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ABSTRACT

The aim of this study was to investigate the feasibil-
ity of using mid-infrared (MIR) spectroscopy analysis 
of milk samples to increase the power and precision 
of genome-wide association studies (GWAS) for milk 
composition and to better distinguish linked quantita-
tive trait loci (QTL). To achieve this goal, we analyzed 
phenotypic data of milk composition traits, related 
MIR spectra, and genotypic data comprising 626,777 
SNP on 5,202 Holstein, Jersey, and crossbred cows. We 
performed a conventional GWAS on protein, lactose, 
fat, and fatty acid concentrations in milk, a GWAS 
on individual MIR wavenumbers, and a partial least 
squares regression (PLS), which is equivalent to a 
multi-trait GWAS, exploiting MIR data simultaneously 
to predict SNP genotypes. The PLS detected most of 
the QTL identified using single-trait GWAS, usually 
with a higher significance value, as well as previously 
undetected QTL for milk composition. Each QTL 
tends to have a different pattern of effects across the 
MIR spectrum and this explains the increased power. 
Because SNP tracking different QTL tend to have dif-
ferent patterns of effect, it was possible to distinguish 
closely linked QTL. Overall, the results of this study 
suggest that using MIR data through either GWAS or 
PLS analysis applied to genomic data can provide a 
powerful tool to distinguish milk composition QTL.
Key words: genome-wide association study, mid-
infrared spectroscopy, milk trait, dairy cattle

INTRODUCTION

Genome-wide association studies (GWAS) have been 
widely used to identify SNP associated with variation 
in phenotypic traits in dairy cattle, presumably because 

they are in linkage disequilibrium (LD) with a QTL or 
causal variant for the trait. For instance, Pryce et al. 
(2010), Bouwman et al. (2011), and Buitenhuis et al. 
(2016) successfully identified important genome regions 
for milk production and composition traits. However, 
the power and precision of GWAS to identify the SNP 
closest to the causal variant is limited by the small 
effect size of most QTL (Hayes et al., 2009). Stringent 
significance tests are needed to protect against false 
positives from multiple testing, and external informa-
tion independent from GWAS is needed to distinguish 
causal mutations with strong LD, which extends over 
megabases in cattle (de Roos et al., 2008) and limits 
the precision with which the QTL is mapped. The large 
number of small QTL implies that they are densely 
packed on chromosomes; this fact, combined with long-
range LD, can make it difficult to identify the number 
of QTL in a genomic region. For example, many SNP 
within 1 Mb of the DGAT1 gene on chromosome 14 
(Chr14:​1795425–1804838) have an association with 
milk fat percentage (e.g., Iso-Touru et al., 2016). This 
is likely because they are in LD with the causal vari-
ant in DGAT1 but it could also be that other QTL 
in this region affect fat percentage. Multi-trait GWAS 
increases the power to detect QTL (Xiang et al., 2017), 
especially if the effects of a QTL across traits are dif-
ferent from that expected from the correlation between 
traits. Multi-trait GWAS analysis can also distinguish 
closely linked QTL if they have different patterns of 
effect across the traits.

Mid-infrared (MIR) spectroscopy is a useful tool to 
measure the concentration of many milk components, 
such as fat, protein, lactose, and fatty acids (De Mar-
chi et al., 2011, 2014; Soyeurt et al., 2011) and thus 
to generate multi-trait data (De Marchi et al., 2014). 
Furthermore, the MIR absorption at each wavenumber 
can be considered a trait in its own right. These traits 
have been shown to be heritable, with estimates of 
heritability ranging between 0 and 0.63 (Soyeurt et al., 
2010; Wang et al., 2016) and are affected differently by 
individual genes (Wang et al., 2016). Moreover, because 
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of the low cost and routine use through milk recording, 
it is feasible to obtain MIR spectra on thousands of 
animals, which could provide significant power in as-
sociation analysis.

The relationship between SNP and MIR data can 
be investigated by performing individual GWAS on 
single spectral wavenumbers, using SNP as predictors 
(Wang and Bovenhuis, 2018). However, a multi-trait 
GWAS of all wavenumbers simultaneously would be 
more powerful. Moreover, an almost equivalent but 
faster analysis is to use all wavenumbers to predict the 
genotype at each SNP (a “reverse GWAS”; Rutten et 
al., 2011). In this paper, we used partial least squares 
regression (PLS) to predict SNP genotypes from MIR 
spectral data on each cow; PLS was chosen because it 
is routinely used to predict phenotypes from MIR data 
(Geladi and Kowalski, 1986). The advantage of PLS is 
that it uses all wavenumbers simultaneously to predict 
SNPs and thus could significantly increase the power 
of identifying informative SNP markers in a limited 
computational time.

Therefore, the aim of this study was to investigate 
the feasibility of using MIR information to increase the 
power and precision of GWAS for milk composition and 
to distinguish linked QTL from a single QTL linked to 
multiple SNP. We first present a conventional GWAS 
on protein, fat, lactose, and fatty acid concentrations in 
milk; followed by a GWAS on absorption at individual 
MIR wavenumbers and a reverse multi-trait GWAS us-
ing all wavenumbers to predict a SNP genotype; and 
finally, an analysis to distinguish whether linked SNP 
are associated with the same or different QTL.

