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ABSTRACT

The aim of this study was to investigate the feasibil-
ity of using mid-infrared (MIR) spectroscopy analysis
of milk samples to increase the power and precision
of genome-wide association studies (GWAS) for milk
composition and to better distinguish linked quantita-
tive trait loci (QTL). To achieve this goal, we analyzed
phenotypic data of milk composition traits, related
MIR spectra, and genotypic data comprising 626,777
SNP on 5,202 Holstein, Jersey, and crossbred cows. We
performed a conventional GWAS on protein, lactose,
fat, and fatty acid concentrations in milk, a GWAS
on individual MIR wavenumbers, and a partial least
squares regression (PLS), which is equivalent to a
multi-trait GWAS, exploiting MIR data simultaneously
to predict SNP genotypes. The PLS detected most of
the QTL identified using single-trait GWAS, usually
with a higher significance value, as well as previously
undetected QTL for milk composition. Each QTL
tends to have a different pattern of effects across the
MIR spectrum and this explains the increased power.
Because SNP tracking different QTL tend to have dif-
ferent patterns of effect, it was possible to distinguish
closely linked QTL. Overall, the results of this study
suggest that using MIR data through either GWAS or
PLS analysis applied to genomic data can provide a
powerful tool to distinguish milk composition QTL.
Key words: genome-wide association study, mid-
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INTRODUCTION

Genome-wide association studies (GWAS) have been
widely used to identify SNP associated with variation
in phenotypic traits in dairy cattle, presumably because
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they are in linkage disequilibrium (LD) with a QTL or
causal variant for the trait. For instance, Pryce et al.
(2010), Bouwman et al. (2011), and Buitenhuis et al.
(2016) successfully identified important genome regions
for milk production and composition traits. However,
the power and precision of GWAS to identify the SNP
closest to the causal variant is limited by the small
effect size of most QTL (Hayes et al., 2009). Stringent
significance tests are needed to protect against false
positives from multiple testing, and external informa-
tion independent from GWAS is needed to distinguish
causal mutations with strong LD, which extends over
megabases in cattle (de Roos et al., 2008) and limits
the precision with which the QTL is mapped. The large
number of small QTL implies that they are densely
packed on chromosomes; this fact, combined with long-
range LD, can make it difficult to identify the number
of QTL in a genomic region. For example, many SNP
within 1 Mb of the DGATI gene on chromosome 14
(Chr14:1795425-1804838) have an association with
milk fat percentage (e.g., Iso-Touru et al., 2016). This
is likely because they are in LD with the causal vari-
ant in DGAT1 but it could also be that other QTL
in this region affect fat percentage. Multi-trait GWAS
increases the power to detect QTL (Xiang et al., 2017),
especially if the effects of a QTL across traits are dif-
ferent from that expected from the correlation between
traits. Multi-trait GWAS analysis can also distinguish
closely linked QTL if they have different patterns of
effect across the traits.

Mid-infrared (MIR) spectroscopy is a useful tool to
measure the concentration of many milk components,
such as fat, protein, lactose, and fatty acids (De Mar-
chi et al., 2011, 2014; Soyeurt et al., 2011) and thus
to generate multi-trait data (De Marchi et al., 2014).
Furthermore, the MIR absorption at each wavenumber
can be considered a trait in its own right. These traits
have been shown to be heritable, with estimates of
heritability ranging between 0 and 0.63 (Soyeurt et al.,
2010; Wang et al., 2016) and are affected differently by
individual genes (Wang et al., 2016). Moreover, because
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of the low cost and routine use through milk recording,
it is feasible to obtain MIR spectra on thousands of
animals, which could provide significant power in as-
sociation analysis.

The relationship between SNP and MIR data can
be investigated by performing individual GWAS on
single spectral wavenumbers, using SNP as predictors
(Wang and Bovenhuis, 2018). However, a multi-trait
GWAS of all wavenumbers simultaneously would be
more powerful. Moreover, an almost equivalent but
faster analysis is to use all wavenumbers to predict the
genotype at each SNP (a “reverse GWAS”; Rutten et
al., 2011). In this paper, we used partial least squares
regression (PLS) to predict SNP genotypes from MIR
spectral data on each cow; PLS was chosen because it
is routinely used to predict phenotypes from MIR data
(Geladi and Kowalski, 1986). The advantage of PLS is
that it uses all wavenumbers simultaneously to predict
SNPs and thus could significantly increase the power
of identifying informative SNP markers in a limited
computational time.

Therefore, the aim of this study was to investigate
the feasibility of using MIR information to increase the
power and precision of GWAS for milk composition and
to distinguish linked QTL from a single QTL linked to
multiple SNP. We first present a conventional GWAS
on protein, fat, lactose, and fatty acid concentrations in
milk; followed by a GWAS on absorption at individual
MIR wavenumbers and a reverse multi-trait GWAS us-
ing all wavenumbers to predict a SNP genotype; and
finally, an analysis to distinguish whether linked SNP
are associated with the same or different QTL.

MATERIALS AND METHODS

In this study, multiple approaches were used to ana-
lyze phenotypic and genotypic data. First, single-trait
GWAS were performed to test the associations between
SNPs and milk composition traits or MIR wavenum-
bers. Second, PLS was applied to predict SNP geno-
types using MIR wavenumber as predictors.

