Figure 3. A sample gridworld problem

i <e (23)

This policy achieves performance very close to those of the expert’s policy. Therefore, the
reward function that is used to estimate such an optimal policy through RL is considered
the true underlying reward function for the expert trajectories.

5. Experiment

In this section, we report the experiment that we have conducted to evaluate the adopted
model. First we have tested the algorithm on a gridword example followed by quantita-
tive and qualitative studies.

A gridworld is a 2-D decision-making example for robotic navigation as stated in [40].
We have considered a 5x5 gridworld for our experiment as shown in Figure 3. The robot
has to reach its destination, which is represented by the diamond. Except from the edge
states, an agent can take four possible actions at each state including up, down, left and
right with 30% chance of moving randomly. The grid is divided into non-overlapping
regions and for each cell in the region there is a feature ¢;(s). We have generated differ-
ent expert trajectories for these non-overlapping regions and hence calculated the expert
feature expectation tg. On the other hand, some initial policies are also generated ran-
domly and computed the estimated feature expectations.

The value of yis 0.09 and the threshold is equal to 0.01. The adopted approach of MMA
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Figure 4. Difference between expert feature expectations and estimated feature expectations along with No.
of iterations

is tested to recover the underlying reward function for the given expert trajectories. The
difference between the expert feature expectations and the estimated feature expectations
is calculated according to Eq. (20). The values of ¢t along with the number of iterations
are plotted in Figure 4. It can be seen that the algorithm convergences after a few itera-
tions. The results for initial rewards and recovered rewards are shown in Figure 5 with
different colours at each state.

The groundtruth reward represents the initial reward distribution for the gridworld. It can
be seen that all states except the end state have zero reward initially. The top right corner
(yellow box) represents the end state with the highest reward.

On the other hand, after having run successfully the adopted approach, the value of the

Groundtruth reward Recovered reward

] 105 0.04
4 08 4 0.02
3 06 3 0.00
-0.02
04 2
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021
-0.06
0 0o o
0 2 4 0 2 4

Figure 5. Groundtruth rewards represents the initial reward and after successful implementation of max-mar-
gin algorithm under-laying rewards are recovered

5]
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recovered rewards at each state is represented beside the ”Groundtruth reward” and the
scale of colors indicates the behavior and preference for the expert at each state.

6. Conclusion

In this paper, we have adopted a max-margin technique that is based on IRL. It focuses
on determining the true underlying reward function for some given demonstrations. The
MMA approach assumed that the reward function is shaped as a linear function of known
features. This recovered reward function helps RL and MDP problems to mimic the ex-
pert behavior in an efficient way. Results achived for robotic navigation in the gridworld
problem show that the MMA provides fast convergence.
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