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1. Introduction.

This paper concerns the nonlinear operator which maps an injective function
$\phi$ defined on the unit disk in $R^{2}$ with values in $R^{2}$ , of class $C^{m.a}$ , and with
nonvanishing jacobian, into the unique holomorphic, $onearrow to$-one map $g[\emptyset]$ of the
unit disk 9 onto the Jordan domain $\phi(9)$ , normalized by $g[\dot{\varphi}](0)=\phi(0),$ $g’[\emptyset](0)$

$\in]0,$ $+\infty$ [. By virtue of Warschawski’s work, it is easy to see that under our
assumptions $g[\emptyset]\in C^{m.a}(c19, R^{2})$ if $\alpha\in$ ] $0,1$ [. We have chosen to represent
the Jordan domain as the image of $\phi$ , rather than as the more customary Jordan
curve which parametrizes the boundary of the Jordan domain to allow the appli-
cation of the method $s$ of this paper, but as we show in section 2, there is no
loss of generality.

The main finding of this paper is that the nonlinear operator $\phi\mapsto g[\emptyset]$ can
be decomposed as $\phirightarrow\varphi’\circ S[\phi]^{(-1)}$ , where $S[\phi]^{(-1)}$ denotes the inverse function
of $S[\emptyset]$ , and the operator $\emptyset$ }$arrow S[\phi]$ is analytic from a set of ’ admissible’ $\phi’ s$

in $C^{m}a(c1gR^{2})$ to $C^{m,a}(c19, R^{2})$ . In other words, $\phirightarrow g[\phi]^{(-1)}\circ\phi$ is analytic.
AS we shall explain, this result easily allows to give precise information on the
regularity of $\phiarrow g[\phi]$ .

The analyticity statement for $S[\cdot]$ may sound surprizing. Indeed, in section 5
we show that $\phi-g[\emptyset]$ is not even differentiable from the set of admissible $\phi’ s$

in $C^{m.\alpha}(c1\ovalbox{\tt\small REJECT}, R^{2})$ to $C^{m.a}(c19, R^{2})$ , and we show that in order to have differ-
entiability of $g[\cdot]$ , we must increase the regularity of the elements in the
domain of $g[\cdot]$ . We note that the problem of expanding $g$ in a power series
of a parameter $\epsilon$ ranging on some interval $I$ of the real line, when the Jordan
domain depends on $\epsilon$ and is for each $\epsilon$ parametrized by the elements of $\partial g$,
has been solved by Kantorovich in the thirties (cf. Kantorovich & Krylov
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(1964, ch. V, \S 6) and references therein), who hypothesized that the curve
binding the parameter dependent Jordan domain is analytic both in $\epsilon$ and in
the variable in $\partial g$ . The present paper shows in particular that a stronger
expansion Theorem for $S$ (not for $g$) holds when no analyticity assumption on
the dependence of $\phi$ on the variable in $\partial g$ is formulated, thus confirming the
remarkable difference between $\phirightarrow g[\emptyset]$ and $\phi\vdasharrow g[\phi]^{(-1)}\circ\acute{\varphi}$ . Several authors
have investigated the dependence of the conformal representation upon the
domain. Among them we mention $Rad6$ (1923), who proved a well-known
result on the continuity of $\phi->g[\phi]$ , Rosenblatt (1936), Zeitlin (1957), and
Yoshikawa (1960), whose work is reported in the extensive monograph of Gaier
(1964). Their methods are different from those of this paper, and this paper
complements their work. In particular the author has never seen the nonlinear
operator $S$ treated in the literature.

The proof is based on a simple but key idea. We observe that $S[\emptyset]$ is, for
each $\phi$ the unique solution of a nonlinear elliptic system (cf. Theorem 3.5).

Then we study such system locally by means of the Implicit Function Theorem.
By using the regularity Theorem for $\phi\mapsto S[\emptyset]$ , together with two ’ higher

order’ differentiability results for the superposition and for the inversion oper-
ator, we can prove that $\phi-,$ $g[\emptyset]$ is of class $C^{k}$ , $k\in N$ if the derivative loss
between domain and range of $g$ is $k$ , and if the domain of $g[\cdot]$ is restricted
to the closure of the smooth functions in the norm of the domain (cf. Theorem
4.7). The sharpness of such statement, at least in case $k=1$ has been shown
by means of the $tw0$ ’ inverse results’ of section 5. In Remark 4.11, we briefly
explain how such differentiability statements can be used to study the depend-
ence of the spectrum of the Laplacian upon perturbation of the domain. Finally,
we note that ’ functional regularity’ theorems for $g[\cdot]$ and for $S[\cdot]$ find appli-
cation in fluid-solid interaction problems where the conformal representation can
be used to handle domain-dependent exterior boundary-value problems (cf. Lanza
&Antman (1991), Lanza (1993) $)$ . For example, assume as in Lanza &Antman
(1991), that an elastic body is subject to an external pressure due to a steady-
state incompressible, inviscid, irrotational flow. Then, as well-known, the
pressure field on the boundary of the body can be given in terms of the boundary
values of the conformal representation of the domain exterior to the body, in
terms of certain parameters such as the pressure $P$ and the velocity $U$ of the
external flow at infinity, and in terms of the constant density of the flow (cf.