Animal Data

The data used in this study were obtained from 5,202
Holstein, Jersey, and crossbred cows between parity 1
and 6 from 20 commercial farms located in New South
Wales, Victoria, and Tasmania (Australia) calving in
spring 2017. Milk samples were taken 2 to 8 times per
cow (4.7 on average) and sent to TasHerd Pty Ltd.
(Hadspen, Tasmania, Australia) for prediction of fat,
protein, and lactose contents using an infrared spec-
trometer (model 2000, Bentley Instruments, Chaska,
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MN). The corresponding spectra were stored for this
study. A single spectrum includes 899 data points, with
each point representing the absorption of infrared light
through the milk sample at a particular wavelength in
the 649 to 3,999 cm ™' region. Commercial prediction
equations, obtained from Bentley Instruments and
calibrated using data of Holstein cows with prediction
accuracies (R?) ranging between 0.74 and 0.96, were
applied to these spectra to obtain individual fatty acids
(expressed as g/dL of milk), including C4:0, C6:0, C8:0,
C10:0, C12:0, C14:0, C16:0, C17:0, C18:0, C18:1 cis-9,
and C20:0. The original data set comprised 24,655 spec-
tra and milk composition traits, in which the mean and
standard deviation (SD) of DIM were 146 and 121, re-
spectively. The original data set was edited and outliers
were identified and excluded as milk composition traits
being greater than means + 3.5 SD. Then, phenotype
records (spectra and milk composition traits) were av-
eraged, resulting in only one observation per cow; this
reduced within-cow errors and eliminated the need to
fit DIM as a fixed effect in statistical models. It was not
possible to include parity as a fixed effect in statistical
models because this information was not readily acces-
sible. Several mathematical treatments were applied to
milk spectra. Noisy areas induced by water absorption
(1,600 to 1,689 and 3,010 to 3,998 cm™') were first re-
moved (Hewavitharana and van Brakel, 1997). Spectra
with a global distance value >3 were considered outliers
and excluded (Shenk and Westerhaus 1995). First de-
rivative was applied to the reduced spectra to increase
peak resolution. After editing, a reduced spectrum of
598 wavenumbers per sample was used for the analysis.

Genotypes

All cows were genotyped using a BovineSNP50 Bead-
Chip and then imputed to BovineHD (800K) BeadChip
(INlumina Inc., San Diego, CA), following the proce-
dures previously described by Kemper et al. (2015).
The genotype data were refined according to a range of
quality control filters (Erbe et al., 2012; Kemper et al.,
2015). After quality check, 626,777 SNP remained for
the analysis. The genotypes for each SNP were encoded
in the top/top Illumina A /B format and then genotypes
were reduced to 0, 1, and 2 copies of the B allele. All
SNPs were mapped to the UMD 3.1 build of the bovine
genome sequence (https://www.ensembl.org/biomart).

Single-Trait GWAS

The regression model used in the GWAS to test the
association of each SNP with each milk composition
and wavenumber trait was as follows:
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y=XB + Zu + Wa + e, [1]

where y is the vector of phenotypic records of ¢ indi-
viduals; B is the vector of fixed effects of breed (Hol-
stein, Jersey, crossbred) and herd (1 to 20); X is a de-
sign matrix relating phenotypes to their fixed effects; u
is the vector of animal effects, where u ~ N (O, Gas), G

is the ¢ x ¢ genomic relationship matrix (GRM, based
on high-density genotypes) between pairs of individu-

als, and 03 is the additive genetic variance; Z is the

incidence matrix; W is the vector of animal genotypes
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at SNP; coded as 0, 1, or 2 (representing the genotypes
aa, Aa, or AA) and a is the effect of the SNP; e is the
vector of residual errors. The GWAS was conducted
using GCTA software (Yang et al., 2011). Associations
with a —log;o(P) > 5 were considered statistically sig-
nificant, corresponding to a maximum false discovery
rate of 0.10. Figure 1 shows the quantile-quantile (Q-Q)
plots of GWAS results for some specific phenotypes.
We observed strong skews in the Q-Q plots, which indi-
cates that more SNP were associated with our pheno-
types than expected by chance.
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Figure 1. Quantile-quantile (Q-Q) plots of genome-wide association study (GWAS) results of milk protein (A), lactose (B), and fat (C)

percentage, and a milk fatty acid (C4:0; D) used as example.
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PLS Analysis

The prediction models for SNP genotypes were de-
veloped using PLS and implemented in R with the pls
package of Mevik and Wehrens (2007), through a 10-
fold cross-validation. Partial least squares is similar to
a principal component analysis where the data set is
transformed into a new projection that represents the
entire data set and the most informative components in
the new projection are features of the transformed data
set. However, PLS considers the dependent variable
when constructing its projection, whereas principal
component analysis does not (Hempstalk et al., 2015).

The SNP genotypes and MIR spectra were pre-
adjusted for the fixed effects of breed and herd using
multiple linear regression. Breed (Holstein, Jersey,
crossbred) and herd (1 to 20) were considered as class
variables in the linear model performed through the R
stats package. The residuals from this analysis for SNP
and MIR spectra were used as response and explana-
tory variables, respectively, to calibrate the PLS mod-
els. The multiple linear regression adjustment aimed
to remove the same possible confounding effects for
both response (SNP genotypes) and explanatory (MIR
spectra) variables in the PLS analysis. The accuracy
measures of the PLS models (developed through a 10-
fold cross validation) included the coefficient of deter-
mination (R?) and root mean square error. The optimal
number of PLS components was determined based on
first local minimum value in root mean squared error.

