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ABSTRACT

Lactose is a sugar uniquely found in mammals’ milk 
and it is the major milk solid in bovines. Lactose yield 
(LY, kg/d) is responsible for milk volume, whereas lac-
tose percentage (LP) is thought to be more related to 
epithelial integrity and thus to udder health. There is 
a paucity of studies that have investigated lactose at 
the genomic level in dairy cows. This paper aimed to 
improve our knowledge on LP and LY, providing new 
insights into the significant genomic regions affecting 
these traits. A genome-wide association study for LP 
and LY was carried out in Fleckvieh cattle by using 
bulls’ deregressed estimated breeding values of first 
lactation as pseudo-phenotypes. Heritabilities of first-
lactation test-day LP and LY estimated using linear 
animal models were 0.38 and 0.25, respectively. A total 
of 2,854 bulls genotyped with a 54K SNP chip were 
available for the genome-wide association study; a lin-
ear mixed model approach was adopted for the analy-
sis. The significant SNP of LP were scattered across 
the whole genome, with signals on chromosomes 1, 2, 
3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant 
SNP explained 4.90% of the LP genetic variance. The 
signals were mostly in regions or genes with involve-
ment in molecular intra- or extracellular transport; for 
example, CDH5, RASGEF1C, ABCA6, and SLC35F3. 
A significant region within chromosome 20 was previ-
ously shown to affect mastitis or somatic cell score in 
cattle. As regards LY, the significant SNP were concen-
trated in fewer regions (chromosomes 6 and 14), related 
to mastitis/somatic cell score, immune response, and 
transport mechanisms. The 5 most significant SNP for 
LY explained 8.45% of genetic variance and more than 
one-quarter of this value has to be attributed to the 
variant within ADGRB1. Significant peaks in target 

regions remained even after adjustment for the 2 most 
significant variants previously detected on BTA6 and 
BTA14. The present study is a prelude for deeper in-
vestigations into the biological role of lactose for milk 
secretion and volume determination, stressing the con-
nection with genes regulating intra- or extracellular 
trafficking and immune and inflammatory responses in 
dairy cows. Also, these results improve the knowledge 
on the relationship between lactose and udder health; 
they support the idea that LP and its derived traits are 
potential candidates as indicators of udder health in 
breeding programs aimed to enhance cows’ resistance 
to mastitis.
Key words: lactose, genome-wide association study 
(GWAS), inflammatory response, molecular transport, 
bovine milk

INTRODUCTION

Lactose is the natural sugar present in milk of mam-
mals and its concentration is predicted using mid-infra-
red spectroscopy in individual and bulk milk samples 
during routine recording schemes. Lactose percentage 
(LP) is associated with udder health in cattle (Ebrahi-
mie et al., 2018; Costa et al., 2019a); in fact, as soon as 
IMI and inflammation occur, milk LP decreases. Over-
all, moderate correlations between LP and SCS, the 
most adopted indicator of IMI worldwide, have been 
reported in the literature, with peaks of −0.44 (Stoop 
et al., 2007) and −0.66 (Vilas Boas et al., 2017) for 
genetic and phenotypic correlations, respectively. More-
over, Costa et al. (2019a) estimated a negative genetic 
correlation (−0.18) between LP and mastitis in Fleck-
vieh (FV) cows in early to mid lactation. In the pres-
ence of IMI, the permeability of epithelial cells changes 
and lactose is partly lost in the bloodstream (Bansal et 
al., 2005); this explains why plasma LP is an indicator 
of epithelial integrity in cattle (Herve et al., 2019). As 
regards lactose yield (LY), this trait is closely related 
to milk volume, because it is the major milk osmole; in 
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fact, the amount of synthesized lactose directly deter-
mines water uptake in the alveoli (Fox et al., 2015). This 
means that the higher the LY upstream, the higher the 
milk yield. The ability to synthesize a high amount of 
lactose might be related to greater expression of genes 
encoding glucose transporters, which are responsible 
for glucose uptake from blood (Zhao, 2014), and also to 
greater blood sugar availability. The mammary gland is 
the first target tissue for the delivery of substrates as 
glucose; this supports the fact that the metabolic prior-
ity of dairy cows is milk synthesis and that the udder is 
subjected to homeorhesis (Bauman and Currie, 1980). 
Moreover, the Golgi is the cellular environment special-
ized for lactose synthesis, and greater genetic expression 
of its enzymes in mammary tissue could further affect 
LP, LY, or both. Despite this, little is known about the 
physiological and biological paths behind conversion of 
glucose to lactose in the mammary gland and the as-
sociation of LP with mastitis or IMI. In fact, interest in 
this milk component has only recently increased in the 
scientific community (Sneddon et al., 2015, 2016; Haile-
Mariam and Pryce, 2017; Costa et al., 2018, 2019b). 
Milk yield, and fat and protein content and yield are 
usually included in the most common routine genetic or 
genomic evaluation schemes in Europe and are thus the 
target phenotypes of genome-wide association studies 
(GWAS) in dairy cattle (Wang and Bovenhuis, 2018). 
Conversely, only a few GWAS for LP and LY have been 
performed in cattle (Lopdell et al., 2017; Wang and 
Bovenhuis, 2018). Thus, an opportunity exists to inves-
tigate genomic regions that affect LP and LY to better 
understand which genes influence these traits.