MATERIALS AND METHODS

In this study, multiple approaches were used to ana-
lyze phenotypic and genotypic data. First, single-trait 
GWAS were performed to test the associations between 
SNPs and milk composition traits or MIR wavenum-
bers. Second, PLS was applied to predict SNP geno-
types using MIR wavenumber as predictors.

Animal Data

The data used in this study were obtained from 5,202 
Holstein, Jersey, and crossbred cows between parity 1 
and 6 from 20 commercial farms located in New South 
Wales, Victoria, and Tasmania (Australia) calving in 
spring 2017. Milk samples were taken 2 to 8 times per 
cow (4.7 on average) and sent to TasHerd Pty Ltd. 
(Hadspen, Tasmania, Australia) for prediction of fat, 
protein, and lactose contents using an infrared spec-
trometer (model 2000, Bentley Instruments, Chaska, 

MN). The corresponding spectra were stored for this 
study. A single spectrum includes 899 data points, with 
each point representing the absorption of infrared light 
through the milk sample at a particular wavelength in 
the 649 to 3,999 cm−1 region. Commercial prediction 
equations, obtained from Bentley Instruments and 
calibrated using data of Holstein cows with prediction 
accuracies (R2) ranging between 0.74 and 0.96, were 
applied to these spectra to obtain individual fatty acids 
(expressed as g/dL of milk), including C4:0, C6:0, C8:0, 
C10:0, C12:0, C14:0, C16:0, C17:0, C18:0, C18:1 cis-9, 
and C20:0. The original data set comprised 24,655 spec-
tra and milk composition traits, in which the mean and 
standard deviation (SD) of DIM were 146 and 121, re-
spectively. The original data set was edited and outliers 
were identified and excluded as milk composition traits 
being greater than means ± 3.5 SD. Then, phenotype 
records (spectra and milk composition traits) were av-
eraged, resulting in only one observation per cow; this 
reduced within-cow errors and eliminated the need to 
fit DIM as a fixed effect in statistical models. It was not 
possible to include parity as a fixed effect in statistical 
models because this information was not readily acces-
sible. Several mathematical treatments were applied to 
milk spectra. Noisy areas induced by water absorption 
(1,600 to 1,689 and 3,010 to 3,998 cm−1) were first re-
moved (Hewavitharana and van Brakel, 1997). Spectra 
with a global distance value >3 were considered outliers 
and excluded (Shenk and Westerhaus 1995). First de-
rivative was applied to the reduced spectra to increase 
peak resolution. After editing, a reduced spectrum of 
598 wavenumbers per sample was used for the analysis.

Genotypes

All cows were genotyped using a BovineSNP50 Bead-
Chip and then imputed to BovineHD (800K) BeadChip 
(Illumina Inc., San Diego, CA), following the proce-
dures previously described by Kemper et al. (2015). 
The genotype data were refined according to a range of 
quality control filters (Erbe et al., 2012; Kemper et al., 
2015). After quality check, 626,777 SNP remained for 
the analysis. The genotypes for each SNP were encoded 
in the top/top Illumina A/B format and then genotypes 
were reduced to 0, 1, and 2 copies of the B allele. All 
SNPs were mapped to the UMD 3.1 build of the bovine 
genome sequence (https:​/​/​www​.ensembl​.org/​biomart).

Single-Trait GWAS

The regression model used in the GWAS to test the 
association of each SNP with each milk composition 
and wavenumber trait was as follows:

https://www.ensembl.org/biomart
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	 y = Xβ + Zu + Wa + e,	 [1]

where y is the vector of phenotypic records of q indi-
viduals; β is the vector of fixed effects of breed (Hol-
stein, Jersey, crossbred) and herd (1 to 20); X is a de-
sign matrix relating phenotypes to their fixed effects; u 
is the vector of animal effects, where u G~ , ,N g0 2σ( )  G 
is the q × q genomic relationship matrix (GRM, based 
on high-density genotypes) between pairs of individu-
als, and σg

2 is the additive genetic variance; Z is the 
incidence matrix; W is the vector of animal genotypes 

at SNPi coded as 0, 1, or 2 (representing the genotypes 
aa, Aa, or AA) and a is the effect of the SNP; e is the 
vector of residual errors. The GWAS was conducted 
using GCTA software (Yang et al., 2011). Associations 
with a −log10(P) ≥ 5 were considered statistically sig-
nificant, corresponding to a maximum false discovery 
rate of 0.10. Figure 1 shows the quantile-quantile (Q-Q) 
plots of GWAS results for some specific phenotypes. 
We observed strong skews in the Q-Q plots, which indi-
cates that more SNP were associated with our pheno-
types than expected by chance.

Figure 1. Quantile-quantile (Q-Q) plots of genome-wide association study (GWAS) results of milk protein (A), lactose (B), and fat (C) 
percentage, and a milk fatty acid (C4:0; D) used as example.
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PLS Analysis

The prediction models for SNP genotypes were de-
veloped using PLS and implemented in R with the pls 
package of Mevik and Wehrens (2007), through a 10-
fold cross-validation. Partial least squares is similar to 
a principal component analysis where the data set is 
transformed into a new projection that represents the 
entire data set and the most informative components in 
the new projection are features of the transformed data 
set. However, PLS considers the dependent variable 
when constructing its projection, whereas principal 
component analysis does not (Hempstalk et al., 2015).