To investigate the potential contribution of MIR in
predicting SNP genotypes, the PLS models were tested
in 2 ways. In the first model, only MIR information
was used as explanatory variables. The second model
included MIR in addition to the first 20 principal com-
ponents (PC; explaining approximately 80% of the
total variance) of the GRM of the animals in this study,
as explanatory variables. In the last model, only the
first 20 PC of GRM were considered. The R? of MIR
corrected for PC of the GRM (R?\qireor) Was calculated
as the difference between R? of the PLS model using
MIR and GRM as explanatory variables and R? of SNP
predicted through only GRM, divided by 1 — R* of
SNP predicted through the GRM.

To compare GWAS and PLS results, P-values were
computed for each R? through a chi-squared approxi-
mation of the F-test in ANOVA, using the following
formula: N (R*/1 — R*) ~ x°, where N is the sample
size (5,202 cows) of the study, and R is the coefficient
of determination for each SNP prediction model. The
same approach was used for each R%\ge,. Values of R?
> 0.02 corresponding to —log;o(P) > 24 were consid-
ered in defining significant peaks in PLS results.
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The PLS and linear regression analyses described
above were performed using R statistical software ver-
sion 3.4.3 (R Core Team, 2017).

RESULTS
GWAS on Milk Composition

The GWAS results for protein, lactose, and fat per-
centages are presented in Figure 2 and 3. The most
important SNP [i.e., that were —log,o(P) > 5] for each
trait are reported in Table 1. Because not all the SNP
have reference identifications, we have provided SNP
position coordinates of the bovine genome (UMD 3.1;
https://www.ensembl.org/biomart) to refer to the SNP
throughout the text.

Genome-Wide Association Comparison Between
Fat Content and Fatty Acids

Figure 3 shows the GWAS results for milk fatty acids
and fat percentage. Because the peaks on BTA14 tend
to dominate the Manhattan plots, we focused on the
bottom of each plot by truncating the y-axis to a maxi-
mum value of —log;o(P) at around 20, to highlight the
similarities and differences between traits. The most
significant SNPs in each peak for each milk fatty acid
are listed in Table 1. The observed QTL fell into at
least 3 groups. The first group included QTL that af-
fected total fat percentage and the concentration of all
fatty acids, such as SNP on BTA5 and BTA14. How-
ever, these QTL affected all fatty acids concentrations
but not in the same direction. The alleles of DGAT1 on
BTA14 and MGST1 on BTA5 that increased the con-
centration of fatty acids synthesized in the mammary
gland (de novo fatty acids), decreased the concentra-
tions of long-chain fatty acids. A second group of QTL
affected total fat percentage and some fatty acids in
the same direction. For example, a SNP at 103.8 Mb
on BTAS and a peak around 31.2-31.9 Mb on BTA20
affected fat percentage and C17:0 or C6:0-C17:0 and
C18:1 in the same direction, respectively. This pat-
tern of effects might be caused by an increase in milk
volume that dilutes all components (e.g., by GHR on
BTA20). A third group of QTL affected specific fatty
acids. For instance, SNP near FASN (51.2-51.3 Mb on
BTA19) were associated with C10:0, C12:0, and C14:0,
and others near PAEP (103.2-103.3 Mb on BTAI11)
affected the concentration of C18:1.

GWAS on Mid-Infrared Wavenumbers

The most significant SNP for each milk trait were
investigated for their associations with MIR spectra.
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These SNP tended to be significant for multiple wave-
numbers. Consequently, for each SNP, we could draw a
profile of their significant effects across spectra (Figures
4,5 and 6).

The SNP varied widely in their pattern of significance
across the spectrum. Figure 4 shows the —log;o(P) of
the 598 MIR wavenumbers of 3 different SNP, each
associated with different milk composition traits. The
first SNP (Chr6:87391848, Figure 4A) was significantly
associated with protein percentage and was near CSNS.
It had significant effects on 66 wavenumbers distributed
in 8 peaks across the spectrum (Figure 4A). Significant
wavenumbers were observed between 1,212 and 1,387
cm ™! and from 1,458 to 1,700 cm ™ '. Although they had
lower significance than those described above, addi-
tional wavenumbers were observed in the following part
of the spectrum corresponding to 1,876 to 1,898 cm *,
2,487 to 2,506 cm ', 2,599 to 2,618 cm ', 2,857 cm ',
and 2,924 cm . The second SNP (Chr28:6491786,
Figure 4B) was associated with lactose percentage and
was near KCNKI. It had a significant effect on few
wavenumbers, ranging from 995 to 1,033 cm™' and
from 1,163 to 1,167 cm ' (Figure 4B). The third SNP
(Chr11:103308330, Figure 4C) was associated with
milk fat composition, specifically with C18:1, and close
to PAEP. 1t significantly affected 30 wavenumbers, cor-
responding to the following regions: 958 to 969 cm *,
1,283 to 1,294 cm ™', and 1,365 to 1,488 cm ™' (Figure
4C). These 3 SNP had quite different patterns of sig-
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nificant wavenumbers, which might be expected as they
affected different traits.