The FV breed has a share of about 75% of Austrian 
controlled dairy cows (ZAR, 2018), and a joint genetic 
evaluation is carried out for FV by Austria, Germany, 
and the Czech Republic. This cooperative system al-
lows generation of both big data and accurate genomic 
EBV, whose routine estimation was recognized by the 
International Committee for Animal Recording in 2011. 
Although LP and LY have recently been reported to be 
genetically associated with mastitis and ketosis in FV 
(Costa et al., 2019a), information on genomic regions 
affecting LP and LY is lacking for this breed. Therefore, 
in this study, we aimed to perform a GWAS to better 

understand the genetic background of LP and LY, and 
to evaluate accordance with genomic regions affecting 
udder health traits, such as mastitis, IMI, and SCS.

MATERIALS AND METHODS

Genotypes

Genomic data of 7,003 purebred FV bulls were 
jointly provided by Austria, Germany, and the Czech 
Republic. All individuals were genotyped with the 54K 
Illumina BovineSNP50 BeadChip (Illumina Inc., San 
Diego, CA).

Pseudo-Phenotypes

The bulls’ deregressed EBV of first lactation were 
used as pseudo-phenotypes in the GWAS. First, vari-
ance components and heritability of LP and LY (Table 
1) were estimated using the VCE6 software, version 6.0 
(Neumaier and Groeneveld, 1998). For this purpose, 
198,038 test-day milk yield and infrared-predicted LP 
records of 54,878 cows representing a subset of the en-
tire data (>16 million milk test-day records and >1 
million cows) were used; LY was calculated as (LP/100 
× milk yield). The single-trait test-day repeatability 
animal model included the fixed effects of region-year-
month of sampling, herd-year-season of sampling, age 
at calving, and DIM (linear and quadratic covariate), 
and the random effects of permanent environment, 
additive genetic animal, and residual. Bulls’ EBV for 
first lactation were then estimated using the MiX99 
software (Lidauer et al., 2015) by applying the above-
mentioned model on all test-day records with reliable 
information on LP and LY (n = 7,065,937; Table 1). 
The pedigree included 1,824,262 animals; that is, cows 
with phenotypic observations and all available genera-
tions of ancestors. A deregression was carried out based 
on the approach proposed by Jairath et al. (1998) and 
Schaeffer (2001), implemented in the software MiX99 
(Lidauer et al., 2015). Finally, only bulls with an esti-
mated daughter contribution ≥10 were considered for 
further investigation, which led to 3,566 and 3,558 bulls 
for LP and LY, respectively.

Table 1. Descriptive statistics (7,065,937 test-day records) and heritability1 of lactose percentage and lactose 
yield in first-parity cows

Trait Mean CV (%) Minimum Maximum
Heritability 

 (SE)

Lactose percentage (%) 4.86 3.29 4.00 5.49 0.38 (0.01)
Lactose yield (kg/d) 0.98 28.57 0.12 3.74 0.25 (0.01)
1Estimated using a subset of 198,038 test-day records.
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Quality Control

The quality control was performed with the software 
PLINK 1.9 (Purcell et al., 2007; Chang et al., 2015). 
The quality of SNP was ensured by removing variants 
with call rate <0.90, minor allele frequency <1%, and 
deviating significantly (P-value <1.00E-6) from Hardy-
Weinberg equilibrium. A call rate ≥0.90 was required 
for bulls to be included. After editing, 40,486 SNP and 
2,854 bulls for LP, and 40,094 SNP and 2,853 bulls for 
LY were available for the GWAS.