The SNP genotypes and MIR spectra were pre-
adjusted for the fixed effects of breed and herd using 
multiple linear regression. Breed (Holstein, Jersey, 
crossbred) and herd (1 to 20) were considered as class 
variables in the linear model performed through the R 
stats package. The residuals from this analysis for SNP 
and MIR spectra were used as response and explana-
tory variables, respectively, to calibrate the PLS mod-
els. The multiple linear regression adjustment aimed 
to remove the same possible confounding effects for 
both response (SNP genotypes) and explanatory (MIR 
spectra) variables in the PLS analysis. The accuracy 
measures of the PLS models (developed through a 10-
fold cross validation) included the coefficient of deter-
mination (R2) and root mean square error. The optimal 
number of PLS components was determined based on 
first local minimum value in root mean squared error.

To investigate the potential contribution of MIR in 
predicting SNP genotypes, the PLS models were tested 
in 2 ways. In the first model, only MIR information 
was used as explanatory variables. The second model 
included MIR in addition to the first 20 principal com-
ponents (PC; explaining approximately 80% of the 
total variance) of the GRM of the animals in this study, 
as explanatory variables. In the last model, only the 
first 20 PC of GRM were considered. The R2 of MIR 
corrected for PC of the GRM (R2

MIRcor) was calculated 
as the difference between R2 of the PLS model using 
MIR and GRM as explanatory variables and R2 of SNP 
predicted through only GRM, divided by 1 − R2 of 
SNP predicted through the GRM.

To compare GWAS and PLS results, P-values were 
computed for each R2 through a chi-squared approxi-
mation of the F-test in ANOVA, using the following 
formula: N (R2/1 − R2) ~ χ2, where N is the sample 
size (5,202 cows) of the study, and R2 is the coefficient 
of determination for each SNP prediction model. The 
same approach was used for each R2

MIRcor. Values of R2 
≥ 0.02 corresponding to −log10(P) ≥ 24 were consid-
ered in defining significant peaks in PLS results.

The PLS and linear regression analyses described 
above were performed using R statistical software ver-
sion 3.4.3 (R Core Team, 2017).

RESULTS

GWAS on Milk Composition

The GWAS results for protein, lactose, and fat per-
centages are presented in Figure 2 and 3. The most 
important SNP [i.e., that were −log10(P) ≥ 5] for each 
trait are reported in Table 1. Because not all the SNP 
have reference identifications, we have provided SNP 
position coordinates of the bovine genome (UMD 3.1; 
https:​/​/​www​.ensembl​.org/​biomart) to refer to the SNP 
throughout the text.

Genome-Wide Association Comparison Between  
Fat Content and Fatty Acids

Figure 3 shows the GWAS results for milk fatty acids 
and fat percentage. Because the peaks on BTA14 tend 
to dominate the Manhattan plots, we focused on the 
bottom of each plot by truncating the y-axis to a maxi-
mum value of −log10(P) at around 20, to highlight the 
similarities and differences between traits. The most 
significant SNPs in each peak for each milk fatty acid 
are listed in Table 1. The observed QTL fell into at 
least 3 groups. The first group included QTL that af-
fected total fat percentage and the concentration of all 
fatty acids, such as SNP on BTA5 and BTA14. How-
ever, these QTL affected all fatty acids concentrations 
but not in the same direction. The alleles of DGAT1 on 
BTA14 and MGST1 on BTA5 that increased the con-
centration of fatty acids synthesized in the mammary 
gland (de novo fatty acids), decreased the concentra-
tions of long-chain fatty acids. A second group of QTL 
affected total fat percentage and some fatty acids in 
the same direction. For example, a SNP at 103.8 Mb 
on BTA8 and a peak around 31.2–31.9 Mb on BTA20 
affected fat percentage and C17:0 or C6:​0–C17:​0 and 
C18:1 in the same direction, respectively. This pat-
tern of effects might be caused by an increase in milk 
volume that dilutes all components (e.g., by GHR on 
BTA20). A third group of QTL affected specific fatty 
acids. For instance, SNP near FASN (51.2–51.3 Mb on 
BTA19) were associated with C10:0, C12:0, and C14:0, 
and others near PAEP (103.2–103.3 Mb on BTA11) 
affected the concentration of C18:1.

GWAS on Mid-Infrared Wavenumbers

The most significant SNP for each milk trait were 
investigated for their associations with MIR spectra. 

https://www.ensembl.org/biomart
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These SNP tended to be significant for multiple wave-
numbers. Consequently, for each SNP, we could draw a 
profile of their significant effects across spectra (Figures 
4, 5 and 6).