Figure 5 shows 2 SNP both associated with lactose
percentage (Chr28:6491786 and Chr19:61238366).
Although they shared a significant spectral region be-
tween 995 and 1,029 cm ', these SNP showed different
patterns for the remaining wavenumbers. Conversely, a
completely different situation is represented by SNP de-
picted in Figure 6. The first group of SNP (Figure 6A)
were all near DGAT1. They had very similar effects on
milk composition traits (Table 1) and across the MIR
spectrum (Figure 6A). Figure 6B depicts 2 other SNP
3 Mb apart (Chr14:66328304 and Chr14:69890969) but
also showing similar effects on milk traits (Table 1) and
on the spectrum of wavenumbers (Figure 6B).

SNP Prediction Using PLS

The results described above show that different QTL
have different patterns of effect across the MIR spec-
trum, suggesting that a multi-trait analysis, using all
wavenumbers, is likely to be a powerful way to detect
QTL affecting milk composition. We examined this
proposition by what we describe as a “reverse GWAS,”
in which we used the MIR data to predict SNP geno-
type by a PLS analysis. First, we tested whether SNP
that affected conventional milk traits could be detected
by this new analysis. Table 1, which contains signifi-
cant SNP for conventional milk traits, also presents
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Figure 2. Manhattan plots of genome-wide association study (GWAS) results of milk protein (A) and lactose (B) percentage using SNPs
with P < 0.05. The horizontal line is —log;o(P) > 5. Genes close to identified peaks are highlighted.
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R? values of each SNP obtained through PLS analysis.
To compare PLS and the conventional GWAS, the —
log;o(P) of each R* was computed. This showed that
the PLS analysis significantly [—log,o(P) > 5] predicted
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Figure 3. Manhattan plots of genome-wide association study
(GWAS) results of fat percentage and milk fatty acids using SNP
with P < 0.05. The horizontal line is —log,o(P) > 5. A focus on the
bottom of each plot around —log;o(P) = 20 is considered to provide a
clearer comparison between traits. Arrows of different colors are used
to identify similarities and differences between traits: green for com-
mon peaks, yellow for common peaks in only a few traits, and red for
peaks associated with specific traits.
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all but 4 of the SNP in Table 1. As shown in Figure 7,
7,417 SNPs had —log;o(P) > 24, highlighting very high
and clear significance peaks in specific genome regions
(e.g., on BTA6, BTA11, and BTA14). The prediction
accuracy of PLS models using only MIR spectra de-
creased slightly when corrected for population structure
through addition of the first 20 PC of GRM (R*\iireor)
to the model (Table 1). For the SNP in Table 1, the R’
decreased from 6.5 to 5.4% as a result of adding the
PC to the model. Also, the ranking of SNP in Table 1
using —log;o(P) before and after correction using PC
from the GRM was similar. Nevertheless, many SNP
showed much more significant results in the PLS than
in the conventional GWAS. An example of the direct
comparison of the significance of effects between the
GWAS and PLS is shown in Figure 8. On BTA29, the
GWAS results for lactose percentage appeared to be
quite flat and not easily distinguishable (Figure 8A).
In contrast, stronger differences between SNP were
observed in PLS outcomes (Figure 8B). Those SNP
significant in the PLS, but not in Table 1, are listed
in Table 2. Some SNP close to the genes LALBA, AG-
PATG6, and P2RX/ were identified on BTA5, BTA27,
and BTA17, respectively.

Next, we investigated the ability of the combination
of GWAS results on MIR wavenumbers and PLS results
to distinguish whether different SNP were associated
with different, or the same, QTL. Table 3 presents
results from 4 genome regions, where it was unclear
whether one or more QTL occur. If 2 SNP track the
same QTL, we expect them both to be in LD with the
QTL and therefore most likely in LD with each other.
Also, if they track the same QTL, we expect that their
effects across the 598 wavenumbers are correlated. For
instance, on BTA20, there were 3 SNP from 31.4 to 34.5
Mb. The first 2 (Chr20:31228912 and Chr20:31909478)
were in moderately high LD [LD squared coefficient
(p?) = 0.49] and their effects across wavenumbers were
almost identical, with a coefficient of correlation (r) of
0.996 (Table 3 and Figure 9). However, their LD p* was
close to zero with the third SNP (Chr20:34522480) and
the correlations of their effects were 0.872 and 0.864.
This suggests that the first 2 SNP track the same QTL
but the third SNP (at 34.5 Mb) tracks a different QTL.
We tested this conclusion as follows. We used PLS
to predict one SNP genotype using another SNP, the
MIR data, or both. In this case, the SNP at Chr20:
31909478 predicted the genotype of the SNP at Chr20:
31228912 and Chr20:34522480, as would be expected
from the LD (this R” is similar but not equal to the
LD p* because the prediction was tested in the same
cross-validation procedure as used for PLS with MIR
spectra). Including MIR information in the model did
not bring any improvement to the prediction accuracy
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of the first SNP but it increased the R* of the second
SNP. A possible explanation for these results may be
that the 2 SNP at 31.4 Mb were tracking the same
QTL, but the SNP at 34.5 Mb was tracking a different
QTL. The other results in Table 2 support 2 QTL on
each region investigated.

