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ABSTRACT

The objective of this study was to apply finite mixture
models to field data for somatic cell scores (SCS) for
estimation of genetic parameters. Data were approxi-
mately 170,000 test-day records for SCS from first-par-
ity Holstein cows in Wisconsin. Five different models
of increasing level of complexity were fitted. Model 1
was the standard single-component model, and the oth-
ers were 2-component Gaussian mixtures consisting of
similar but distinct linear models. All mixture models
(i.e., 2 to 5) included separate means for the 2 compo-
nents. Model 2 assumed entirely homogeneous vari-
ances for both components. Models 3 and 4 assumed
heterogeneous variances for either residual (model 3)
or genetic and permanent environmental variances
(model 4). Model 5 was the most complex, in which
variances of all random effects were allowed to vary
across components. A Bayesian approach was applied
and Gibbs sampling was used to obtain posterior esti-
mates. Five chains of 205,000 cycles were generated for
each model. Estimates of variance components were
based on posterior means. Models were compared by
use of the deviance information criterion. Based on the
deviance information criterion, all mixture models were
superior to the linear model for analysis of SCS. The
best model was one in which genetic and PE variances
were heterogeneous, but residual variances were homo-
geneous. The genetic analysis suggested that SCS in
healthy and infected cattle are different traits, because
the genetic correlation between SCS in the 2 compo-
nents of 0.13 was significantly different from unity.
Key words: mastitis, mixture model, somatic cell count

INTRODUCTION

The concentration of somatic cells in the milk of dairy
cows tends to increase in response to bacterial infection
of the mammary gland, because leukocytes are mobi-
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lized to the udder to destroy invading pathogens. Data
on SCC are routinely collected in the field and evaluated
genetically to provide an indirect selection criterion for
mastitis resistance (Interbull, 1996). Genetic evalua-
tion and selection programs in most countries are based
on SCC because data on mastitis incidence are not col-
lected routinely. Cows out of sires that have a higher
proportion of daughters with mastitis will tend to have
a larger than average SCC, so selection indexes for
udder health typically include negative weights on SCC
(e.g., Boettcher et al., 1998). However, the presence of
some leukocytes in a healthy udder is believed to be
necessary for an initial response to infecting organisms.
For this reason, some scientists have expressed concern
that selection for low SCC could reduce the ability of
cattle to respond to infection (e.g., Kehrli and Shuster,
1994). Several studies have attempted to evaluate the
relationship between SCC in healthy udders and subse-
quent susceptibility to mastitis, but results have not
been consistent. Some work has suggested that low SCC
is associated with increased risk for infection (Elbers
et al., 1998; Suriyasathaporn et al., 2000), but other
studies have shown increased mastitis resistance with
low SCC in the uninfected state (Beaudeau et al., 1998;
Rupp and Boichard, 2000), or for daughters of sires
with low estimated breeding values for SCC (Nash et
al., 2000).

Current genetic evaluation procedures for SCC treat
the records as homogeneous; that is, ignoring that there
may be some hidden structure due to unknown disease
status (Schutz, 1994). However, Detilleux and Leroy
(2000) suggested that SCC could be a different trait,
genetically, in infected and uninfected cows. If this were
the case, considering the infection status of cattle may
be of value when predicting breeding values for SCC.
Unfortunately, this practice would not be straightfor-
ward, given the lack of data for mastitis incidence at
the individual cow level in most countries. Even when
mastitis is recorded, only data for the clinical form of
the disease are obtained, whereas cattle may be infected
subclinically, showing an increased SCC as the only
symptom. To overcome these limitations, Detilleux and
Leroy (2000) proposed the use of finite mixture models
for analysis of SCC in the absence of information re-
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garding infection status. Such models are appropriate
for analysis of heterogeneous data when observations
are derived from different distributions, and are partic-
ularly useful for situations (like that of SCC) in which
the distribution from which a given observation arose
is unknown (McLachlan and Peel, 2000). Detilleux and
Leroy (2000) outlined a maximum likelihood approach
for analysis of SCC with a finite mixture model. Gianola
et al. (2004) refined this work and proposed algorithms
for estimating parameters of interest. In addition, ex-
tensions to the model to allow for heterogeneity of vari-
ances were proposed; also, Gianola (2005) discussed
issues connected with prediction of random effects in
mixture models. Ødegård et al. (2003) developed a
Bayesian approach for analysis of a 2-component mix-
ture model for SCC with heterogeneous residual vari-
ances, and applied it to simulated data.