Lanza &Antman (1991, p. 1214) $)$ . Since the pressure field applied to the body
enters crucially in the system of the governing equations for the position field
of the body, which is the unknown of the problem, it is clear that if we wish
to study the smoothness of the solution branches of the system of the governing
equations, as the parameters $U,$ $P$ are varied, or if we wish to justify a formal
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expansion of the solutions in terms of $U,$ $P$, then we must have precise infor-
mation on how smoothly the pressure field depends on $U,$ $P$ and on the exterior
domain of the flow, which is identified by the position field of the body. This
can be done by using the results contained in this paper.

NOTE ADDED IN PROOF. By reading volume 818 (1995) of Zentralblatt f\"ur
Mathematik, the author has been informed that Wu (1993), with the advice of
R. $C$oifman, and by exploiting ideas of Coifman &Meyer (1983), has proved
two analyticity statements for an operator, which can be easily related to the
composition of $S$ with the restriction to $\partial g$ for Jordan domains bounded by
an arc-length parametrized Jordan curve sufficiently close to a circle, with
prescribed length $2\pi$ and with direction of the tangent vector prescribed by a
periodic function of class BMO with period $2\pi/n,$ $N\ni n\geqq 2$ (cf. Wu (1993, Th.
3.4)) or with a $2\pi$-periodic function of class $C^{0,q}$ (cf. Wu (1993, Th. 6.4 in the
case indicated in Remark 1, P. 1325)). The validity of a variant of the latter
result follows from Theorem 3.10 of this PaPer, no matter if the curve is
parametrized by arclength or if the curve is close to a circle, and also when
the norm of $C^{0,a}$ is replaced with that of $C^{m,a},$ $m\geqq 1$ . Wu (1993) exploits
integral equation and operator theory methods and his approach is completely
different from that of this paper.

2. Technical Preliminaries and Notation.

Let $X,$ $c_{U}$ be real normed spaces. We say that ec is imbedded in $c_{U}$ provid\’e
that EE3gg and that the inclusion map is continuous. $\mathcal{L}(X,$ $c_{U)}$ denotes the
normed space of the continuous linear maps of ee into $\wp$ and is equipped with
the topology of the uniform convergence on the unit sphere of $X$ . For standard
definitions of Calculus in normed spaces, we refer e.g. to Berger (1977), Prodi
&Ambrosetti (1973). The inverse function of a function $f$ is denoted $f^{(-1)}$ as
opposed to the reciprocal of a complex-valued function $g$ or the inverse of a
matrix $A$ , which are denoted $g^{-1}$ and $A^{-1}$ respectively. A dot ‘ ‘ denotes the
inner product in $R^{2}$, or the matrix product between matrices with real entries.
$M_{r}(R)$ , with $r\in N\backslash \{0\}$ denotes the set of $r\cross r$ matrices with real entries. Let
$A$ be a matrix. Then ${}^{t}A$ denotes the transpose matrix of $A$ . Throughout the
paper, we make no formal distinction between complex numbers and pairs of
real numbers, so for example 9 denotes the open unit disk both in $C$ and in
$R^{2}$ . Similarly, if $f=(f_{1}, f_{2})$ is a map of $R^{2}$ to $R^{2}$, and if $f_{1}+if_{2}$ is holomorphic
in the complex variable $x_{1}+ix_{2}$ , then $f’$ denotes the complex derivative of
$f_{1}+if_{2}$ . Let $B\subseteqq R^{n}$ . Then cl $B$ denotes the closure of $B$ and int $B$ denotes the
interior of $B$ . Let $\Omega$ be an open subset of $R^{n}$ . The space of $m$-times continu-
ously differentiable real-valued functions on $\Omega$ , is denoted by $C^{m}(\Omega)$ . Let
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$f\in(C^{m}(\Omega))^{n}$ . The j-th component of $f$ is denoted $f_{j}$ , and $Df$ denotes the
gradient matrix $(\partial f_{j}/\partial x_{l})_{j,l=1\ldots..n}$ . Let $N$ be the set of nonnegative integers
including $0$, and let $\eta\equiv(\eta_{1}, \cdots , \eta_{n})\in N^{n},$ $|\eta|\equiv\eta_{1}+\cdots+\eta_{n}$ . Then $D^{\eta}$ denotes
$\partial^{1\eta}|/\partial x_{1^{1}}^{\eta}\cdots\partial x_{n}^{\eta_{n}}$ . The subspace of $C^{m}(\Omega)$ of those functions which can be
extended with continuity to cl $\Omega$ together with their derivatives $D^{\eta}f$ of order
$|\eta|\leqq m$ is denoted $C^{m}(c1\Omega)$ . Let $f\in C^{m}(c1\Omega)$ . The unique continuous extension
of $D^{\eta}f,$ $|\eta|\leqq m$ to cl $\Omega$ is still denoted by the same symbol. Let $\Omega$ be a bounded
open subset of $R^{n}$ . $C^{m}(c1\Omega)$ equipped with the norm $||f||_{m} \equiv\Sigma_{I\eta^{1\leq rn}}\sup_{c1\Omega}|D^{\eta}f|$

is a Banach space. The subspace of $C^{m}(c1\Omega)$ whose functions have m-th order
derivatives that are H\"older continuous with exponent $\alpha\in(0,1]$ is denoted
$C^{m.\alpha}(c1\Omega)$ , (cf. Kufner, John & Fucik (1977)). Let $B\subseteqq R^{n}$ . Then $C^{m.a}(c1\Omega, B)$