Association Study

The linear mixed model approach implemented in 
GEMMA software (Zhou and Stephens, 2012) for the 
GWAS was

	 y = µ + Xβ + u + ε,	

where y is the vector of phenotypes (deregressed EBV 
of LP or LY); µ is the intercept; X is a vector of marker 
genotypes; β is the effect size of the markers; u is a 
vector of random individual effects; and ε is a vector 
of errors. Log-likelihood ratio statistics were adopted 
to test the null hypothesis that a polymorphism did 
not affect the phenotype; that is, H0: β = 0 was tested 
against H1: β ≠ 0 for each SNP. In addition, the genomic 
relationship matrix was included in the analysis to ac-
count for population structure and avoid the presence 
of systematic bias. Because the Bonferroni correction 
is usually too restrictive and does not account for the 
fact that several SNP may trace the same QTL because 
of linkage disequilibrium (Goddard and Hayes, 2012), 
the false discovery rate with a cut-off at 0.20 (P-value 
<0.00013) was used as criterion to fulfill the P-value 
thresholds for significance discrimination (Efron, 2007). 
Graphical representations of Manhattan and quantile-
quantile plots were obtained in the R software using the 
“CMplot” (Yin, 2016) and “qqman” packages (Turner, 
2018), respectively. The proportion of genetic variance 
explained by a target SNP (SNP-t) and its variants in 
linkage disequilibrium was derived in the GCTA soft-
ware (Yang et al., 2011). In particular, genetic variance 
was estimated using 2 different genomic relationship 
matrices: one for the SNP-t (with variants in linkage 
disequilibrium) and one for the remaining SNP. Then, 
the proportion of variance explained by the SNP-t was 
derived as the ratio between the 2 variances. Finally, 
significant genes were identified on the National Center 
for Biotechnology Information website (https:​/​/​www​
.ncbi​.nlm​.nih​.gov/​; NCBI, 2018) by mapping polymor-
phisms referring to the genome assembly ARS-UCD 

1.2. “Nearby” genes were defined to be at most ±0.1 
Mb distant from the significant SNP.

RESULTS AND DISCUSSION

Lactose Percentage

The significant variants detected in the GWAS for 
LP are listed in Table 2 and the quantile-quantile plot 
is shown in Figure 1. Within the genome, signals of 
LP were spread across several chromosomes (Figure 2), 
which confirms that LP is a polygenic trait controlled 
by multiple regions with cumulative effects (Goddard 
et al., 2016). The amount of genetic variance explained 
by the 4 most significant SNP was 4.90%, of which one-
third was attributed to ARS-BFGL-NGS-39978 (P = 
4.132E-08) that is close to (≤0.1 Mb) NEMP2, NAB1, 
MFSD6, and LOC104971101 (BTA2). Table 3 provides 
an overview of genes detected and Table 4 summarizes 
their known major functions. Several polymorphisms 
were in mastitis and inflammation response-related 
regions; in particular, a variant (154.087 Mb, BTA1) 
was detected within the gene PLCL2, which includes 
leukocyte B proliferation and immune response regu-
lation among its functions. Additionally, a significant 
SNP (15.526 Mb, BTA3) was detected near EFNA1, 
which encodes ephrin, a protein related to the inflam-
matory response in mammary cells and the integrity of 
mammary epithelial cells (Kang et al., 2018). The gene 
ANKH in BTA20 was close to 2 significant variants pre-
viously detected by Tiezzi et al. (2015) in a GWAS for 
mastitis in first-parity US Holsteins. Similarly, Meredith 
et al. (2013) found variants within the window 57.65 to 
57.75 Mb of BTA20 that affected SCS in Holstein cows 
in Ireland. This was confirmed by Lopdell et al. (2017), 
who reported a significant signal for LP at 58.45 Mb 
(BTA20). A significant polymorphism in BTA1 was 
found within PAK2, regulator of signal transduction, 
and near NRROS, involved in immune response and ox-
idative activity. Significant signals, including that with 
the lowest P-value, were in the region from 5.75 to 6.70 
Mb of BTA2, known to be related to transmembrane 
transport activity and including MFSD6, NEMP2, 
and SLC40A1. In particular, among the functions of 
MFSD6, it is worth mentioning the roles in reception of 
macrophages and facilitation of intra- or extracellular 
transport (NCBI, 2018). A SNP on BTA7 was within 
RASGEF1C, regulator of membrane-associated activ-
ity and vesicle trafficking. The CDH5 gene, regulator 
of cell polarity, was detected on BTA18, whereas the 
membrane-associated protein ABCA6 and the junction 
protein GJC1 were within BTA19. Among all functions 
of the ABCA gene family, it is worth mentioning the 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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molecular transport within and among cells, as for 
RASGEF1C (BTA7) and SLC35F3 (BTA28); more-
over, ABCA6 is related to leukocytes and antimicrobial 
activity (Wathes et al., 2019) and it has been found 
significant for mastitis in Holstein cows, together with 
its neighbors (ABCA5, ABCA9, and ABCA10; Tiezzi et 
al., 2015). The KCNK1 gene was close to 2 signals on 
BTA28; it codes for proteins involved in potassium and 
sodium channel activities and for stabilization of mem-
brane potential in epithelial cells. In addition, KCNK1 
is well expressed in mammary tissue and is related to 
mastitis in mice (Ogorevc et al., 2009). A couple of sig-
nificant SNP on BTA20 were near ANKH, a mastitis-
related gene in Holsteins (Tiezzi et al., 2015). Finally, a 
few variants were within genes without functions related 
to either IMI or transport mechanisms: LOC112449084 
and LOC784305 (BTA12), LOC101904639 (BTA16), 
and LOC112442737 (BTA19). These signals were also 
detected for LP by Lopdell et al. (2017) in Holstein and 
Jersey cows in New Zealand. The region within BTA19 
(33.51 to 61.13 Mb), known to affect LP (Lopdell et 
al., 2017; Wang and Bovenhuis, 2018), was here picked 
up by 3 significant SNP, 2 of them located at 61.017 
and 61.441 Mb, which were also neighboring the SNP 
(58.45 Mb) detected by Lopdell et al. (2017). The effect 
of BTA28 region (at around 6.56 Mb) was confirmed in 
the present study by the presence of 3 significant vari-
ants (6.55 to 6.89 Mb). The SNP on BTA29 (9.32 Mb) 
was not far from the one (9.61 Mb) detected by Lopdell 
et al. (2017), and Wang and Bovenhuis (2018). Finally, 
no signals were detected at 8.70 Mb of BTA28 or 37.1 