The model of Ødegård et al. (2003) considered hetero-
scedasticity of variances for residual effects only, and
it was extended subsequently to derive a criterion suit-
able for selection against putative mastitis (Ødegård et
al., 2005). If SCC were a trait that differs genetically
between infected and uninfected cattle, allowing for
heterogeneity of genetic and permanent environmental
(PE) variances would be appropriate. The goal of this
study was extend the approach of Ødegård et al. (2003)
to allow for heterogeneous variances of genetic and PE
effects and to apply it to data on SCC collected in US
Holsteins. Several models of increasing levels of com-
plexity were compared for fit in an attempt to assess
which model was most appropriate for use in genetic
evaluation of SCC.

MATERIALS AND METHODS

Data

Data were test-day records from primiparous Hol-
stein cattle present in 105 large (>200 cows) well-man-
aged herds in the upper Midwestern US (primarily Wis-
consin) from January 2000 to March 2004. The SCC
records had been converted to linear SCS, using the
standard log 2 transformation (Ali and Shook, 1980).
Because herds were well managed, the mean SCS was
only 2.21 (SD = 1.84), much less than the US national
average of approximately 3.00. Data were edited to re-
quire a known sire of cow, DIM from 5 to 305 d, and
age at calving from 20 to 36 mo. In addition, all cows
were required to have at least 1 record in the first 80 d
of lactation. The final data set included 177,846 records
from 31,040 cows, daughters of 3,082 different sires.
An additive relationship file was created by tracing
pedigrees at least 3 generations, including ancestors
that were related to at least 2 animals with records.
The pedigree file included 54,143 animals.
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Table 1. Summary of the 5 models tested1

Model

Feature 1 2 3 4 5

Mixture components 1 2 2 2 2
Residual variance Hom Hom Het Hom Het
Genetic variance Hom Hom Hom Het Het
Permanent environment Hom Hom Hom Het Het

1Hom = Homogeneous variance; Het = heterogeneous variance.

Models

Data were analyzed with a series of 5 different models
of increasing order of complexity. Model 1 was a stan-
dard test-day repeatability model, similar to that used
by Reents et al. (1995) for the evaluation of SCS. Fixed
effects of systematic nongenetic factors and random
additive genetic and PE effects were fitted. The other
4 specifications were 2-component Gaussian mixture
models differing according to the type of heterogeneity
of variances considered (Table 1). All 3 variances (addi-
tive, PE, and residual) were homogeneous for model 2,
whereas all variances were heterogeneous for model 5.
Analyses were based on previous work of Ødegård et al.
(2003), with some extensions to accommodate models 4
and 5.

For the mixture models, observations of SCS were
assigned to 1 of the 2 components, assumed to be indica-
tive of health status. Assignments were defined by a
(unknown) vector z, where zi = 0 for a record i from a
“healthy” cow and zi = 1 for records from “infected”
cows. Following the notation used by Ødegård et al.
(2003), the equations for the various models can be
written, given z, as:

y = X0β0 + MzX1β1 + (I-Mz)Zaa0 [1]

+ MzZaa1 + (I-Mz)Zpp0 + MzZpp1 + e,

where y = vector of n observations for test-day SCS;
β0 = vector of fixed effects common to all records; β1 =
vector of fixed effects corresponding to observations
from infected cows; I = identity matrix of order n; Mz =
matrix with diagonal elements corresponding to vector
z; a0 = vector of random additive genetic effects on SCS
in the healthy state; a1 = vector of random additive
genetic effects on SCS in the infected state; p0 = vector
of random PE effects in the healthy state; p1 = vector
of random PE effects in the infection state; e = vector of
residual effects; and X0, X1, Za, and Zp = incidence
matrices corresponding to fixed (X.) and random (Z.)
effects, respectively.