denotes $\{f\in(C^{m.a}(c1\Omega))^{n} : f(c1\Omega)\subseteqq B\}$ , and the elements of $C^{m,\alpha}(c1\Omega, B)$ are
always thought as row vectors. $C^{m.a}(c1\Omega, M_{r}(R))$ denotes the space of functions
of cl $\Omega$ to $M_{r}(R)$ , whose components are of class $C^{m.a}$ . If $f\in C^{0,a}(c1\Omega)$ , then
its H\"older quotient is $|f|_{a} \equiv\sup\{|f(x)-f(y)|/|x-y|^{\alpha} : x, y\in c1\Omega, x\neq y\}$ . The
space $C^{m.\alpha}(c1\Omega)$ is equipped with its usual norm $||f||_{m.a}=||f||_{m}+\Sigma_{1|=m}\eta|D^{\eta}f|_{a}$ .
It is well-known that cl 9 is a compact $C^{\infty}$ manifold with boundary imbedded
in $R^{2}$ . Namely, 9 is an open subset of $R^{2}$ , and for all points $P\in\partial g$ , there
exists an open neighborhood $W_{P}$ of $P$ in $R^{2}$ and a homeomorphism $\psi_{P}$ of cl 9
onto cl $W_{P}$ such that $\psi_{P}(\{(x_{1}, x_{2})\in 9:x_{2}\geqq 0\})=W_{P}\cap c19$ and that $\psi_{P}\in C^{\infty}(c19)$ ,
$\psi_{P}^{(-1)}\in C^{\infty}(c1W_{P})$ . $C^{m,a}(\partial g)$ denotes the set of functions $f$ of $\partial g$ to $R$ such that
$f\circ\psi_{P}(\cdot, 0)\in C^{m.\alpha}([-1,1]),$ $\forall P\in\partial g$ . It is well-known that such definition of
$C^{m.a}(\partial g)$ does not depend on the chosen family $\{\psi_{P}\}$ with the properties above.
NOW let $\{P_{1}, \cdots , P_{r}\}$ be a finite collection of points of $\partial g$ such that
$U_{J=1}^{r}(W_{P_{j}}\cap\partial g)=\partial g$ . Then $f\in C^{m,\alpha}(\partial g)$ if and only if $f\circ\psi_{P_{j}}(\cdot, 0)\in C^{7n.\alpha}([-1,1])$

$\forall j\in\{1, \cdots, r\}$ , and $\sup_{j=1\ldots.,r}||f\circ\psi_{P_{j}}(\cdot, 0)||_{m.\alpha}$ defines a norm on $C^{m,\alpha}(\partial g)$ . Finally,
we obtain an equivalent norm by choosing another finite family of maps with
the above properties. It is also well-known that all the elements of $C^{m.\alpha}(\partial g)$

are restrictions of some element of $C^{m,a}(c19)$ (cf. $e.g$ . Troianiello (1987, p. 16)).

The following lemma has been shown in Lanza (1991, Cor. 4.24, Prop. 4.29).

2.1. LEMMA. Let $\phi\in C^{1}(c19, R^{2})$ , and $1[\emptyset]\equiv\inf\{|\phi(x)-\phi(y)|/|x-y|$ : $x,$ $y$

$\in cl9,$ $x\neq y\}$ . Then $l[\emptyset]>0$ holds if and only if $\phi$ is injective and $\det D\phi(x)\neq 0$,
$\forall x\in c19$ . The map $\phi harrow l[\phi]$ is continuous from C’(cl 9, $R^{2}$) to $R$, and for all
$\delta\geqq 0$ , the set $Y_{\delta}\equiv\{\phi\in C^{1}(c19, R^{2}):l[\phi]>\delta\}$ is open in $C^{1}(c19, R^{2})$ .

Then we have the following.

2.2. LEMMA. Let $\phi\in Y_{0}$ . Then $\partial\phi(c19)=\phi(\partial g),$ $\phi(\partial g)=\partial\phi(9),$ $\phi(9)$ equals
the intenor of $\phi(c19)$ , and $\phi$ is a homeomorphism of cl 9 onto $\phi(c19)$ .
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PROOF. Since by Lemma 2.1, $\phi$ is continuous and one-to-one on the compact

set cl 9, then $\phi$ is a homeomorphism of cl 9 onto $\varphi(c19)$ . By aPPlying Brouwer’s
theorem on the invariance of domain (cf. $e.g$ . Hurewicz&Wallman (1948, p. 95))

to $\ell$) and to $\phi^{(-1)}$ , we deduce that $\phi(9)$ equals the interior of $\phi(c19)$ . Since
$\phi(c19)$ is closed and $\phi$ is injective, we have $\partial\phi(c19)=c1\phi(c19)\backslash int\phi(c19)=$

$\phi(c19)\backslash \phi(9)=\phi(\partial g)$ . We now show that $\partial\phi(g)=\phi(\partial g)$ . Since $\phi(9)$ is open, we
have $\partial\phi(g)=c1\phi(9)\backslash \phi(9)$ . Then, by the injectivity of $\phi$ , it suffices to show
that $cl\phi(9)=\phi(cl9)$ . Since $\phi(9)\subseteqq\phi(c19)$ and $\phi(c19)$ is closed, we have
cl $\phi(9)\subseteqq\phi(c19)$ , while the inclusion cl $\phi(9)\supseteqq\phi(c19)$ is an immediate consequence
of the continuity of $\beta$). $\square$

Let $\phi\in Y_{0}$ . By Lemma 2.2, $\phi(9)$ is a Jordan domain bounded by a curve of
class $C^{1}$ with nonvanishing tangent vector. Then by the Riemann Mapping
Theorem, there exists a unique holomorphic homeomorphism

(2.3) $g[\emptyset]:9arrow\phi(9)$

satisfying

(2.4) $g[\phi](0)=\varphi’(0)$ , $g[\emptyset]’(0)\in]0,$ $+\infty$ $[$ .