Mb of BTA6, both thought to significantly affect LP 
(Lopdell et al., 2017; Wang and Bovenhuis, 2018).

These findings make LP an interesting trait for 
genetic purposes in cattle and may be used to better 
understand causality between IMI and this milk com-
ponent. In fact, the present GWAS helped increase the 
knowledge of the genetic architecture of such a complex 
trait, which relies on several factors such as blood glu-
cose availability and uptake, blood–milk barrier (i.e., 
osmotic equilibrium), and the epithelial integrity of 
alveoli (i.e., udder health).

Lactose Yield

Findings related to GWAS for LY are shown in Table 
5 and the quantile-quantile plot is reported in Figure 
1. Visually, 2 major significant peaks were detected for 
LY (Figure 3); indeed, around 74% of significant vari-
ants were within BTA6 and BTA14, and the amount 
of genetic variance explained by the top 5 significant 
SNP was 8.45%, with the variant within ADGRB1 ac-
counting for 2.44% (Figure 4). The latter is a regulator 
of transmembrane signaling receptor activity, promotor 
of microbicidal activity of macrophages and associated 
with udder morphology in cows (Marete et al., 2018), 
stressing the strong biological dependence of LY on ud-
der health and immune response. The same variant was 
the most significant in a GWAS for mastitis (Wang 
et al., 2015) and for milk yield and fat and protein 
percentage in Chinese Holsteins (Wang et al., 2019). 
Sahana et al. (2013) found the above-mentioned SNP 

Table 2. Significant SNP for deregressed EBV of lactose percentage, their position on Bos taurus autosomes, 
and P-values

BTA   SNP Position (Mb) P-value

1 ARS-BFGL-NGS-5124 71.263427 9.293E-05
  Hapmap42521-BTA-35582 72.736590 4.123E-06
  ARS-BFGL-NGS-95240 154.087389 3.260E-05
2 ARS-BFGL-NGS-39978 5.757355 4.132E-08
  Hapmap49624-BTA-47893 6.700805 4.093E-05
3 ARS-BFGL-NGS-64215 15.525599 4.367E-05
7 ARS-BFGL-NGS-110962 1.009369 5.051E-07
12 BTA-123122-no-rs 69.319934 1.920E-07
  Hapmap50646-BTA-29027 70.140996 2.090E-05
  ARS-BFGL-NGS-57541 77.315938 9.680E-05
16 ARS-BFGL-NGS-74373 51.811400 9.342E-05
  BTA-26576-no-rs 67.703949 2.502E-05
18 ARS-BFGL-NGS-119782 34.126956 2.138E-06
19 ARS-BFGL-NGS-19774 44.547216 5.576E-05
  Hapmap25852-BTA-148919 61.016756 1.027E-05
  ARS-BFGL-NGS-55564 61.441042 1.371E-05
20 BTB-01648514 58.240835 2.366E-06
  BTB-01648552 58.264762 9.257E-05
28 BTB-00874839 6.547497 6.825E-05
  BTB-00874898 6.575192 4.084E-07
  ARS-BFGL-NGS-40170 6.888276 1.618E-05
29 Hapmap32898-BTA-66437 9.319793 4.730E-06
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to be significant for mastitis in second-parity cows. 
Interestingly, the DGAT1 gene was found to influence 
LY in the GWAS of Lopdell et al. (2017), based on the 
UMD3.1.1 assembly. Because the current GWAS was 
based on the ARS-UCD1.2 genome assembly, DGAT1 
was not identified in this study; however, the presence 