The fixed effects in β0 included 3 regression coeffi-
cients for effects of DIM on SCS, 17 effects of age at
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calving, and 3,361 herd-test-day effects. Regression co-
efficients for DIM were based on the Wilmink curve
(Wilmink, 1987). Age-at-calving effects were one for
each age from 20 through 36 mo. The β1 vector included
a single element, the mean difference (shift) between
components 1 (healthy) and 2 (diseased) for observation
n. For the nonmixture model (model 1), all elements of
Mz were zero. For models with homogeneous genetic
and PE variances (i.e., Models 1, 2, and 3), a0 = a1 and
p0 = p1. For these models, a0 ∼ MVN(0, Aσ2

a), where A
is the numerator relationship matrix and σ2

a is the addi-
tive genetic variance, and p0 ∼ MVN(0, Iσ2

pe), where I
is an identity matrix of order 31,040. When genetic and
PE effects were heterogeneous, expectations of a0, a1,
p0, p1 were all zero and

Var
⎡
⎢
⎣

a0

a1

⎤
⎥
⎦

= G ⊗ A, [2]

where

G =
⎡
⎢
⎣

σ2
a0 σa01

σa01 σ2
a1

⎤
⎥
⎦

is the variance-covariance matrix between additive ge-
netic values under the “healthy” and “infected” sta-
tuses. Further,

Var
⎡
⎢
⎣

p0

p1

⎤
⎥
⎦

= P ⊗ I, [3]

where

P =
⎡
⎢
⎣

σ2
p0 σp01

σp01 σ2
p1

⎤
⎥
⎦

is the variance-covariance matrix between correspond-
ing PE effects. Conditionally on the breeding values
and PE effects, the variance matrix of the observation
vector (residual variance matrix) was expressed as

R = (I − Mz)σ2
e0 + Mzσ

2
e1, [4]

where I is an identity matrix of order n, and σ2
e0 and

σ2
e1 are residual variances for observations from the first

and second components, respectively. For models with
homogeneous residual variance, (i.e., models 1, 2, and
4) equation [4] simplifies to R = Iσ2

e0.

Bayesian Analysis

As mentioned previously, this study extended the
work of Ødegård et al. (2003) by allowing for heteroge-
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neity of animal (additive genetic and PE) and residual
variances. Many aspects of the Bayesian structure of
the model were very similar. Following the notation of
Ødegård et al. (2003), the density of y, conditional on
z, fixed and random effects, and residual variances,
of the most complex model (with heterogeneity of all
variances) can be expressed as

p(y | z, β0, β1, a0, a1, p0, p1, σ2
e0, σ2

e1) =

p(y | β0, a0, p0, σ2
e0, {zi = 0}) [5]

× p(y | β0, β1, a1, p1, σ2
e1, {zi = 1}),

where {zi = 0} and {zi = 1} denote the observations as-
signed to the first and second components, respectively,
of the mixture model. In more detail,

p(y | β0, a0, p0, σ2
e0, {zi = 0}) ∝

σ2
e0

−
⎛
⎜
⎝

n0

2

⎞
⎟
⎠ exp

⎡
⎢
⎣
− 1

2σ2
e0

(y − X0β0 − Zaa0 − Zpp0)′ [6]

(I − Mz)(y − X0β0 − Zaa0 − Zpp0)
⎤
⎥
⎦

for the n0 observations assigned to the first component.
For observations assigned to the second component (i.e.,
when zi = 1), the conditional density is obtained by
subtracting X1β1 to the quadratic form in equation [6],
and replacing σ2

e0 with σ2
e1, n0 with n1, I − Mz with Mz

and Zaa0 and Zpp0 with Zaa1 and Zpp1, respectively.
With regard to prior distributions, widely bounded

uniform priors were assigned to all fixed effects. In
addition, β1 was required to be greater than zero, to
attain parameter identification. The multivariate nor-
mal distributions given above were used as priors for
the random effects, conditionally on G and P for addi-
tive genetic and PE effects, respectively. Priors for G
and P were inverted Wishart distributions, defined by
2 parameters, a degrees of freedom ν, and a scale matrix
V of the same dimension of G and P. In all cases, ν was
set equal to 5. For the scale matrices, diagonal elements
(variances) were systematically varied from 0.1 to 2.0
in different chains to examine the influence of changing
these prior values. Off diagonal elements were held
constant at a small, but nonzero value (0.001). The
priors for σ2