67 854 1040 1227 1413 1693 1879 2066 2252 2439 2625 2812
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2625

10 ’]

5

0

667 854 1040 1227 1413 1693 2812
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Figure 4. Significance [—log,o(P)] pattern of the effect of selected
SNP affecting protein percentage (Chr6:87391848; A), lactose percent-
age (Chr28:6491786; B), and fat chains (Chr11:103308330; C), on in-
frared wavenumbers in genome-wide association studies.
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DISCUSSION

The aim of this study was to test whether MIR spec-
tral data can be used as a tool to improve the power
to detect and precisely map QTL associated with milk
composition traits. Combining breeds had 2 benefits:
it increased sample size and therefore power to detect
associations and it decreased LD, increasing mapping
precision. Using multi-breed data, we searched for SNP
markers close to and in LD with QTL in all breeds.
This approach broke down the long-distance LD within
a breed, finding SNP that are close to the QTL. Most
of the highly significant SNP were segregating in both
Holsteins and Jerseys. In the first step of the study,
GWAS results on milk composition traits were ana-
lyzed. Then, GWAS on single MIR wavenumbers and
PLS using all wavenumbers to predict each SNP were
performed to investigate differences and similarities be-
tween SNP. Finally, the feasibility of combining GWAS
and PLS results to distinguish whether linked SNP
were associated with the same or different QTL was
investigated. Our results showed that PLS combining
information from many wavenumbers had more power
than single-trait GWAS in identifying informative SNP.
Also, the combination of GWAS and PLS results pro-
vided information to distinguish QTL that are close
together on the chromosome.

GWAS on Milk Composition

Many of the QTL described here have been previ-
ously reported and associated with candidate genes,
such as DGAT1, MGST1, and GHR for fat and protein
percentages (Grisart et al., 2002; Raven et al., 2014;
Littlejohn et al., 2016; Nayeri and Stothard, 2016). The
QTL on BTA3 at 15 Mb has been previously associated

--------- Chr19:61238366

—— Chr28:6491786

—logIO(P)
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Figure 5. Significance [—logo(P)] pattern of the effect of 2 SNP
(Chr19:61238366 and Chr28:6491786) affecting lactose percentage on
infrared wavenumbers in genome-wide association studies.
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with milk production traits (Xiang et al., 2017) but we
found that it specifically affected protein and lactose
percentages. The gene SLC50A 1, which encodes a sugar
transporter, is related to lactation in other mammal
species (Lopdell et al., 2017) and had several significant
SNP nearby. Other authors have suggested MUC1T as
a candidate for this QTL (Nayeri and Stothard, 2016;
Raven et al., 2016; Xiang et al., 2017).

Overall, there have been fewer reports of GWAS for
lactose percentage than for fat and protein contents.
Lactose percentage varies less than fat and protein
percentages because lactose is the main osmole regu-
lator in milk (Fox et al., 2015). Consequently, there
are limited physiological mechanisms by which it can
be altered. One mechanism is to alter the concentra-
tion of other osmole regulators such as ions (Fox et al.,
2015). We found significant SNP for lactose percent-
age close to the genes KCNJ2 (19.6 Mb on BTA19)
and KCNK1, both of which transport potassium across
cell membranes. The KCNJ2 gene was described as a
modulator of milk lactose content, through its function
in potassium ion transport in the membranes of secre-

—— Chr14:1765055 Chrl14:1724688

--------- Chr14:1801116

667 854 1040 1227 1413 1693 1879 2066 2252 2439 2625 2812

--------- Chr14:66328304 = Chr14:69890969

1}
A
A

—logm(P)
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Figure 6. Significance [—logo(P)] pattern of the effect of SNP
identified on BTA14 (Chr14:1724688, Chrl14:1765055, and Chrl4:
1801116 in A; Chr14:66328304 and Chr14:69890969 in B) on infrared
wavenumbers in genome-wide association studies.

tory cells in mammary glands (Lopdell et al., 2017).
We also found significant SNP for lactose percentage
near genes involved in lactose synthesis or secretion,
including STAT5B (42.9 Mb on BTA19) and SLC50A 1
mentioned above. Nayeri and Stothard (2016) reported
that STAT5B contributes to mammary development,
involution, and prolactin signaling pathways, which
could explain the significant effects on lactose per-
centage. Raven et al. (2016) observed a significant
relationship between a SNP near STAT5B and protein
percentage, for which only a tendency was detected in
this study. However, any mutation that increases lac-
tose synthesis is expected to increase milk volume and
therefore decrease the concentrations of protein and
other components (Lopdell et al., 2017).