of such a significant signal confirmed previous findings 
on the presence of significant QTL for LY around 1.77 
Mb of BTA14 (tag variant rs134364612; Lopdell et al., 
2017).

A list of all detected genes is provided in Table 3, 
with their main functions listed in Table 6. Few regions 
on BTA6 and BTA14 are known to affect SCS and mas-
titis (Ogorevc et al., 2009; Wang et al., 2015). Within 
BTA6, several signals covered a region from 84.57 to 
88.82 Mb, coincident to the window already reported 
to affect mastitis or SCS in US Holsteins (Cole et al., 
2011), Nordic Holsteins (Sahana et al., 2013), Danish 
Holsteins (Wu et al., 2015), and German Holsteins 
(Abdel-Shafy et al., 2018). Furthermore, a variant in 
position 88.82 Mb of BTA6 was very close to CXCL8 
(88.81 Mb), a gene related to mastitis, IMI, immune 
and inflammatory responses, and neutrophil activation 
(Youngerman et al., 2004; NCBI, 2018). Moreover, this 
significant region (87.11 to 88.82 Mb, BTA6) included 
NPFFR2 (87.25 to 87.33 Mb), which is involved in mac-
rophage activity stimulation, and it is related to udder 
health. In fact, several authors (Sahana et al., 2013; Wu 
et al., 2015; Cai et al., 2018) reported a relationship 
between mastitis and NPFFR2 in bovines. Pausch et 
al. (2016) found this gene to affect both the morphol-
ogy of mammary gland and mastitis resistance in FV 
cows. Within the above-mentioned window of BTA6, 
3 other important genes were detected: MGC152010, 
associated with blood NEFA and metabolic status of 
cow (Ha et al., 2015), and ANKRD17 and LOC781441, 
which are related to neutrophil count and activity and 
to glucuronosyltransferase activity, respectively. The 
gene ANKRD17 was less than 0.1 Mb from COX18, lo-
cated in an area significant for SCS in dairy cows (Chen 
et al., 2015). The significant gene SLC4A4 (also known 
as NBCe1) is a sodium-cotransporter solute carrier, 
patented as a genetic marker for mastitis resistance 
(Yamaguchi and Ishikawa, 2008; Fang et al., 2017, 
2018) and was flanking the region on BTA6 detected 
in this GWAS. Our results are supported by those of 
Fang et al. (2017), who reported a significant region for 
mastitis resistance at 88.84 and 88.72 Mb (BTA6) for 
Holstein and Nordic Red cows, respectively. The variant 
Hapmap25708-BTC-043671 (87.11 Mb) was less than 1 
Mb from DCK, which is related to udder health (Wu et 
al., 2015; Cai et al., 2018), milk protein (Strucken et al., 
2012), and milk casein (Dadousis et al., 2017).

On BTA14, a significant SNP (4.34 Mb) was close to 
FAM135B, involved in cellular lipid metabolic processes, 
and COL22A1, a gene that was significant for milk and 
protein yield and fat percentage in the study of Jiang 
et al. (2010) in Chinese Holstein cows. Furthermore, on 
the same chromosome, the sugar transport regulating 
gene SLC45A4 and a regulator of ketone body metabo-

Figure 1. Quantile–quantile plot of the expected P-values under 
null hypothesis versus the observed P-values distribution for (a) lac-
tose percentage, and (b) lactose yield.
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Figure 2. (a) Manhattan plot for lactose percentage, and (b) distribution of significant variants across BTA. The gray solid and red dashed 
lines in the Manhattan plots indicate BTA and false discovery rate threshold (P < 0.00013), respectively.
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lism, DENND3, were both close to the variant ARS-
BFGL-NGS-3122 (Sigdel et al., 2017). According to 
Ogorevc et al. (2009), several mastitis and SCS-related 
regions are spread across the bovine genome and many 

are concentrated on BTA14; in fact, DENND3 was also 
significant in a GWAS of SCS in dairy cows (Chen et 
al., 2015). One significant variant was within LYNX1 
and near LY6D, THEM6, PSCA, SLURP, and LYPD2; 