The SNP varied widely in their pattern of significance 
across the spectrum. Figure 4 shows the −log10(P) of 
the 598 MIR wavenumbers of 3 different SNP, each 
associated with different milk composition traits. The 
first SNP (Chr6:​87391848, Figure 4A) was significantly 
associated with protein percentage and was near CSN3. 
It had significant effects on 66 wavenumbers distributed 
in 8 peaks across the spectrum (Figure 4A). Significant 
wavenumbers were observed between 1,212 and 1,387 
cm−1 and from 1,458 to 1,700 cm−1. Although they had 
lower significance than those described above, addi-
tional wavenumbers were observed in the following part 
of the spectrum corresponding to 1,876 to 1,898 cm−1, 
2,487 to 2,506 cm−1, 2,599 to 2,618 cm−1, 2,857 cm−1, 
and 2,924 cm−1. The second SNP (Chr28:​6491786, 
Figure 4B) was associated with lactose percentage and 
was near KCNK1. It had a significant effect on few 
wavenumbers, ranging from 995 to 1,033 cm−1 and 
from 1,163 to 1,167 cm−1 (Figure 4B). The third SNP 
(Chr11:​103308330, Figure 4C) was associated with 
milk fat composition, specifically with C18:1, and close 
to PAEP. It significantly affected 30 wavenumbers, cor-
responding to the following regions: 958 to 969 cm−1, 
1,283 to 1,294 cm−1, and 1,365 to 1,488 cm−1 (Figure 
4C). These 3 SNP had quite different patterns of sig-

nificant wavenumbers, which might be expected as they 
affected different traits.

Figure 5 shows 2 SNP both associated with lactose 
percentage (Chr28:​6491786 and Chr19:​61238366). 
Although they shared a significant spectral region be-
tween 995 and 1,029 cm−1, these SNP showed different 
patterns for the remaining wavenumbers. Conversely, a 
completely different situation is represented by SNP de-
picted in Figure 6. The first group of SNP (Figure 6A) 
were all near DGAT1. They had very similar effects on 
milk composition traits (Table 1) and across the MIR 
spectrum (Figure 6A). Figure 6B depicts 2 other SNP 
3 Mb apart (Chr14:​66328304 and Chr14:​69890969) but 
also showing similar effects on milk traits (Table 1) and 
on the spectrum of wavenumbers (Figure 6B).

SNP Prediction Using PLS

The results described above show that different QTL 
have different patterns of effect across the MIR spec-
trum, suggesting that a multi-trait analysis, using all 
wavenumbers, is likely to be a powerful way to detect 
QTL affecting milk composition. We examined this 
proposition by what we describe as a “reverse GWAS,” 
in which we used the MIR data to predict SNP geno-
type by a PLS analysis. First, we tested whether SNP 
that affected conventional milk traits could be detected 
by this new analysis. Table 1, which contains signifi-
cant SNP for conventional milk traits, also presents 

Figure 2. Manhattan plots of genome-wide association study (GWAS) results of milk protein (A) and lactose (B) percentage using SNPs 
with P < 0.05. The horizontal line is −log10(P) ≥ 5. Genes close to identified peaks are highlighted.
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R2 values of each SNP obtained through PLS analysis. 
To compare PLS and the conventional GWAS, the −
log10(P) of each R2 was computed. This showed that 
the PLS analysis significantly [−log10(P) ≥ 5] predicted 

all but 4 of the SNP in Table 1. As shown in Figure 7, 
7,417 SNPs had −log10(P) ≥ 24, highlighting very high 
and clear significance peaks in specific genome regions 
(e.g., on BTA6, BTA11, and BTA14). The prediction 
accuracy of PLS models using only MIR spectra de-
creased slightly when corrected for population structure 
through addition of the first 20 PC of GRM (R2

MIRcor) 
to the model (Table 1). For the SNP in Table 1, the R2 
decreased from 6.5 to 5.4% as a result of adding the 
PC to the model. Also, the ranking of SNP in Table 1 
using −log10(P) before and after correction using PC 
from the GRM was similar. Nevertheless, many SNP 
showed much more significant results in the PLS than 
in the conventional GWAS. An example of the direct 
comparison of the significance of effects between the 
GWAS and PLS is shown in Figure 8. On BTA29, the 
GWAS results for lactose percentage appeared to be 
quite flat and not easily distinguishable (Figure 8A). 
In contrast, stronger differences between SNP were 
observed in PLS outcomes (Figure 8B). Those SNP 
significant in the PLS, but not in Table 1, are listed 
in Table 2. Some SNP close to the genes LALBA, AG-
PAT6, and P2RX4 were identified on BTA5, BTA27, 
and BTA17, respectively.

Next, we investigated the ability of the combination 
of GWAS results on MIR wavenumbers and PLS results 
to distinguish whether different SNP were associated 
with different, or the same, QTL. Table 3 presents 
results from 4 genome regions, where it was unclear 
whether one or more QTL occur. If 2 SNP track the 
same QTL, we expect them both to be in LD with the 
QTL and therefore most likely in LD with each other. 
Also, if they track the same QTL, we expect that their 
effects across the 598 wavenumbers are correlated. For 
instance, on BTA20, there were 3 SNP from 31.4 to 34.5 
Mb. The first 2 (Chr20:​31228912 and Chr20:​31909478) 
were in moderately high LD [LD squared coefficient 
(ρ2) = 0.49] and their effects across wavenumbers were 
almost identical, with a coefficient of correlation (r) of 
0.996 (Table 3 and Figure 9). However, their LD ρ2 was 
close to zero with the third SNP (Chr20:​34522480) and 
the correlations of their effects were 0.872 and 0.864. 
This suggests that the first 2 SNP track the same QTL 
but the third SNP (at 34.5 Mb) tracks a different QTL. 
We tested this conclusion as follows. We used PLS 
to predict one SNP genotype using another SNP, the 
MIR data, or both. In this case, the SNP at Chr20:​
31909478 predicted the genotype of the SNP at Chr20:​
31228912 and Chr20:​34522480, as would be expected 
from the LD (this R2 is similar but not equal to the 
LD ρ2 because the prediction was tested in the same 
cross-validation procedure as used for PLS with MIR 
spectra). Including MIR information in the model did 
not bring any improvement to the prediction accuracy 