By a Theorem of Caratheodory (cf. Pommerenke (1975, Th. 9.10)) the function
$g[\emptyset]$ can be extended to the closure of 9, and the extension

(2.5) $g[\emptyset]$ : cl $9arrow$ cl $\phi(9)$ is a homeomorphism.

We now introduce the following notation. Let $L>0,$ $m\in N\backslash \{0\},$ $\alpha\in]0,1$ [. Let

$C_{P}^{m,a}([0, L], R^{2})\equiv\{\zeta\in C^{m.a}([0, L], R^{2}):\zeta^{(j)}(0)=\zeta^{(j)}(L), j=0, \cdots m\}$ ,

(2.6) $\sigma(s_{1}, s_{2})\equiv\min\{|t_{1}-t_{2}| : t_{j}\in R, e^{i2\pi t_{j}/L}=e^{i2\pi\iota_{j}/L}, j=1,2\}$ ,

$1_{*}[\zeta]\equiv\inf\{|\frac{\zeta(s)-\zeta(t)}{\sigma(s,t)}|$ : $s,$ $t\in[0, L],$ $\sigma(s, t)\neq 0\}$ .

Then we have the following (cf. Lanza (1992, p. 124)).

2.7. LEMMA. Let $\zeta\in C_{P}^{m.a}([0, L], R^{2})$ . Then $1_{*}[\zeta]>0$ if and only if the curve
$\zeta$ is simple and $|\zeta’(s)|>0,$ $\forall s\in[0, L]$ . The set $\{\zeta\in C_{P}^{m.\alpha}([0, L], R^{2}):1_{*}[\zeta]>0\}$

is open in the space $C_{P}^{7n.a}([0, L], R^{2})$ .

By $\mathscr{I}[\zeta]$ we denote the bounded connected component of $C\backslash \{\zeta([0, L])\}$ . Now
we have the following, which is basically a restatement of Warschawski (1935,

Th. IIIc, $III*$ , Remark 1. $a$ , p. 319).

2.8. THEOREM. Let $\alpha\in$ ] $0,1$ [, $m\in N$ $\delta>0$ . If $\phi\in C^{m+1.a}(c19, R^{l})$ and
$1[\emptyset]>0$, then $g[\emptyset]\in C^{m+1,\alpha}(c19, R^{2})$ . If $\{\phi_{n}\}$ is a bounded sequence of
$C^{m+1.a}(c19, R^{2})$ such that
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(2.9) $l[\phi_{n}]>\delta$ ,

then there exists a positive constant $c>0$ such that

(2.10) $\frac{1}{c}<|g’[\phi_{n}](z)|<c$ , $\forall z\in c19$ ,

(2.11) $||g[\phi_{n}]||_{m+1.a}$ ;Sil $c$ .

Let $\phi,$ $\phi_{n}\in C^{m+1.a}(c19, R^{2})\cap Y_{0}$ . If $\{\phi_{n}\}$ converges to $\phi$ in $C^{m+1.\alpha}(c19, R^{2})$ , then
$\{g[\phi_{n}]\}$ converges to $g[\emptyset]$ in $C^{m+1,\beta}(c19, R^{2}),$ $\forall\beta\in]0,$ $\alpha[$ .

PROOF. If $\phi\in C^{m+1,a}(c19, R^{2})$ and $1[\emptyset]>0$, then by Lemmas 2.1 and 2.2,
$\phi(9)$ is a Jordan domain bounded by the simple curve $\phi(e^{\iota c}),$ $r\in[0,2\pi]$ , which
is of class $C^{m+1,a}$ and has nonvanishing tangent vector. Then, with the aid of
Lemma 3.18 of Lanza (1992), we can apply the results of Warschawski (1935)

cited above to deduce that $g[\emptyset]\in C^{7\mathfrak{l}\iota+1.\alpha}(c19, R^{2})$ . Assume now that (2.11) does
not hold. Then for some subsequence $\{\phi_{n}\}$ , we have $\lim_{n}||g[\phi_{n}]||_{m+1.a}=+\infty$ .
NOW let $\beta\in$ ] $0,$ $\alpha$ [. Since $\{\phi_{n}\}$ is bounded and since the imbedding of
$C^{m+1,\alpha}(c19, R^{2})$ into $C^{m+1.\beta}(c19, R^{2})$ is compact, there exists a subsequence
$\{\phi_{n_{k}}\}$ converging to some $\phi$ in the space $C^{m+1.\beta}(c19, R^{2})$ . By the continuity
of $\phi-1[\phi]$ on $C^{m+1.\beta}(c19, R^{2})$ , we have $l[\emptyset]\geqq\delta$ , and accordingly $\phi$ is injective
and $\phi(0)$ belongs to the interior of cl $\phi(9)$ . If we take $h_{1}>0$ to be less than
the distance of $\phi(0)$ from the boundary of $\phi(9)$ , and $h_{2}>2 \sup\{||\phi_{n}||_{m+1.\alpha}\}$ , then
clearly there exists $k_{0}\in N$ such that

(2.12a) $h_{1}<|\phi_{n_{k}}(e^{tt})-\phi(0)|<h_{2}$ , $\forall t\in[0,2\pi]$ ,

for $k\geqq k_{0}$ . Furthermore, it is easy to see that

(2.12b) $l_{*}[\phi_{n_{h}}(e^{it})-\phi(0)]\geqq l_{*}[e^{it}]l[\phi_{n_{k}}]>\delta l_{*}[e$“ $]$ .