e0 and σ2
e1 were scale-inverted χ2 distribu-

tions. For example, for σ2
e0, the prior was

p(σ2
e0) ∝ (σ2

e0)−(νeo+2)/2 exp[−¹⁄₂(νe0s2
e0/σ2

e0)], [7]

where s2
e0 and ν are hyper-parameters corresponding to

the prior variance and degrees of freedom, respectively.
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Experimentation was done to test for the effects of dif-
ferent priors for s2

e0, and chains eventually converged
to similar posterior distributions. Therefore, a fixed
prior was used. For all models, ν was set to 5 and s2

e
was set to 1.0 for both mixture components. The ele-
ments of the z vector were assumed to be independent
and identically distributed as Bernoulli random vari-
ables, a priori, with their probabilities depending on Pm,
the probability that an SCS is drawn from the “infected”
status. The joint prior distribution of z was

p(z | Pm) = ∏i=1,2,...,n P1−zim (1 − Pm)zi. [8]

Finally, the prior for the mixing proportion was a
beta distribution with parameters α and β. A value of
2 was assumed for both parameters, as in the example
of Ødegård et al. (2003).

Based on the sampling distribution of y and on the
various prior distributions assigned, the joint posterior
density of all unknown parameters was assumed to
take the form

p(β0, β1, a0, a1, p0, p1, z, G, P, R, Pm | y) ∝

p(y, β0, β1, a0, a1, p0, p1, z | G, P, σ2
e0, σ2

e1, Pm) [9]

p(G) p(P) p(σ2
e0) p(σ2

e1) p(Pm).

To implement a Gibbs sampler, realizations for each
parameter of interest must be drawn from their condi-
tional posterior distributions, given the most recent val-
ues for all other parameters in the model. For an ele-
ment of the β., a., and p. vectors, the conditional poste-
rior distribution was Gaussian. The mean was obtained
by solving the mixed model equation corresponding to
that element by inserting the most recent realizations
for all other elements of β., a., and p. and forming an
offset of the data vector (Wang et al., 1994). The vari-
ance was equal to the most recent realization of the
residual variance divided by the diagonal element of
the coefficient matrix that corresponded to the element
of interest (Sorensen, 1999). The conditional posterior
distributions of G and P were the inverted Wishart dis-
tributions:

G and P ∼ IW[(Sf + V−1
f )−1, νf + qf] [10]

where f = a or p and Vf and νf are scale and degree of
freedom parameters of the corresponding prior distribu-
tions. For G

Sf =
⎡
⎢
⎣

a′
0A−1a0 a′

0A−1a1

a′
1A−1a0 a′

1A−1a1

⎤
⎥
⎦

[11]

Journal of Dairy Science Vol. 90 No. 1, 2007

and qf is the number of animals in the relationship
matrix. For P

Sf =
⎡
⎢
⎣

p′
0p0 p′

0p1

p′
1p0 p′

1p1

⎤
⎥
⎦

[12]

and qf is the number of animals with records. The fully
conditional posterior distributions of σ2

e0 and σ2
e1 were

both scale-inverted χ2 distributions. For σ2
e0, the scale

parameter was

(y − X0β0 − Zaa0 − Zpp0)′ [13]

(I − Mz) (y − X0β0 − Zaa0 − Zpp0) + νe0s2
e0.

The scale parameter for σ2
e1 was similar to [13], with

substitutions to account for the fact that different addi-
tive genetic and PE effects were present for observa-
tions in the second mixture component:

(y − X0β0 − X1β1 − MzZaa1 − MzZpp1)′

(y − X0β0 − X1β1 − MzZaa1 − MzZpp1) + νe1s2
e1.