Genome-Wide Association Comparison Between
Fat Content and Fatty Acids

The concentration of a fatty acid in milk can be al-
tered by a change in the concentration of all fatty acids
or by a change in the proportion of fat made up by each
fatty acid (in this study, correlation coefficients between
milk fat and fatty acid content ranged from 0.72 to
0.94, with C18:0 and C14:0, respectively). For instance,
an allele of the SNP near GHR increased milk volume
(Blott et al., 2003) and so decreased concentrations of
milk components. In contrast, on BTA5 and BTA14, re-
spectively, MGST1 and DGAT1 were observed to affect
fat content and composition traits. To better investi-
gate their associations with milk fat composition, ratios
between milk fatty acids and fat content were analyzed
through GWAS (data not shown). Individual alleles of
SNP near MGST1 and DGAT1 increased the proportion
of fat containing de novo fatty acids (C4:0-C16:0) but
decreased the proportion of long-chain fatty acids, such
as C17:0 and C18:1. Regarding MGST1, although its
role as a QTL for fat percentage is recognized, its mode
of action on milk lipid synthesis and secretion is still
unknown (Littlejohn et al., 2016). The enzyme encoded
by DGATI is involved in triacylglycerol synthesis by
catalyzing the acyl-CoA esterification to diacylglycerol
(Buitenhuis et al., 2014). The DGAT1 gene has been
widely studied, showing highly significant associations
with several fatty acids (Schennink et al., 2007; Conte
et al., 2010; Bouwman et al., 2011). In previous studies
(Schennink et al., 2007; Bouwman et al., 2011), the
DGAT1 232K allele was associated with increased pro-
portions of C6:0, C8:0, C14:0, and C16:0 and a decrease
in the fraction of C18:1, confirming our findings.

A significant QTL for medium-chain fatty acids up to
C14:0 was identified on BTA19, near the gene FASN.
Significant effects of FASN on this group of fatty acids
were confirmed when the proportion between fatty ac-

Journal of Dairy Science Vol. 102 No. 8, 2019
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Figure 7. Manhattan plot of partial least squares regression results. The horizontal line is —log;o(P) > 24, corresponding to R* > 0.02.

ids and fat content was analyzed. These findings were
consistent with Stoop et al. (2009) and Bouwman et
al. (2011), who also reported the presence of a QTL
on BTA19 for medium-chain and de novo fatty acids.
This pattern of effects can be explained by the fact
that the protein encoded by FASN (fatty acid synthase)
catalyzes synthesis of fatty acids and so most affects
those that are synthesized in the mammary gland (i.e.,
up to chain length C14).

We found an association between SNP near PAEP
and C18:1. Although PAFEP has been identified as a
QTL for fat percentage (MacLeod et al., 2016), an as-
sociation with C18:1 has not previously been described.
Previously, a QTL close to PAEP associated with C4:0,
a trait negatively correlated with C18:1 (Stoop et al.,
2008), was reported in Knutsen et al. (2018). As C18:1
in milk arises partly from the mobilization of cow body
reserves (Nogalski et al., 2012), the implications for
animal health and welfare of including PAFEP markers
in genomic selection should be considered.

Many additional significant SNP not cited above were
identified along the genome for short-chain (BTA12)
and long-chain (BTA1, BTA2, BTA15, BTA17, BTA1S,
BTA20, BTA30) fatty acids. Although these SNP af-
fected single or multiple fatty acids (Table 1) within
the same group, to our knowledge, they were in regions
not previously associated with milk fat composition in
the literature.

Journal of Dairy Science Vol. 102 No. 8, 2019

The MIR prediction equations that we used were
calibrated on Holstein data. They may be less accurate
when applied to Jersey and crossbred milk samples (Es-
kildsen et al., 2014). If so, this would reduce the power
of the study. Additionally, because we did not include
parity in our statistical model, this may also affect the
results reported.

GWAS on Mid-Infrared Wavenumbers

The results discussed above showed that individual
QTL affect milk composition in different ways. Usually
the MIR data are used to predict the concentration
of a particular component and then a GWAS for that
component is carried out. However, an alternative is
to analyze the MIR data directly. Figure 4 shows how
individual SNP had quite different patterns of effect.
The specific wavenumbers affected by a SNP had a
clear relationship to the milk traits associated with
that SNP. For example, for the SNP in Figure 4A near
the CSN3 gene, the most significant wavenumbers
were observed in ranges assumed to denote carboxylic
groups of protein and peptide bonds, respectively (Siv-
akesava and Irudayaraj, 2002; Dufour, 2009; Soyeurt et
al., 2010). Considering SNP in Figure 4B, even in the
surrounding locations, the significant spectral regions
could be related to the several responses induced by
lactose bonds from 1,045 cm ™' to 1,250 cm ™! (Picque



MID-INFRARED SPECTRA FOR GENE MAPPING

et al., 1993; Grelet et al., 2015). In Figure 4C, the peak
around wavenumber 966 cm ' was previously described
to be an absorption band for measuring unsaturated
fatty acids (Safar et al., 1994). This was consistent
with GWAS results on milk composition traits, which
highlighted the significant effect of this SNP on C18:1
(Figure 3 and Table 1). Moreover, the region between
1,365 and 1,488 cm ' has been associated with C-H
bending of -CH; and —CH, (Grelet et al., 2015). These
chemical bonds characterize fat chains, thus, a relation-
ship between this SNP and milk fat composition could
be assumed, albeit in the absence of a specific asso-
ciation that allows discrimination between fatty acids.
In addition, the SNP was significantly associated with
wavenumbers between 1,283 and 1,294 cm ', which
have no apparent association with fat bonds. Thus,
this SNP had an association with MIR wavenumbers
that is not just a reflection of its effect on one milk
component. The pattern of associations is presumably
unusual, explaining why the genotype of this SNP was
so well predicted from MIR data (R* = 0.66).