Table 3. Gene harboring the SNP (GeneH) and nearby genes (left and right) for each significant SNP for lactose percentage (LP) and lactose 
yield (LY)

Trait   BTA   SNP   GeneH   Nearby genes (±0.1 Mb from SNP)

LP 1 ARS-BFGL-NGS-5124 PAK2 NRROS, CEP19, LOC112447342, PIGX, SENP5, 
LOC112447342, LOC104970886

LP 1 ARS-BFGL-NGS-95240 PLCL2 TBC1D5
LP 1 Hapmap42521-BTA-35582 — LOC104970891
LP 2 ARS-BFGL-NGS-39978 — NEMP2, NAB1, MFSD6, LOC104971101
LP 2 Hapmap49624-BTA-47893 — ANKAR, OSGELP1, ASNSD1, SLC40A1
LP 3 ARS-BFGL-NGS-64215 — EFNA1, EFNA3, EFNA4, ADAM15, DCST1, DCST2, 

ZBTB7B, LENEP, FLAD1, CKS1B, SHC1, LOC107132270, 
MIR92B, MUC1, TRIM46, KRTCAP2, DPM3, SLC50A1

LY 6 ARS-BFGL-NGS-17376 — LOC112447100, LOC112447101, LOC107132573, CXCL8, 
LOC534181, LOC112447102, CXCL5, PPBP

LY 6 ARS-BFGL-NGS-27958 MGC152010 LOC781441, LOC540544, LOC781478, LOC530553, 
LOC530356

LY 6 BTA-111700-no-rs LOC781441 LOC104968908, LOC100296421, LOC781649, LOC540544, 
LOC781478, MGC152010

LY 6 BTA-77173-no-rs ANKRD17 COX18
LY 6 Hapmap25708-BTC-043671 — —
LY 6 Hapmap42671-BTA-77163 — LOC112447164, LOC112447182
LY 6 Hapmap54336-rs29010419 — COX18, LOC112447164, ANKRD17
LY 6 Hapmap57014-rs29019575 — ADAMTS3, TRNAC-GCA
LP 7 ARS-BFGL-NGS-110962 RASGEF1C MAPK9, GFPT2, LOC107132588, LOC100848388
LP 12 ARS-BFGL-NGS-57541 LOC112449084 TMTC4, GGACT, MIR2892
LP 12 BTA-123122-no-rs — —
LP 12 Hapmap50646-BTA-29027 LOC784305 —
LY 14 ARS-BFGL-NGS-112858 — KHDRBS3
LY 14 ARS-BFGL-NGS-3122 — SLC45A4, DENND3, LOC112449594, LOC112449595
LY 14 ARS-BFGL-NGS-34135 LYNX1 LOC112441461, LOC112449566, LOC112449590, 

LOC100848939, LOC104973965, LY6D, LOC112449567, 
LYPD2, SLURP1, THEM6, PSCA, JRK, ARC, 
LOC101905222

LY 14 ARS-BFGL-NGS-4939 ADGRB1 PSCA, JRK, ARC, LOC101905222
LY 14 ARS-BFGL-NGS-56327 — COL22A1, FAM135B, LOC112449648
LY 14 BTA-35941-no-rs — LOC101905853, LOC101901918, TRNAC-GCA
LY 14 Hapmap23302-BTC-052123 — —
LY 14 Hapmap23454-BTC-046932 — —
LY 14 Hapmap26283-BTC-048098 — —
LY 16 ARS-BFGL-NGS-15423 — LOC112441794
LY 16 ARS-BFGL-NGS-2382 — DSTYK, CNTN2, TMEM81, RBBP5, TMCC2, 

LOC112441810
LP 16 ARS-BFGL-NGS-74373 LOC101904639 SPEN, LOC507787, LOC789035, FBLIM1, TMEM82, 

SLC25A34, LOC112441770, PLEKHM2, LOC515551, 
LOC112441934

LP 16 BTA-26576-no-rs — PTGS2, LOC107133257, LOC112441859
LY 17 ARS-BFGL-NGS-14166 ARHGAP10 —
LY 17 BTB-00689316 — RSPH14, GNAZ, LOC531152, VPREB1, TOP3B, PPM1F, 