The elements of z assigning individual records to 1
of the 2 mixture components had mutually independent
Bernoulli conditional posterior distributions. Bernoulli
distributions are fully defined by a parameter p, which
is the probability that a certain binary outcome will
be obtained. In this case, pi was the probability that
observation i would be assigned to the second (in-
fected) component.

pi = [14]

p(yi | θ, G, P, σ2
e1, zi = 1)Pm

p(yi | θ, G, P, σ2
e0, zi = 0)(1 − Pm) + p(yi | θ, G, P, σ2

e1, zi = 1)Pm

where θ = [β0′ β1′ a0′ a1′ p0′ p1′]. The conditional densi-
ties for the yi were as presented in equation [6], using
the most recent realizations of the various parameters
as true values. The fully conditional distribution of the
mixing parameter Pm was a beta distribution, with pa-
rameters n0 + α and n1 + β.

The Bayesian structure of the more simple models is
obtained by removing terms that refer to effects and
(co)variances for the second component when the vari-
ance for a given factor is homogeneous. When the vari-
ances of genetic and PE effects were homogeneous, prior
and fully conditional distributions were scale-inverted
χ2 distributions, rather than inverted Wishart.

The Gibbs Sampler

The Gibbs sampler was run as follows: 1) Initial val-
ues for all fixed and random effects were zero. Variances
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and covariances were set to the values used in the cor-
responding prior distributions. 2) Observations were
randomly assigned to 1 of the 2 mixture components.
3) Fixed effects were sampled piecewise from univariate
normal distributions in the following order: a) regres-
sions on DIM, b) mean of the second component, c) age-
at-calving, d) herd-test-day. The mean of the second
component was forced to be ≥0, so only positive values
of β1 were accepted in the sampling process. 4) Random
effects were sampled from univariate normal distribu-
tions. Genetic effects were sampled first, followed by
PE effects. 5) The PE covariance matrix was sampled
from an inverted-Wishart (or scale-inverted χ2) distri-
bution. 6) The genetic covariance matrix was sampled
from an inverted-Wishart (or scale-inverted χ2) distri-
bution. 7) The residual variances were sampled from
scale-inverted χ2 distributions. Variance of the
“healthy” component was sampled first. 8) Group mem-
bership variables (i.e., elements of z) were sampled from
Bernoulli distributions. 9) The mixing proportion Pm
was sampled from a beta distribution.

The steps for the appropriate models were repeated
as needed at each chain of the Gibbs sampler. Five
sampling chains of 205,000 cycles each were generated
for each model. For each chain, the first 5,000 cycles
were discarded as burn-in period so that a total of
1,000,000 posterior samples were available for each
model. Convergence was assessed by the approach of
Gelman et al. (2004), which involves calculating the
square root of the sum of the within and across chain
variances, divided by the variance within chains. Con-
vergence was declared when this value was less than
1.1. Model 5 was the slowest model to converge, with
a ratio of 1.09; the value of this ratio was <1.02 for all
other models. Posterior distributions of (co)variances
were assessed based on sampling every 20th cycle. Pos-
terior means for breeding values were obtained by aver-
aging realizations from every 500th cycle.

Comparison of Models

Model Fit. The models were compared based on the
deviance information criterion (DIC; Spiegelhalter et
al., 2002). The DIC is one of a family of methods, includ-
ing Akaike’s information criterion (Akaike, 1970) and
the Bayesian information criterion (Spiegelhalter et al.,
2002), which consider both the fit and the complexity
of a model. The DIC can be expressed as

DIC = D + pD, [15]

where D is the posterior expectation of the Bayesian
deviance and pD is a measure of the effective number
of parameters in the model. The pD is obtained based
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on the difference between the posterior mean of the
deviance and the deviance evaluated at the posterior
means of the parameters. The model with the lowest
DIC is considered to be the most appropriate model
statistically. The DIC has previously been used for eval-
uation of Bayesian models applied to livestock data
(Rekaya et al., 2003).

The quantities needed to calculate the DIC can be
obtained readily from the Gibbs sampling iteration. To
obtain D, the expected Bayesian deviance, one needs
to calculate the Bayesian deviance:

= −2 log p(y | θ, R) [16]

every kth cycle of the Gibb’s sampler (θ is a vector of
the realized values of all parameters of interest at that
cycle of the sampling chain), and then average these
values over all samples taken. The deviance evaluated
at the posterior means of the parameters of interest is
then calculated after the Gibb’s chain is completed, by
substituting θ for θ in equation [16] where θ is a vector
of posterior means of all parameters entering into the
deviance. Here, D was evaluated every 2,000 cycles,
whereas posterior means were calculated based on sam-
ples obtained every 500th cycle.