Conditions (2.12) and Lanza (1992, Th. 3.22), which is basically a restatement of
Warschawski (1935), implies that $\sup_{k}||g[\phi_{n_{k}}-\phi(0)]||_{m+1,a}<\infty$ . Then clearly
$\sup_{t}||g[\phi_{n_{k}}]||_{m+1.\alpha}<\infty$ , a contradiction. Similarly, we can deduce (2.10) by the
work of Warschawski. We now consider the last statement. By Lemma 2.1,
we can assume that $l[\phi_{n}]>l[\emptyset]/2$ . Then (2.11), the pointwise convergence of
$\{g[\phi_{n}]\}$ to $g[\emptyset]$ , which holds by Rad\’o Theorem (cf. Rad\’o (1923)) and the well-
known compactness of the imbedding of $C^{m+1a}(c19)$ in $C^{m+1,\beta}(c19)$ imply the
validity of the last statement (cf. Lanza (1992, Lemma 2.3 (iv))). $\square$

Next we show that to each sufficiently regular simple closed curve $\zeta$, we
can associate a diffeomorphism $\phi$ of c19 onto $\phi(c19)\subseteqq R^{2}$ , so that $\phi_{1\partial D}$

parametrizes the given curve. We also show that we can locally choose such
correspondence $\zetarightarrow\phi[\zeta]$ to be affine, so from every statement of (high order)
differentiability or analyticity for a nonlinear map say $\mathscr{F}$ depending on $\phi$, we
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can deduce a corresponding result for $\zeta^{\mu}-,$ $\mathscr{F}[\phi[\zeta]]$ . So for example, if we
define $g_{C}$ to be the conformal representation of the domain enclosed by $\zeta$, a
differentiability theorem for $\zeta-g_{C}$ can be deduced by a corresponding Theorem
for $\phi-\succ g[\phi]$ . Indeed, by properly choosing the normalizing conditions, we
have $g[\phi[\zeta]]=g_{\zeta}$ . Now we have the following.

2.13. LEMMA. Let $m\in N\backslash \{0\},$ $\alpha\in]0,1[$ , $\zeta_{0}\in C_{P}^{m.\alpha}([0, L], R^{2}),$ $l_{*}[\zeta_{0}]>0,$ $z_{0}$

$\in \mathscr{I}[\zeta_{0}]$ . Then the following hold.

(i) There exists at least an element $\phi_{0}\in C^{m,a}(c19, R^{2})\cap Y_{0}$ such that

$\phi_{0}(e^{i\theta})=\zeta_{0}(\theta L/2\pi)$ , $\forall\theta\in[0,2\pi]$ ,
(2.14)

$\phi_{0}(0)=z_{0}$ .

(ii) There exists a continuous linear operator $F$ of $C_{P}^{m.\alpha}([0, L], R^{2})$ to
$C^{m\alpha}(c19, R^{2})$ , such that the affine map $\zeta-\phi_{0}+F[\zeta-\zeta_{0}]\equiv\phi[\zeta]$ maps an open
neighborhood of $\zeta_{0}$ in $\{\zeta\in C_{P}^{m,\alpha}([0, L], R^{2}):1_{*}[\zeta]>0\}$ into $\dagger\phi\in C^{m.\alpha}(c19, R^{2})\cap Y_{0}$ :
$\phi(0)=z_{0}\}$ , am satisfies
(2.15) $\phi[\zeta](e^{i\theta})=\zeta(\theta L/2\pi)$ , $\forall\theta\in[0,2\pi]$ .

PROOF. Assume for example that the winding number of $\zeta_{0}$ with respect to
$z_{0}$ is +1. By the Riemann Mapping Theorem and by Warschawski (1935), there
exists a homeomorphism $G_{0}\in C^{m.a}(c19, R^{2})$ of cl 9 onto cl $\mathscr{I}[\zeta_{0}]$ , such that $G_{0}$

is holomorphic in 9, $G_{0}(0)=z_{0}$ , and $\det DG_{0}\neq 0$ in cl $g$). Then clearly, $G_{0}^{(-1)}\circ\zeta_{0}$

$\in C_{P}^{m.a}([0, L], \partial g),$ $|(G_{0}^{(-1)}\circ\zeta_{0}(s))’|\neq 0,$ $\forall s\in[0, L]$ , so that there exists a function
$\psi_{0}\in C^{m.\alpha}([0,2\pi])$ , such that $G_{0}^{(-1)}\circ\zeta_{0}(\theta L/2\pi)=e^{i\psi_{0^{(}}\theta)},$ $\psi_{0}’\neq 0,$ $\psi_{0}(2\pi)=2\pi+\psi_{0}(0)$ ,
$\psi_{0}^{(j)}(0)=\psi_{0}^{(j)}(2\pi)$ , $j=1,$ $\cdots$ , $m$ . NOW let $k\in C^{\infty}([0,1], [0,1])$ be such that
$k([0, (1/3)])=\{0\},$ $k([(2/3), 1])=\{1\},$ $k’>0$ in ] $(1/3),$ $(2/3)$ [. Let $\arg(x)\in[0,2\pi[$

be the argument of $x\in c19\backslash \{0\}$ . Then, by use of polar coordinates, it is not
hard to prove that the map $\Phi_{0}$ defined by

(2.16)