MAPK1, LOC112442124
LY 18 ARS-BFGL-NGS-114779 ZNF423 TRNAG-CCC, LOC112442280
LP 18 ARS-BFGL-NGS-119782 CDH5 BEAN1
LP 19 ARS-BFGL-NGS-19774 GJC1 DBF4B, HIGD1B, EFTUD2, MIR2343, CCDC103, 

FAM187A, GFAP, KIF18B, LOC104975097
LP 19 ARS-BFGL-NGS-55564 ABCA6 ABCA5, ABCA9, ABCA10
LP 19 Hapmap25852-BTA-148919 LOC112442737 —
LP 20 BTB-01648514 — ANKH, LOC107131578, LOC112443072
LP 20 BTB-01648552 — ANKH, LOC107131578, LOC112443072
LY 21 Hapmap58004-rs29023371 — LOC112443345
LP 28 ARS-BFGL-NGS-40170 SLC35F3 —
LP 28 BTB-00874839 — KCNK1, TRNAC-ACA
LP 28 BTB-00874898 — KCNK1, TRNAC-ACA
LP 29 Hapmap32898-BTA-66437 — ACTN2, HEATR1, LOC112444786, LOC101908221
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all of these genes overlapped with those reported by 
Tiezzi et al. (2015) for clinical mastitis in dairy cows 
and are involved in regulation of neutrophil activity. 
These genes are known as globally as the lymphocyte-
antigen-6 complex. This finding supported the idea 
that LY is strongly dependent on mammary epithelial 
cell number and functionality. It is worth noting that 
LY and mastitis are positively associated in FV cows 
(genetic correlation of 0.52; Costa et al., 2019a), sug-
gesting that high-producing cows are more susceptible 
to IMI and udder health problems than low-producing 
cows. One variant was found within ARHGAP10, a 

gene related to mastitis resistance in cows (Kurz et 
al., 2019), whereas the transcription factor ZNF423 was 
detected in BTA18. No coding genes were present in 
other significant regions of BTA16 and BTA17.

To adjust for the effects of the 2 highest sig-
nificant signals for LY (P-value <1.00E-10); that is, 
ARS-BFGL-NGS-4939 (BTA14) and Hapmap25708-
BTC-043671 (BTA6), and to check for the presence 
of effective causal variants, an additional GWAS was 
performed by fixing the 2 variants in the original model 
using GEMMA software (Zhou and Stephens, 2012). 
The significance of variants was checked following the 

Table 4. Location and main functions of detected genes in genome-wide association study of lactose percentage (sources: Gene Cards, 2018, 
https:​/​/​www​.genecards​.org/​; NCBI, 2018)

BTA   Gene Window (Mb)   Function

1 PAK2 71.257814–71.350400 Signal transduction; ATP binding
1 PLCL2 153.882096–154.095595 Leukocyte B proliferation; intracellular signal transduction; immune response 

regulation
7 RASGEF1C 1.004381–1.109795 Regulation of membrane-associated molecular activity; intracellular signaling 

pathways; cell differentiation and proliferation; cytoskeletal organization; 
vesicle trafficking; nuclear transport

12 LOC112449084 77.289796–77.346416 —
12 LOC784305 69.969856–70.238238 Multidrug resistance-associated protein
16 LOC101904639 51.805664–51.815138 —
18 CDH5 34.122721–34.161590 Calcium-dependent cell adhesion protein; regulation of cell polarity
19 ABCA6 61.413594–61.483297 Membrane-associated protein; regulation of extra-/intracellular transport of 

various molecules; macrophage lipid homeostasis; antimicrobial activity
19 GJC1 44.522640–44.555661 Junction protein; cell communication
19 LOC112442737 60.983169–61.075519 —
28 SLC35F3 6.720734–7.155385 Solute carrier; thiamine transport

Table 5. Significant SNP1 for deregressed EBV of lactose yield, their position on Bos taurus autosomes, and 
P-value