EBV. In addition to comparing models for statistical
appropriateness, the EBV resulting from the different
models were evaluated for similarity. The posterior
means of additive genetic effects (calculated by sam-
pling every 500th cycle) were used as EBV. Two ap-
proaches were used to examine similarity of EBV. First,
Pearson correlation coefficients were calculated be-
tween all pairs of the 7 sets of animal solutions (1 set
of EBV from each of the 3 models (1, 2, and 3) with
homogeneous genetic variance and 2 sets each from the
2 models (4 and 5) with heterogeneous genetic vari-
ance). Correlation coefficients were calculated for 2 sets
of animals: 1) all animals, n = 54,143, and 2) only sires
with at least 10 offspring (n = 541).

Second, to examine changes in rank, all sires with at
least 10 offspring were sorted in ascending order based
on each of the 7 sets of EBV. Then, the top and bottom
50 sires were identified for each set. Finally, the number
of animals in common between each pair (high ranking
with high ranking and low vs. low) of these sets was
observed. Low numbers of mismatches were assumed
to indicate high similarity among evaluation models.

RESULTS

Posterior means for selected parameters of interest
for the 5 models are in Table 2. Most models produced
similar estimates of the mixing proportion (p2), with
around 5% of the observations in the second component
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Table 2. Posterior means (standard deviations) for various parameters according to the different models

Model

Parameter1 1 2 3 4 5

p2 — 0.054 (0.006) 0.040 (0.005) 0.083 (0.002) 0.047 (0.001)
�1 1.80 (0.019) 1.61 (0.017) 1.66 (0.017) 1.66 (0.027) 1.64 (0.017)
�2 — 5.65 (0.029) 6.09 (0.023) 2.36 (0.228) 5.74 (0.042)
σ2

G1 0.16 (0.024) 0.23 (0.023) 0.10 (0.018) 0.12 (0.019) 0.31 (0.040)
σ2

G2 — — — 2.41 (0.251) 0.52 (0.151)
σG12 — — — 0.07 (0.047) 0.39 (0.092)
σ2

PE 1 1.14 (0.023) 0.90 (0.021) 1.09 (0.019) 1.23 (0.022) 0.90 (0.033)
σ2

PE 2 — — — 3.22 (0.202) 0.76 (0.388)
σPE12 — — — 0.19 (0.056) 0.39 (0.092)
σ2

e1 1.63 (0.006) 0.95 (0.004) 0.95 (0.005) 0.86 (0.004) 0.90 (0.006)
σ2

e2 — — 1.20 (0.025) — 1.00 (0.025)

1p2 = Proportion of observations assigned to the second component, �i = mean of observations from
component i, σ2 = variance, σ = covariance, G = genetic, PE = permanent environmental, e = residual.

(presumably associated with mastitis), and 95% in the
“healthy” group. For models 2, 3, and 5, the means of
the 2 components were similar across models and quite
distinct from each other, ranging from 1.61 to 1.66 for
the low group and 5.65 to 6.09 for the high group. Re-
sults from model 4, however, were strikingly different.
First, the proportion of records assigned to the second
(high) component was much greater, at about 8%, vs.
around 5% for the other 3 mixture models. Also, the
difference in means of the 2 groups was much less. At
1.66 SCS, the mean of observations in the first compo-
nent of model 4 was similar to those for the other 3
mixture models. However, the mean of the second com-
ponent was much lower, at 2.36, vs. around 6.00 for the
other 3 models. The posterior standard deviation was
also much greater for model 4, in spite of the fact that
the posterior standard deviation of the mixture propor-
tion was lower for model 4 than for the other mixture
models.

All mixture models (2 to 5) had much lower residual
variance than did the standard linear model (model 1).
Residual variance was generally around 1.00 for the
mixture models (with the exception of a residual vari-
ance of 1.20 for the second component of model 3) vs.
1.60 for the linear Gaussian model. This difference is
due to the variability in means between the 2 compo-
nents in the mixture models, which is unaccounted for
in the linear model specification. When heterogeneous
variance was allowed, the residual variance estimate
was somewhat larger for the “infected” component of
the mixture.