$\Phi_{0}(x_{1}, x_{2})\equiv\frac{x^{2}x^{2}}{1+2}(\cos\{\arg(x_{1}, x_{2})+k((x_{1}^{2}+x_{2}^{2})^{1/2})[\psi_{0}(\arg(x_{1}, x_{2}))-\arg(x_{1}, x_{2})]\}$ ,

$\sin\{\arg(x_{1}, x_{2})+k((x_{1}^{2}+x_{2}^{2})^{1/2})[\psi_{0}(\arg(x_{1}, x_{2}))-\arg(x_{1}, x_{2})]\})$ ,

$\forall(x_{1}, x_{2})\in c1g\backslash \{0\}$ ,
$\Phi_{0}(0,0)\equiv(0,0)$ ,

which coincides with the identity if $\sqrt x_{1}^{2}\overline{+}x_{2}^{2}\leqq 1/3$, is an injection of class $C^{m,\alpha}$

of cl 9 onto cl 9 and satisfies $\det(D\Phi_{0})\neq 0$ in cl 9, and $\Phi_{0}(e^{i\theta})=e^{i\psi_{0}(\theta)}$ . Then
$\phi_{0}\equiv G_{0}\circ\Phi_{0}$ satisfies (i). We now prove (ii). We first observe that the map $A$

defined by $A[\iota v]\equiv w(\arg(\cdot)L/2\pi)$ , is linear and continuous from $C_{P}^{m}\gamma([0, I_{J}], R^{\underline{o}})$

to $C^{m,a}(\partial g, R^{2})$ . We also note that it is well-known that there exists a conti-
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nuous and linear extension operator $E$ of $C^{m.\alpha}(\partial g, R^{2})$ to $C^{m.a}(c19, R^{2})$ such
that $(Ef)_{I\partial 9}=f,$ $\forall f\in C^{m.\alpha}(\partial g, R^{l})$ . By possibly multiplying the components of
$E$ by a $C^{\infty}$ function equal to 1 on $\partial g$ , and to $0$ at $0$, there is no loss of generality
in assuming that $Ef(O, 0)=(0,0)$ . Then we can choose $F\equiv E\circ A$ . Indeed, (2.15)

is clearly satisfied, and we can choose $||\zeta-\zeta_{0}||_{m.\alpha}$ sufficiently small, so that
$||F[\zeta-\zeta_{0}]||_{m.\alpha}$ is small and $l_{*}[\zeta]>0,$ $l[\phi_{0}+F[\zeta-\zeta_{0}]]>0$ . $\square$

We now close the present section by collecting some known properties of
elementary operators in the following Lemma. We note that, throughout the
paper, ‘ analytic’ means ’ real analytic’. For the definition of analytic operator,
we refer the reader to Prodi &Ambrosetti (1973, p. 89).

2.17. LEMMA. Let $r,$ $m\in Nr>0,$ $\alpha\in$ ] $0,1$ ]. Let $F^{-1}$ be the inverse matrix of
(an invertible) $F\in C^{m,\alpha}(c19, M_{r}(R))$ . Then we have the following.

(i) The pointwise matnx product, which reduces to the Pointmse product of
functims when $r=1$ , is bilinear and continuous and henceforth analytic from
$C^{m.\alpha}(c19, M_{r}(R))\cross C^{m.a}(c19, M_{r}(R))$ to $C^{m.\alpha}(c19, M_{r}(R))$ .

(ii) If $m>0,$ rthe map $Fkarrow F^{-1}$ is analytic from { $F\in C^{m.\alpha}(c19, M_{r}(R))$ :
$\det F>0$ on cl $9$ } $to$ itself, and its differential at the element $F_{0}$ is given by the
map $Mrightarrow-F_{0}^{-1}\cdot M\cdot F_{0}^{-1}$ .

PROOF. TO prove (i), it suffices to remember that the pointwise product
is bilinear and continuous in $C^{m,\alpha}(c19)$ (cf. $e.g$ . Kufner, John &Fu\check cik (1977)).

Then (ii) easily follows because to each invertible matrix of $C^{m.\alpha}(c19, M_{r}(R))$

we can associate, in a linear and therefore analytic way, a linear and invertible
element of $X(C^{m.a}(c19, R^{r}),$ $C^{m.\alpha}(c19, R^{r}))$ , and the inversion of the invertible
linear operators is analytic (cf. $e.g$ . Prodi &Ambrosetti (1973, p. 109)). $\square$

We also mention that continuous (multi)linear operators between normed
spaces are analytic (cf. $e.g$ . Prodi &Ambrosetti (1973)). Finally, we remark
that the analyticity of some operator, say $\phiarrow A[\phi]$ of $C^{m.\alpha}(c19)$ to itself,
should not be confused with the analyticity of $9\ni x->A[\phi](x)\in R$, which in
general does not follow from the analyticity of $A$ .

3. The functional decomposition for the conformal representation.

In this section we show that the conformal representation operator $\phi-g[\phi]$ ,

can be written as $g[\phi]=\phi\circ S[\phi]^{(-1)}$ , where $\phirightarrow S[\emptyset]$ is analytic.
AS we can see below, it is convenient to write the Cauchy-Riemann equations

for a $R^{z}$-valued function $f$ in terms of a linear operator acting on the $2\cross 2$

matrix of the partial derivatives of $f$ . Thus we introduce the following Lemma,

whose proof is straightforward,
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3.1. LEMMA. Let $L$ be the linear map of $M_{2}(R)$ into itself defined by

(3.2) $L(A)=(\begin{array}{ll}a_{22} -a_{21}-a_{12} a_{11}\end{array})$ , $\forall A\equiv(\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array})\in M_{2}(R)$ ,

and let I be the identity map in $M_{2}(R)$ . Then the following hold.