Figure 3. Manhattan plots of genome-wide association study 
(GWAS) results of fat percentage and milk fatty acids using SNP 
with P < 0.05. The horizontal line is −log10(P) ≥ 5. A focus on the 
bottom of each plot around −log10(P) = 20 is considered to provide a 
clearer comparison between traits. Arrows of different colors are used 
to identify similarities and differences between traits: green for com-
mon peaks, yellow for common peaks in only a few traits, and red for 
peaks associated with specific traits.
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of the first SNP but it increased the R2 of the second 
SNP. A possible explanation for these results may be 
that the 2 SNP at 31.4 Mb were tracking the same 
QTL, but the SNP at 34.5 Mb was tracking a different 
QTL. The other results in Table 2 support 2 QTL on 
each region investigated.

DISCUSSION

The aim of this study was to test whether MIR spec-
tral data can be used as a tool to improve the power 
to detect and precisely map QTL associated with milk 
composition traits. Combining breeds had 2 benefits: 
it increased sample size and therefore power to detect 
associations and it decreased LD, increasing mapping 
precision. Using multi-breed data, we searched for SNP 
markers close to and in LD with QTL in all breeds. 
This approach broke down the long-distance LD within 
a breed, finding SNP that are close to the QTL. Most 
of the highly significant SNP were segregating in both 
Holsteins and Jerseys. In the first step of the study, 
GWAS results on milk composition traits were ana-
lyzed. Then, GWAS on single MIR wavenumbers and 
PLS using all wavenumbers to predict each SNP were 
performed to investigate differences and similarities be-
tween SNP. Finally, the feasibility of combining GWAS 
and PLS results to distinguish whether linked SNP 
were associated with the same or different QTL was 
investigated. Our results showed that PLS combining 
information from many wavenumbers had more power 
than single-trait GWAS in identifying informative SNP. 
Also, the combination of GWAS and PLS results pro-
vided information to distinguish QTL that are close 
together on the chromosome.

GWAS on Milk Composition

Many of the QTL described here have been previ-
ously reported and associated with candidate genes, 
such as DGAT1, MGST1, and GHR for fat and protein 
percentages (Grisart et al., 2002; Raven et al., 2014; 
Littlejohn et al., 2016; Nayeri and Stothard, 2016). The 
QTL on BTA3 at 15 Mb has been previously associated 

Figure 4. Significance [−log10(P)] pattern of the effect of selected 
SNP affecting protein percentage (Chr6:​87391848; A), lactose percent-
age (Chr28:​6491786; B), and fat chains (Chr11:​103308330; C), on in-
frared wavenumbers in genome-wide association studies.

Figure 5. Significance [−log10(P)] pattern of the effect of 2 SNP 
(Chr19:​61238366 and Chr28:​6491786) affecting lactose percentage on 
infrared wavenumbers in genome-wide association studies.
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with milk production traits (Xiang et al., 2017) but we 
found that it specifically affected protein and lactose 
percentages. The gene SLC50A1, which encodes a sugar 
transporter, is related to lactation in other mammal 
species (Lopdell et al., 2017) and had several significant 
SNP nearby. Other authors have suggested MUC1 as 
a candidate for this QTL (Nayeri and Stothard, 2016; 
Raven et al., 2016; Xiang et al., 2017).

Overall, there have been fewer reports of GWAS for 
lactose percentage than for fat and protein contents. 
Lactose percentage varies less than fat and protein 
percentages because lactose is the main osmole regu-
lator in milk (Fox et al., 2015). Consequently, there 
are limited physiological mechanisms by which it can 
be altered. One mechanism is to alter the concentra-
tion of other osmole regulators such as ions (Fox et al., 
2015). We found significant SNP for lactose percent-
age close to the genes KCNJ2 (19.6 Mb on BTA19) 
and KCNK1, both of which transport potassium across 
cell membranes. The KCNJ2 gene was described as a 
modulator of milk lactose content, through its function 
in potassium ion transport in the membranes of secre-

tory cells in mammary glands (Lopdell et al., 2017). 
We also found significant SNP for lactose percentage 
near genes involved in lactose synthesis or secretion, 
including STAT5B (42.9 Mb on BTA19) and SLC50A1 
mentioned above. Nayeri and Stothard (2016) reported 
that STAT5B contributes to mammary development, 
involution, and prolactin signaling pathways, which 
could explain the significant effects on lactose per-
centage. Raven et al. (2016) observed a significant 
relationship between a SNP near STAT5B and protein 
percentage, for which only a tendency was detected in 
this study. However, any mutation that increases lac-
tose synthesis is expected to increase milk volume and 
therefore decrease the concentrations of protein and 
other components (Lopdell et al., 2017).