No obvious trend was observed for genetic variance
when comparing the standard model with the 4 mixture
models. In model 4, the estimates of genetic and PE
variances for the second component were much larger
than the variances obtained by either of the other 3
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mixture models. The genetic variance of the second com-
ponent was 2.41 in model 4 vs. 0.52 for model 5; corres-
ponding PE variances were 3.22 and 0.76, respectively.

Allowing for genetic and PE variances to be heteroge-
neous across components had a much greater effect
on the analysis than did allowing for heterogeneous
residual variance (because differences between models
2 and 3 were much less than between models 2 and 4).
In addition, the genetic effects for the 2 components
were distinctly different in model 4, and the correlation
between genetic effects of the 2 components was only
0.13. In contrast, when genetic, PE, and residual vari-
ances were all allowed to be heterogeneous (model 5),
the genetic effects of the 2 components essentially dif-
fered only in variance (r = 0.97).

Based on the results from Table 2, clear differences
among the models existed. However, results did not
reveal per se which model was more strongly supported
by the data. The DIC values (based on means across 5
sampling chains per model) for the 5 models are in
Table 3. In the light of the empirical standard errors
of DIC statistics, based on between-chain variability,
all models can be considered as producing statistically
significantly different results, roughly. According to the
DIC, model 4 was favored, by far; recall that a model
with the lowest DIC is preferred. The average DIC for

Table 3. Deviance information criteria for the different models

Model Mean1 SEM

1 955,354 98
2 562,278 42
3 564,112 36
4 509,907 23
5 539,131 294

1Means across 5 sampling chains.
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Table 4. Correlations1 between predicted breeding values for SCS from the different models, for all animals2

(above diagonal) and sires with at least 10 daughters3 (below diagonal)

Model

4 5

Model4 1 2 3 C1 C2 C1 C2

1 0.93 0.94 0.94 0.32 0.92 0.92
2 0.96 0.94 0.93 0.23 0.97 0.96
3 0.97 0.98 0.97 0.21 0.90 0.88
4 C1 0.95 0.96 0.98 0.14 0.90 0.89
4 C2 0.48 0.37 0.37 0.28 0.28 0.29
5 C1 0.95 0.98 0.95 0.94 0.43 >0.99
5 C2 0.95 0.98 0.94 0.93 0.45 >0.99

1All correlations were significantly different from zero (P < 0.0001).
2n = 54,143.
3n = 541.
4C1 and C2 are components 1 and 2, respectively.

model 4 was 509,907 or about 6% lower than the DIC of
the second-ranking model, model 5. The DIC for model 5
was about 10% lower than for models 2 and 3. As one can
observe by comparing models 4 and 5, the assumption of
fixed residual variance had profound effects on both
the parameter estimates and the fit of the model as
evaluated by DIC. The proportion of observations in
the second or “infected” component was much greater
than in any other model and the difference in SCS level
for the 2 classes was much less than for any other model.
One conclusion that can be drawn is that models 1 to
3 were underparameterized relative to model 4 (because
DIC were larger) and model 5 was overparameterized
(larger and more variable DIC). Table 3 also shows that
any of the 4 mixture models used was superior to the
standard linear model (model 1) for analysis of SCS
data. The DIC of model 1 was nearly twice as large as
for any of the mixture models. Boettcher et al. (2005)
observed a similar advantage when applying a simple
mixture model (i.e., similar to model 2) to SCS data
from goats.

The correlations among EBV from the different pairs
of models were all about 0.90 (Table 4), except for the
pairs that included the second (high) component of
model 4. Correlations with the EBV for the second com-
ponent of model 4 ranged from 0.14 to 0.32 when all
animals were considered, and from 0.28 to 0.48 when
only sires with ≥10 daughters were considered. The
lowest correlations between sets of EBV were between
the first and second components of model 4. At the same
time, the EBV from the first component of model 4 were
similar to the EBV from the other models (generally
around 0.95). The highest correlations (<0.99) were be-
tween the 2 components of model 5.