(i) $L\circ L=I$ .
(ii) $(I-L)(A)=0$ if and only if $a_{11}=a_{22},$ $a_{12}=-a_{21}$ .
(iii) If $A,$ $B\in M_{2}(R)$ , and $(I-L)(A)=0$ , then $(I-L)(AB)=A(I-L)(B)$ .

3.3. REMARK. Let $\Omega$ be an open subset of $R^{2}$ . If $f\equiv(f_{1}, f_{2})\in C^{1}(\Omega, R^{2})$ ,
(which we identify with $f_{1}+if_{2}$), then both the first row and the first column
of the $2\cross 2$ real matrix

$\frac{1}{2}(I-L)(Df)$

equal ( ${\rm Re} bf,$ ${\rm Im}$ Of), where Of is defined by

(3.4) Of $= \frac{1}{2}(\partial_{x_{1}}f+i\partial_{x_{2}}f)=\frac{1}{2}[(\partial_{x_{1}}f_{1}-\partial_{x_{2}}f_{2})+i(\partial_{x_{1}}f_{2}+\partial_{x_{2}}f_{1})]$ .

Furthermore, we have $(I-L)(Df)=0$ in $\Omega$ , if and only if $f_{1}+if_{2}$ is holomorphic
in $\Omega$ .

We now introduce the operators $\phirightarrow R[\emptyset],$ $\phi-S[\emptyset]$ , which are basic both
to decompose $\phirightarrow g[\emptyset]$ and to prove the differentiability Theorems for $g[\cdot]$ of
section 4.

3.5. THEOREM. Let $m\in N\alpha\in$ ] $0,1$ [. Let $\phi\in C^{m+1.\alpha}(c19, R^{2}),$ $l[\emptyset]>0$, then
the following two statements hold.

(i) There exists a unique element $R\in C^{m+1,\alpha}$ ($c19$ , cl 9) such that

(3.6a) $l[R]>0$ ,

(3.6b) $R_{1}^{2}+R_{2}^{2}=1$ on $\partial g$,

(3.6c) $(I-L)(D(\phi\circ R))=0$ in 9,

(3.6d) $R(O)=0$ ,

(3.6e) $(D(\phi\circ R)(0))_{12}=0$ ,

(3.6f) $(D(\phi\circ R)(0))_{11}>0$ ,

where $(D(\phi\circ R)(0))_{rs}$ denotes the $(r, s)$ -th entry of the matnx $D(\phi\circ R)(O)$ . Such $R$ is
a homeomorphism of cl 9 onto cl 9, and satisfies $R(9)=9,$ $R(\partial g)=\partial g\phi\circ R=g[\phi]$ .
For each $\phi$ , we denote such unique $R$ by $R[\emptyset]$ .
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(ii) There exists a unique element $S\in C^{m+1,\alpha}(c19, R^{z})$ such that

(3.7a) $l[S]>0$ ,

(3.7b) $S_{1}^{2}+S_{2}^{2}=1$ on $ag$ ,

(3.7c) $(I-L)(D\phi\cdot(DS)^{-1})=0$ in 9,

(3.7d) $S(O)=0$ ,

(3.7e) $(DS(0)\cdot(D\phi(0))^{-1})_{12}=0$ ,

(3.7f) $(DS(0)\cdot(D\phi(0))^{-1})_{11}>0$ .
Such unique $S$ is denoted by $S[\emptyset]$ . Furthermore $S[\emptyset]=(R[\phi])^{(-1)}$ .

PROOF. By Lemma 2.2, $\phi$ is a homeomorphism of cl 9 onto cl $\phi(9)$ . ’Fhen
$\phi^{(-1)}$ exists and we can consider $R[\emptyset]\equiv\phi^{(-1)}\circ g[\phi]$ . By the properties of the
inverses of the elements of $C^{m+1,\alpha}(c19, R^{2})\cap Y_{0}$ , and of the composition of
elements of class $C^{m+1.a}$ (cf. Lanza (1991, Lemmas 3.1, 4.2)) and by Theorem 2.8,
it easily follows that $R[\emptyset]$ is a homeomorphism of class $C^{m+1.a}$ of cl 9 onto
cl 9 and that conditions $(3.6d, e, f)$ hold. Since $\det D\phi(x)\neq 0,$ $\forall x\in c19$ , condition
(2.1) implies that $\det D(R[\phi])(x)\neq 0,$ $\forall x\in c19$ . Then by Lemma 2.1, we have
$l[R[\emptyset]]>0$ . Since $R(c1g)=c19$ , Lemma 2.2 implies that $R[\phi](\partial g)=\partial g$ . Since
$g[\emptyset]$ is holomorphic in 9, Remark 3.3 implies that condition (3.6c) is satisfied.
$C$onversely, let $R$ satisfy (3.6). By Lemma 2.2 and (3.6a), $R$ is a homeomor-
phism of cl 9 onto $R(c19)$ , and $R(9)$ is a nonempty bounded open subset of $R^{2}$