Genome-Wide Association Comparison Between  
Fat Content and Fatty Acids

The concentration of a fatty acid in milk can be al-
tered by a change in the concentration of all fatty acids 
or by a change in the proportion of fat made up by each 
fatty acid (in this study, correlation coefficients between 
milk fat and fatty acid content ranged from 0.72 to 
0.94, with C18:0 and C14:0, respectively). For instance, 
an allele of the SNP near GHR increased milk volume 
(Blott et al., 2003) and so decreased concentrations of 
milk components. In contrast, on BTA5 and BTA14, re-
spectively, MGST1 and DGAT1 were observed to affect 
fat content and composition traits. To better investi-
gate their associations with milk fat composition, ratios 
between milk fatty acids and fat content were analyzed 
through GWAS (data not shown). Individual alleles of 
SNP near MGST1 and DGAT1 increased the proportion 
of fat containing de novo fatty acids (C4:​0–C16:​0) but 
decreased the proportion of long-chain fatty acids, such 
as C17:0 and C18:1. Regarding MGST1, although its 
role as a QTL for fat percentage is recognized, its mode 
of action on milk lipid synthesis and secretion is still 
unknown (Littlejohn et al., 2016). The enzyme encoded 
by DGAT1 is involved in triacylglycerol synthesis by 
catalyzing the acyl-CoA esterification to diacylglycerol 
(Buitenhuis et al., 2014). The DGAT1 gene has been 
widely studied, showing highly significant associations 
with several fatty acids (Schennink et al., 2007; Conte 
et al., 2010; Bouwman et al., 2011). In previous studies 
(Schennink et al., 2007; Bouwman et al., 2011), the 
DGAT1 232K allele was associated with increased pro-
portions of C6:0, C8:0, C14:0, and C16:0 and a decrease 
in the fraction of C18:1, confirming our findings.

A significant QTL for medium-chain fatty acids up to 
C14:0 was identified on BTA19, near the gene FASN. 
Significant effects of FASN on this group of fatty acids 
were confirmed when the proportion between fatty ac-

Figure 6. Significance [−log10(P)] pattern of the effect of SNP 
identified on BTA14 (Chr14:​1724688, Chr14:​1765055, and Chr14:​
1801116 in A; Chr14:​66328304 and Chr14:​69890969 in B) on infrared 
wavenumbers in genome-wide association studies.
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ids and fat content was analyzed. These findings were 
consistent with Stoop et al. (2009) and Bouwman et 
al. (2011), who also reported the presence of a QTL 
on BTA19 for medium-chain and de novo fatty acids. 
This pattern of effects can be explained by the fact 
that the protein encoded by FASN (fatty acid synthase) 
catalyzes synthesis of fatty acids and so most affects 
those that are synthesized in the mammary gland (i.e., 
up to chain length C14).

We found an association between SNP near PAEP 
and C18:1. Although PAEP has been identified as a 
QTL for fat percentage (MacLeod et al., 2016), an as-
sociation with C18:1 has not previously been described. 
Previously, a QTL close to PAEP associated with C4:0, 
a trait negatively correlated with C18:1 (Stoop et al., 
2008), was reported in Knutsen et al. (2018). As C18:1 
in milk arises partly from the mobilization of cow body 
reserves (Nogalski et al., 2012), the implications for 
animal health and welfare of including PAEP markers 
in genomic selection should be considered.

Many additional significant SNP not cited above were 
identified along the genome for short-chain (BTA12) 
and long-chain (BTA1, BTA2, BTA15, BTA17, BTA18, 
BTA20, BTA30) fatty acids. Although these SNP af-
fected single or multiple fatty acids (Table 1) within 
the same group, to our knowledge, they were in regions 
not previously associated with milk fat composition in 
the literature.

The MIR prediction equations that we used were 
calibrated on Holstein data. They may be less accurate 
when applied to Jersey and crossbred milk samples (Es-
kildsen et al., 2014). If so, this would reduce the power 
of the study. Additionally, because we did not include 
parity in our statistical model, this may also affect the 
results reported.

GWAS on Mid-Infrared Wavenumbers

The results discussed above showed that individual 
QTL affect milk composition in different ways. Usually 
the MIR data are used to predict the concentration 
of a particular component and then a GWAS for that 
component is carried out. However, an alternative is 
to analyze the MIR data directly. Figure 4 shows how 
individual SNP had quite different patterns of effect. 
The specific wavenumbers affected by a SNP had a 
clear relationship to the milk traits associated with 
that SNP. For example, for the SNP in Figure 4A near 
the CSN3 gene, the most significant wavenumbers 
were observed in ranges assumed to denote carboxylic 
groups of protein and peptide bonds, respectively (Siv-
akesava and Irudayaraj, 2002; Dufour, 2009; Soyeurt et 
al., 2010). Considering SNP in Figure 4B, even in the 
surrounding locations, the significant spectral regions 
could be related to the several responses induced by 
lactose bonds from 1,045 cm−1 to 1,250 cm−1 (Picque 