Despite high correlations among EBV, the degree of
sire reranking among models (Table 5) indicates that
the use of a mixture model would lead to real changes
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in sire selection if applied instead of the linear model.
For all mixture models (models 2 through 5), the top
50 sires (low SCS) differed by at least 10 sires (>20%)
from the top 50 identified by the linear model (model
1). Slightly less reranking was observed among the bot-
tom 50 sires. As expected, the rankings of sires were
widely different between the 2 components of model 4.
Eleven sires were in common among the top 50, and
13 were in common among the bottom 50.

DISCUSSION

Based strictly on statistical considerations, mixture
models are more appropriate for analysis of SCS data
of dairy cattle than the standard linear model. Four
different mixture models were applied in this study,
and all had a markedly lower DIC than the linear
model, indicating superior fit to the data while account-
ing for the increased complexity of the mixture model.
Correlations of EBV from the mixture models with
those from the linear model were generally ≥0.90, but
shuffling in order of the highest ranked sires was ob-
served, demonstrating that practical differences would
be realized with the adoption of a mixture model for
genetic evaluation. Differences between the linear and
mixture models may be even more marked in an analy-
sis with all herds included, because this study included
primarily data from well-managed herds with low
mean SCS.

The superiority of the mixture model may also in-
crease if a more complex model is applied. The primary
objective of this research was to compare models that
differed according to the distributions of random effects
in the models and heterogeneity of variance of effects
from each component. Therefore, very simple assump-
tions were made about the mixing proportions and all
observations had the same prior of falling in each of
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Table 5. Number of animals in common among the 50 highest (above diagonal) and lowest (below) sires1

for each pair of breeding value estimates from the various models

Model

4 5

Model2 1 2 3 C1 C2 C1 C2

1 38 39 37 17 36 37
2 41 44 40 12 44 42
3 43 44 44 12 40 38
4 C1 42 41 44 11 35 35
4 C2 17 14 15 13 13 14
5 C1 39 46 41 40 39 48
5 C2 39 46 40 39 15 49

1Sires with at least 10 daughters.
2C1 and C2 are components 1 and 2, respectively.

the 2 components, regardless of possible effects of differ-
ences in herds, ages, and genetics on this probability.
Ødegård et al. (2005) have outlined an approach to
accomplish this by including a “liability” variable into
the mixing proportion.

The “best” mixture model (based on having the lowest
DIC) was one that allowed for heterogeneous genetic
and PE variance, but assumed homogeneous residual
variance. Correlations between the EBV of the 2 compo-
nents of the model with heterogeneous genetic effects
were low, suggesting that SCS for infected and healthy
cows may be different traits.

Although the statistical evidence supporting the use
of mixture models is strong, questions remain about
the biological ramifications of applying a mixture
model, and about the precise meaning of the different
EBV resulting from a mixture model with heteroge-
neous genetic effects. One possible way to approach this
question may be to analyze a set of data for which the
true infection status was known, considering SCS from
healthy and infected cows as different traits, similar
to the approach of Heringstad et al. (2006), and then
comparing these results with those from the application
of a mixture model to the same data. One might also
consider a more complex model that includes more com-
ponents based on the type of pathogen. Some research
(M. M. Schutz, Purdue University, West Lafayette, IN;
personal communication) has suggested that SCS in
response to a contagious infection is under greater ge-
netic control than SCS during an environmental infec-
tion. Of course, prospects for such studies are limited
by lack of data availability. Another issue is how a
genetic evaluation for SCS can be translated into a
selection criterion, as discussed in Ødegård et al.,
(2005).

Finally, the statistical analysis of SCS and IMI
should be complemented with biological research to de-
termine whether high or low SCS is favorable in both
healthy and infected states. As mentioned in the intro-
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duction, contradictory reports have been presented on
the relationship between SCS in the seemingly healthy
udder and subsequent susceptibility to infection. The
relationships between SCS in the infected udder and
elimination of the pathogen should also be examined.
High SCS in this state could be beneficial, leading to a
fast return to health, but a very strong immune re-
sponse; high SCS could also trigger more damage to
the udder and cause greater loss in milk yield.
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