Single nucleotide polymorphisms associated with the
same milk trait can be associated with different pat-
terns across the MIR spectrum. In Figure 5, 2 SNP re-
lated to lactose percentage shared only a few significant
common wavenumbers. If 2 SNP have the same effects
on wavenumbers, the correlation between their effects
should be equal, or as close as possible, to 1. In this
case, even considering only significant effects on these
few wavenumbers, a negative correlation of —0.859 was
observed. Thus, when all wavenumbers were considered,

Table 2. List of SNP at the highest point of each peak identified in
the Manhattan plot of partial least squares regression results (Figure
7) and not reported in Table 1

SNP Rsnp ID* R? —logy(P)
Chr1:69733624 15109186784 0.114 147.33
Chr2:131804601 18137565772 0.040 47.89
Chr5:31347875 — 0.042 50.44
Chr5:55018535 15134714163 0.043 51.93
Chr7:16287363 rs17870681 0.025 30.67
Chr8:6443202 1542335431 0.023 28.04
Chr9:43459255 — 0.023 27.59
Chr10:11445796 15137713131 0.031 36.88
Chr12:21382137 15109298045 0.024 29.03
Chr13:49030604 1542341685 0.037 45.12
Chr15:66146528 15132923316 0.034 41.28
Chr16:54066099 15132979921 0.025 30.57
Chr17:56174646 15137653132 0.039 47.03
Chr18:14524335 15132988395 0.026 31.56
Chr21:27867971 1542888536 0.023 27.76
Chr23:30479549 15137218266 0.025 29.93
Chr25:26308666 1542072596 0.155 208.12
Chr26:9365588 15136433913 0.182 253.40
Chr27:36155097 15110519353 0.066 80.69
Chr29:1997031 15132805432 0.034 40.89
Chr30:39558858 15132902510 0.023 27.48

'Rsnp ID = reference SNP identification.

as done for the other SNP, the correlation between the
effects of the 2 SNP decreased to —0.084. These results
may suggest that these SNP had significant effects on
the same trait but affecting different pathways and
components.

The SNPs near DGAT1 (Figure 6A) had a large as-
sociation with numerous infrared wavenumbers, which
was consistent with findings recently reported in Wang
et al. (2016). The fact that 3 SNP around 1.7 to 1.8
Mb on BTA14 (Figure 6A) represented the same QTL
was supported by their very close positions and al-
most identical effects on milk traits; moreover, they
were in strong LD (p> = 0.87-0.95). In addition, this
assumption was supported by their effect on spectral
data, showing the same significance patterns along the
spectrum and strong correlations between effects on
MIR wavenumbers (r = 0.9997-0.9999). Considering
this relationship, similar conclusions could be drawn
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Figure 8. Comparison between SNP in genome-wide association
studies results for lactose percentage (A) with P < 0.05 and in partial
least squares regression results (B). The horizontal line is —log,(P)
> 5.
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Table 3. Examples of selected SNP and neighboring genes that are in different regions of the genome and that have questionable common QTL presence shown by the squared
correlation coefficient (p2) of linkage disequilibrium (LD), coefficients of correlation (r) between effects on spectral wavenumbers, and R? of multiple partial least squares regression

analyses

PLS’R?

SNP!

MIR+SNPx

SNPx

MIR

Corr
effect” (r)

LD

(%)

Gene

Rsnp ID*

Gene

Rsnp ID*

>

5

TMPRSS11F
cCDC187
ABO

v

v
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0.476
0.522
0.282
0.182
0.021
0.538
0.154

0.470
0.524
0.286
0.176
0.017
0.541
0.147

0.207
0.190
0.194
0.142
0.010
0.016
0.017

0.722
0.896
0.914
—0.871
—0.552
0.996
0.864

0.513
0.570
0.289
0.173
0.017
0.494
0.174

CSN3&
CSN3
PAEP
PAEP
v
GHR
GHR

rs110516603
rs110516603
rs109087963
rs109087963
rs137218804

Chr6:87385233
Chr6:87385233
Chr11:103308330
Chr11:103308330
Chr12:70293273
Chr20:31909478
Chr20:31909478

NNT
v

rs137002240
rs110004470
rs111018835
rs135261923
rs134319055
rs133057950
rs43762676

"Where y = SNP used as dependent variable; x = SNP used as explanatory variable.

SNP effect on id-infrared (MIR) wavenumbers.

3Where MIR

Chr6:83973635
Chr6:85486799
Chr11:103798768
Chrl11:104258107
Chr12:72444330
Chr20:31228912
Chr20:34522480

MIR wavenumbers used as explanatory variable; SNPx = SNP defined as x used as explanatory variable; MIR+SNPx = MIR wavenumbers and SNP defined as x

‘Rsnp ID = reference SNP identification.

used as explanatory variables.
5 . .
Intergenic variant.

ARTICLE IN PRESS

BENEDET ET AL.

—loglO(P)

667 854 1040 1227 1413 1693 1879 2066 2252 2439 2625 2812

Wavenumber (cm™)

Figure 9. Significance [—logo(P)] of the effect of 3 SNP (Chr20:
31228912, Chr20:31909478, and Chr20:34522480) identified on BTA20
on infrared wavenumbers in genome-wide association studies.

for SNP on BTA14 around 66 and 69 Mb (Figure 6B).
Although they were 3 Mb apart, these SNP showed
the same tendency in influencing milk composition
(Table 1), a moderately high LD, and similar effects
on wavenumbers (p> = 0.58; r = 0.993). These find-
ings suggest that these 2 SNP might be related to the
same QTL. Although Wang and Bovenhuis (2018)
performed GWAS on 50 individual MIR wavenumbers,
demonstrating their feasibility to detect new genomic
regions affecting milk composition, no other study to
our knowledge has used GWAS on MIR spectra as a
potential tool for discriminating QTL. We found that
associations between SNP effects on MIR spectra were
confirmed by their significance patterns using GWAS.