Figure 7. Manhattan plot of partial least squares regression results. The horizontal line is −log10(P) ≥ 24, corresponding to R2 ≥ 0.02.
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et al., 1993; Grelet et al., 2015). In Figure 4C, the peak 
around wavenumber 966 cm−1 was previously described 
to be an absorption band for measuring unsaturated 
fatty acids (Safar et al., 1994). This was consistent 
with GWAS results on milk composition traits, which 
highlighted the significant effect of this SNP on C18:1 
(Figure 3 and Table 1). Moreover, the region between 
1,365 and 1,488 cm−1 has been associated with C–H 
bending of –CH3 and –CH2 (Grelet et al., 2015). These 
chemical bonds characterize fat chains, thus, a relation-
ship between this SNP and milk fat composition could 
be assumed, albeit in the absence of a specific asso-
ciation that allows discrimination between fatty acids. 
In addition, the SNP was significantly associated with 
wavenumbers between 1,283 and 1,294 cm−1, which 
have no apparent association with fat bonds. Thus, 
this SNP had an association with MIR wavenumbers 
that is not just a reflection of its effect on one milk 
component. The pattern of associations is presumably 
unusual, explaining why the genotype of this SNP was 
so well predicted from MIR data (R2 = 0.66).

Single nucleotide polymorphisms associated with the 
same milk trait can be associated with different pat-
terns across the MIR spectrum. In Figure 5, 2 SNP re-
lated to lactose percentage shared only a few significant 
common wavenumbers. If 2 SNP have the same effects 
on wavenumbers, the correlation between their effects 
should be equal, or as close as possible, to 1. In this 
case, even considering only significant effects on these 
few wavenumbers, a negative correlation of −0.859 was 
observed. Thus, when all wavenumbers were considered, 

as done for the other SNP, the correlation between the 
effects of the 2 SNP decreased to −0.084. These results 
may suggest that these SNP had significant effects on 
the same trait but affecting different pathways and 
components.

The SNPs near DGAT1 (Figure 6A) had a large as-
sociation with numerous infrared wavenumbers, which 
was consistent with findings recently reported in Wang 
et al. (2016). The fact that 3 SNP around 1.7 to 1.8 
Mb on BTA14 (Figure 6A) represented the same QTL 
was supported by their very close positions and al-
most identical effects on milk traits; moreover, they 
were in strong LD (ρ2 = 0.87–0.95). In addition, this 
assumption was supported by their effect on spectral 
data, showing the same significance patterns along the 
spectrum and strong correlations between effects on 
MIR wavenumbers (r = 0.9997–0.9999). Considering 
this relationship, similar conclusions could be drawn 

Figure 8. Comparison between SNP in genome-wide association 
studies results for lactose percentage (A) with P < 0.05 and in partial 
least squares regression results (B). The horizontal line is −log10(P) 
≥ 5.

Table 2. List of SNP at the highest point of each peak identified in 
the Manhattan plot of partial least squares regression results (Figure 
7) and not reported in Table 1

SNP   Rsnp ID1 R2 −log10(P)

Chr1:​69733624 rs109186784 0.114 147.33
Chr2:​131804601 rs137565772 0.040 47.89
Chr5:​31347875 — 0.042 50.44
Chr5:​55018535 rs134714163 0.043 51.93
Chr7:​16287363 rs17870681 0.025 30.67
Chr8:​6443202 rs42335431 0.023 28.04
Chr9:​43459255 — 0.023 27.59
Chr10:​11445796 rs137713131 0.031 36.88
Chr12:​21382137 rs109298045 0.024 29.03
Chr13:​49030604 rs42341685 0.037 45.12
Chr15:​66146528 rs132923316 0.034 41.28
Chr16:​54066099 rs132979921 0.025 30.57
Chr17:​56174646 rs137653132 0.039 47.03
Chr18:​14524335 rs132988395 0.026 31.56
Chr21:​27867971 rs42888536 0.023 27.76
Chr23:​30479549 rs137218266 0.025 29.93
Chr25:​26308666 rs42072596 0.155 208.12
Chr26:​9365588 rs136433913 0.182 253.40
Chr27:​36155097 rs110519353 0.066 80.69
Chr29:​1997031 rs132805432 0.034 40.89
Chr30:​39558858 rs132902510 0.023 27.48
1Rsnp ID = reference SNP identification.
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for SNP on BTA14 around 66 and 69 Mb (Figure 6B). 
Although they were 3 Mb apart, these SNP showed 
the same tendency in influencing milk composition 
(Table 1), a moderately high LD, and similar effects 
on wavenumbers (ρ2 = 0.58; r = 0.993). These find-
ings suggest that these 2 SNP might be related to the 
same QTL. Although Wang and Bovenhuis (2018) 
performed GWAS on 50 individual MIR wavenumbers, 
demonstrating their feasibility to detect new genomic 
regions affecting milk composition, no other study to 
our knowledge has used GWAS on MIR spectra as a 
potential tool for discriminating QTL. We found that 
associations between SNP effects on MIR spectra were 
confirmed by their significance patterns using GWAS.