BTA   SNP Position (Mb) P-value

6 BTA-111700-no-rs 84.575241 1.763E-06
  ARS-BFGL-NGS-27958 84.689991 3.652E-06
  Hapmap25708-BTC-043671 87.113639 9.683E-11
  Hapmap57014-rs29019575 87.801255 2.923E-05
  Hapmap42671-BTA-77163 88.006286 5.119E-05
  Hapmap54336-rs29010419 88.132026 9.712E-06
  BTA-77173-no-rs 88.242415 1.319E-05
  ARS-BFGL-NGS-17376 88.822266 9.083E-06
14 ARS-BFGL-NGS-34135 1.675278 4.123E-08
  ARS-BFGL-NGS-4939 1.801116 1.152E-15
  BTA-35941-no-rs 2.276443 4.492E-08
  ARS-BFGL-NGS-3122 2.721633 6.219E-05
  ARS-BFGL-NGS-56327 4.336714 3.533E-06
  Hapmap23302-BTC-052123 4.848750 5.512E-08
  Hapmap23454-BTC-046932 5.831267 8.790E-06
  ARS-BFGL-NGS-112858 6.589274 2.578E-05
  Hapmap26283-BTC-048098 7.371252 7.145E-05
16 ARS-BFGL-NGS-2382 2.933483 6.967E-05
  ARS-BFGL-NGS-15423 74.158269 2.290E-05
17 ARS-BFGL-NGS-14166 10.283664 2.350E-05
  BTB-00689316 71.925055 7.369E-05
18 ARS-BFGL-NGS-114779 18.192027 9.987E-05
21 Hapmap58004-rs29023371 62.069305 1.146E-04
1SNP in italics were significant in the additional genome-wide association study adjusted for the 2 most signifi-
cant (P-value <1.00E-10) variants: Hapmap25708-BTC-043671 and ARS-BFGL-NGS-4939.

https://www.genecards.org/


10096 COSTA ET AL.

Journal of Dairy Science Vol. 102 No. 11, 2019

Figure 3. (a) Manhattan plot for lactose yield, and (b) distribution of significant variants across BTA. The gray solid and red dashed lines 
in the Manhattan plots indicate BTA and false discovery rate threshold (P < 0.00013), respectively.
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previously described criteria. Although the number of 
significant SNP decreased (Table 5), the significant re-
gions detected mirrored those of previous GWAS, with 
the only exception of a new variant in a noncoding 
region of BTA20 (4.40 Mb), Hapmap54098-rs29010434. 
The smaller number of significant polymorphisms was 
expected, because the 2 strongest signals are thought 
to be in linkage disequilibrium with other neutral SNP 
and are also thought to affect the expression of other 
genes. However, these findings indicated the presence of 
multiple causal variants segregating in both BTA6 and 
BTA14 for LY.

CONCLUSIONS

In the present study, we report significant regions of 
the bovine genome affecting milk lactose in Fleckvieh 

cattle, the major dairy breed in Austria. The ultimate 
goal of this study was to detect causal variants and 
overlapping regions with mastitis and SCS, because lac-
tose percentage and its derived traits have the potential 
to be used as indicator traits in breeding programs to 
improve cow udder health. Signals of lactose percent-
age are scattered across several BTA and connected to 
some previously identified regions related to intra- or 
extracellular transport mechanisms, mastitis, and im-
mune response. Conversely, the significant SNP for 
lactose yield are mainly concentrated on BTA6 and 
BTA14, always within or close to genes with functions 
related to transport mechanisms, mastitis, IMI, and 
inflammatory response. These findings highlight that 
lactose percentage is affected by several regions of the 
genome, whereas lactose yield is influenced by fewer 
regions with larger effects. Lactose yield and percent-
age do not share common regions, likely because of the 
different nature of these traits; in fact, the amount of 
lactose produced is only moderately genetically corre-
lated with the final percentage in milk. Even though 
lactose percentage and yield are influenced by different 
regions of the genome, both traits have strong connec-
tions with intra- or extracellular transport mechanisms 
and immune response of dairy cows. Finally, some 
regions with unknown functions and not previously 
detected by other GWAS show high significance in the 
present study.
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Table 6. Location and main functions of detected genes in genome-wide association study of lactose yield (sources: Gene Cards, 2018, https:​/​
/​www​.genecards​.org/​; NCBI, 2018)

BTA   Gene Window (Mb)   Functions

6 LOC781441 84.563427–84.592360 Glucuronosyltransferase activity
6 MGC152010 84.674163–84.712898 Glucuronosyltransferase activity
6 ANKRD17 88.187894–88.355145 Ankyrin repeat-containing proteins; related to neutrophils count and activity
14 LYNX1 1.669740–1.675364 Acetylcholine receptor binding and regulation; ion channel inhibitor activity
14 ADGRB1 1.797345–1.874927 Adhesion G protein-coupled receptor B1, transmembrane signaling receptor 

activity
17 ARHGAP10 10.019895–10.404767 Activation of GTPases RhoA and Cdc42; PTKB2 (Rho GTPase activating protein 

10) regulation of cytoskeletal organization via Rho family GTPases
18 ZNF423 17.963192–18.309039 Transcription factor, differentiation of white and brown adipocytes; regulation of 

transforming growth factor (TGF)-β receptor signaling
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