SNP Prediction Using PLS

It is apparent that different QTL have different pat-
terns of effect across the MIR spectrum, which suggests
that a multi-trait GWAS, using all 598 wavenumbers,
should increase the power to detect and map milk
composition QTL. To carry out the equivalent of a
multi-trait GWAS, we used PLS to predict SNP geno-
types from MIR wavenumbers. The aim of the predic-
tion equations was not to obtain accurate predicted
genotypes but to test PLS as a tool to better map milk
composition QTL.

Table 1 shows that many of the SNP associated with
conventional milk composition traits were detected by
the PLS analysis. In general, lower P-values for the
significance test performed using our formula were
detected for the PLS compared with the conventional
analysis. These results suggest that the PLS method
could have greater power to detect milk composition
QTL, resulting in more precise QTL mapping. However,
the slight reduction in prediction accuracy of the model
including both MIR and GRM indicates that the effect
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of population stratification might be significant in SNP
prediction. On the one hand, these preliminary results
suggest that population structure should be accounted
for, obtaining more precise results. On the other hand,
highly significant SNP detected through PLS confirmed
their strong significance even after GRM correction
and, overall, there were still more significant P-values
than with conventional analysis (Table 1).

In addition, the PLS analysis detected QTL that
have been previously reported by other authors, but
which were not significantly associated with milk
traits in our GWAS analysis. This included SNP near
LALBA, encoding a-LA and related to lactose synthe-
sis, or AGPATG6, involved in glycerolipid biosynthesis
(Ramakrishnan et al., 2001; Chen et al., 2008; Nayeri
and Stothard, 2016). The PLS analysis also found sig-
nificant SNP that have not been previously reported
to be associated with milk composition. For instance,
P2R X}, a purinergic signaling gene linked to oxidative
stress after calving in dairy cows (Seo et al., 2014), was
observed. These SNP may be associated with changes
in milk composition other than concentrations of fat,
protein, lactose, or fatty acids. Indeed, oxidative stress
causes milk composition changes (Talukder et al.,
2015), with consequent effects on MIR spectral data.
Overall, these results suggest the potential of PLS in
distinguishing important chromosomal regions for milk
composition and identifying some additional SNP not
detected through conventional GWAS. Overall, as a
proof of concept, our results suggest the potential of
PLS in distinguishing important chromosome regions
for milk composition and identifying some additional
SNP not detected through conventional GWAS.

Testing for Multiple Linked QTL

When many SNP in a region of a chromosome are
significantly associated with a trait, it is difficult to tell
whether this represents more than one QTL or just one
QTL in LD with many SNP. We combined GWAS and
PLS analyses to attempt to distinguish between these
situations. In the case of SNP on BTA20, we assumed
that the SNP at 31.9 Mb, near GHR, represented at
least one QTL and considered whether the other 2 are
tracking the same QTL or an additional one. Because
they were in LD, the SNP at 31.9 Mb predicted the
genotype of the SNP at 31.2 Mb with R* = 0.541. When
the MIR data were added to the prediction equation,
we found no increase in the prediction R* (Table 3). If
the SNP at 31.2 Mb tracked a QTL with different ef-
fects on MIR spectra to the SNP at 31.9 Mb, the use of
MIR data should improve the prediction. Because it did
not do so, it is likely both SNP tracked the same QTL.

In contrast, the PLS prediction R* for the SNP at 34.5
Mb was increased by adding the MIR data.

These results are consistent with the interpretation
that the SNP at 34.5 Mb was tracking an additional
QTL to the GHR polymorphism near 31.9 Mb. Simi-
larly, the other results in Table 3 suggest that there
were 2 QTL on BTA11 near 103.3 and 104.3 Mb (near
ABO), but the SNP on BTA6 at 85.5 (TMPRSS11F)
and 87.4 Mb appeared to be tracking the same QTL
or 2 QTL with the same pattern of effects on the MIR
spectrum. Using a GWAS alone, it would be difficult
to decipher the number of QTL present. These findings
suggest that the combination of PLS and GWAS on
MIR data can distinguish different, closely linked QTL.

Future Research

Our research has demonstrated that MIR data can
be used as a powerful tool to enhance QTL detection
and distinguish between multiple QTL. Further work
with more animals and genome-sequence data should

be considered to increase the power and precision of
QTL detection.

CONCLUSIONS

Our results suggest that using MIR data through
either GWAS or PLS analysis applied to genomic data
can provide a powerful tool to distinguish milk com-
position QTL. Furthermore, PLS used to predict SNP
genotypes showed potential for detecting and mapping
significant SNP associated with milk composition, as
well as previously undetected QTL for milk composi-
tion. Based on these results, using MIR data through
GWAS or PLS analysis in genomic investigations can
aid in distinguishing milk composition QTL.
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