SNP Prediction Using PLS

It is apparent that different QTL have different pat-
terns of effect across the MIR spectrum, which suggests 
that a multi-trait GWAS, using all 598 wavenumbers, 
should increase the power to detect and map milk 
composition QTL. To carry out the equivalent of a 
multi-trait GWAS, we used PLS to predict SNP geno-
types from MIR wavenumbers. The aim of the predic-
tion equations was not to obtain accurate predicted 
genotypes but to test PLS as a tool to better map milk 
composition QTL.

Table 1 shows that many of the SNP associated with 
conventional milk composition traits were detected by 
the PLS analysis. In general, lower P-values for the 
significance test performed using our formula were 
detected for the PLS compared with the conventional 
analysis. These results suggest that the PLS method 
could have greater power to detect milk composition 
QTL, resulting in more precise QTL mapping. However, 
the slight reduction in prediction accuracy of the model 
including both MIR and GRM indicates that the effect 
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Figure 9. Significance [−log10(P)] of the effect of 3 SNP (Chr20:​
31228912, Chr20:​31909478, and Chr20:​34522480) identified on BTA20 
on infrared wavenumbers in genome-wide association studies.
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of population stratification might be significant in SNP 
prediction. On the one hand, these preliminary results 
suggest that population structure should be accounted 
for, obtaining more precise results. On the other hand, 
highly significant SNP detected through PLS confirmed 
their strong significance even after GRM correction 
and, overall, there were still more significant P-values 
than with conventional analysis (Table 1).

In addition, the PLS analysis detected QTL that 
have been previously reported by other authors, but 
which were not significantly associated with milk 
traits in our GWAS analysis. This included SNP near 
LALBA, encoding α-LA and related to lactose synthe-
sis, or AGPAT6, involved in glycerolipid biosynthesis 
(Ramakrishnan et al., 2001; Chen et al., 2008; Nayeri 
and Stothard, 2016). The PLS analysis also found sig-
nificant SNP that have not been previously reported 
to be associated with milk composition. For instance, 
P2RX4, a purinergic signaling gene linked to oxidative 
stress after calving in dairy cows (Seo et al., 2014), was 
observed. These SNP may be associated with changes 
in milk composition other than concentrations of fat, 
protein, lactose, or fatty acids. Indeed, oxidative stress 
causes milk composition changes (Talukder et al., 
2015), with consequent effects on MIR spectral data. 
Overall, these results suggest the potential of PLS in 
distinguishing important chromosomal regions for milk 
composition and identifying some additional SNP not 
detected through conventional GWAS. Overall, as a 
proof of concept, our results suggest the potential of 
PLS in distinguishing important chromosome regions 
for milk composition and identifying some additional 
SNP not detected through conventional GWAS.

Testing for Multiple Linked QTL

When many SNP in a region of a chromosome are 
significantly associated with a trait, it is difficult to tell 
whether this represents more than one QTL or just one 
QTL in LD with many SNP. We combined GWAS and 
PLS analyses to attempt to distinguish between these 
situations. In the case of SNP on BTA20, we assumed 
that the SNP at 31.9 Mb, near GHR, represented at 
least one QTL and considered whether the other 2 are 
tracking the same QTL or an additional one. Because 
they were in LD, the SNP at 31.9 Mb predicted the 
genotype of the SNP at 31.2 Mb with R2 = 0.541. When 
the MIR data were added to the prediction equation, 
we found no increase in the prediction R2 (Table 3). If 
the SNP at 31.2 Mb tracked a QTL with different ef-
fects on MIR spectra to the SNP at 31.9 Mb, the use of 
MIR data should improve the prediction. Because it did 
not do so, it is likely both SNP tracked the same QTL. 

In contrast, the PLS prediction R2 for the SNP at 34.5 
Mb was increased by adding the MIR data.

These results are consistent with the interpretation 
that the SNP at 34.5 Mb was tracking an additional 
QTL to the GHR polymorphism near 31.9 Mb. Simi-
larly, the other results in Table 3 suggest that there 
were 2 QTL on BTA11 near 103.3 and 104.3 Mb (near 
ABO), but the SNP on BTA6 at 85.5 (TMPRSS11F) 
and 87.4 Mb appeared to be tracking the same QTL 
or 2 QTL with the same pattern of effects on the MIR 
spectrum. Using a GWAS alone, it would be difficult 
to decipher the number of QTL present. These findings 
suggest that the combination of PLS and GWAS on 
MIR data can distinguish different, closely linked QTL.

Future Research

Our research has demonstrated that MIR data can 
be used as a powerful tool to enhance QTL detection 
and distinguish between multiple QTL. Further work 
with more animals and genome-sequence data should 
be considered to increase the power and precision of 
QTL detection.

CONCLUSIONS

Our results suggest that using MIR data through 
either GWAS or PLS analysis applied to genomic data 
can provide a powerful tool to distinguish milk com-
position QTL. Furthermore, PLS used to predict SNP 
genotypes showed potential for detecting and mapping 
significant SNP associated with milk composition, as 
well as previously undetected QTL for milk composi-
tion. Based on these results, using MIR data through 
GWAS or PLS analysis in genomic investigations can 
aid in distinguishing milk composition QTL.
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