such that $\partial R(g)=R(\partial g)$ . Then by (3.6b) we have $\partial R(9)\subseteqq\partial g$ , and thus the
connectivity of 9 and (3.6d) imply that $R(9)\cap 9=9$ . Since $R(c19)\subseteqq c19$ , the
open set $R(9)$ coincides with 9 and $R(c19)=R(9)\cup R(\partial 9)=9\cup\partial 9$ . We also
have $\phi\circ R(9)=\phi(9)$ , and by condition (3.6c) and Remark 3.3, $\phi\circ R$ is holomorphic
and one to one from 9 to $\phi(9)$ . By the argument principle, the complex
derivative of $\phi\circ R$ cannot vanish in 9, and by the Inverse Function Theorem,
the inverse of $\phi\circ R$ is also holomorphic. Then $(3.6d, e, f)$ and the uniqueness of
the Riemann map (cf. (2.3), (2.4)) imply that $R=R[\emptyset]$ . Since $R[\phi]^{(-1)}$ is easily
seen to satisfy the conditions for $S$ (we only note that $(3.7e, f)$ follow from the
combined use of $(3.6c, e, f))$ , the existence of $S$ immediately follows from the
first statement. To prove the uniqueness of $S$ , let $S$ satisfy (3.7). By arguing
as for $R$ , with the only exception that the inclusion $S(9)\subseteqq c19$ is now guaranteed
by the boundedness of $S(9)$ , by the connectivity of $R^{2}\backslash c19$ and by condition
$\partial S(g)\cap(R^{2}\backslash c19)=\emptyset$ , we conclude that $S(9)=9$ , that $S(\partial 9)=\partial 9$ , and that $S$ is
a homeomorphism of cl 9 onto cl 9. It is easily seen that $R=S^{(-1)}$ satisfies
(3.6) (we only note that $(3.6e,$ $f)$ follow from the combined use of $(3.7c,$ $e,$ $f)$ )

$\square$Then $S^{(-1)}=R[\emptyset]$ , and the proof is complete.

TO study the regularity of $\phi->S[\phi]$ , we need the following.
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3.8. LEMMA. Let $\alpha\in$ ] $0,1$ [, $m\in N$ The set

(3.9) $\subset\nu^{m}a\equiv\{v\in C^{m}\alpha(c19, M_{2}(R)):(I+L)(v)=0\}$ ,

is a closed linear subspace of $C^{m,\alpha}(c19, M_{2}(R))$ . For all elements $v\in c\mathcal{V}^{m,a}$ , there
exists $\psi=(\psi_{1}, \psi_{2})\in C^{m+1,\alpha}(c19, R^{2})$ such that $(I-L)(D\psi)=v$ in 9 and $\psi_{1}=0$ on
$\partial g$ . Such $\psi$ is uniquely determined up to an arbitrary purely imaginary constant.

PROOF. It is trivial to verify that $\varphi^{m.a}$ is a closed subspace of
$C^{m}\alpha(c19, M_{2}(R))$ . Since $(I+L)(v)=0$, equation $(I-L)(D\psi)=v$ can be rewritten
as

$\{$

$( \frac{\partial\psi_{1}}{\partial x_{1}}-\frac{\partial\psi_{2}}{\partial_{X_{2}}}=v_{11}$

or as $2\overline{\partial}(\psi_{1}+i\psi_{2})=(v_{11}+iv_{12})$ .
$\frac{\partial\psi_{1}}{\partial x_{2}}+\frac{\partial\psi_{2}}{\partial x_{1}}=v_{12}$

Since $(v_{11}, v_{12})\in C^{m,\alpha}(c19, R^{2})$ , it is well-known (cf. Vekua (1962, p. 56, Th. 1.32))

that there exists $h_{-}h_{1}+ih_{2},$ $(h_{1}, h_{2})\in C^{m+1,\alpha}(c19, R^{2})$ such that 25 $h=(v_{11}+iv_{12})$ .
NOW by Privalov’s Theorem (cf. $e.g$ . Courant &Hilbert (1962, p. 401) together
with Vekua (1962, p. 313) $)$ , there exists $(\gamma_{1}, \gamma_{2})\in C^{m+1.\alpha}(c19, R^{2})$ such that $\partial\gamma=0$

in 9 and $\gamma_{1}=-h_{1}$ on $\partial g$ . Then $\psi\equiv(\psi_{1}, \psi_{2})\equiv(h_{1}+\gamma_{1}, h_{2}+\gamma_{2})$ satisfies the require-
ments of the Lemma. The uniqueness statement is easily verified by standard
properties of harmonic functions. $\square$

3.10. THEOREM. Let $m\in N\alpha\in$ ] $0,1$ [. The (nonlinear) map $\phi->S[\emptyset]$ is
analytic from $C^{m+1.\alpha}(c19, R^{2})\cap Y_{0}$ into itself.

PROOF. The idea is to apply the Implicit Function Theorem for analytic
functions between real Banach spaces (cf. Prodi & Ambrosetti (1973, Th. 11.6))

to the equation

$\Lambda[\emptyset, S]=0$ ,

where $\Lambda$ is the map defined on the open subset

$(\mathscr{F}_{m,a}\cross S_{m.\alpha})^{+}\equiv\{(\emptyset, S)\in \mathscr{F}_{m}\alpha\cross s_{m.a} : (DS(0)\cdot(D\phi(0))^{-1})_{11}>0\}$

of
$\mathscr{F}_{m.a}\cross S_{m,a}\equiv(C^{m+1}\alpha(c19, R^{2})\cap Y_{0})\cross(C^{m+1}\alpha(c19, R^{2})\cap\{S\in Y_{0} : S(O)=0\})$

to $\wp^{m,\alpha}\cross C^{m+1}a(\partial g)xR$, by the following equality

$\Lambda[\phi, S]\equiv((I-L)(D\phi\cdot(DS)^{-1}), S_{1}^{2}+S_{2}^{2}-1, (DS(0)\cdot(D\phi(0))^{-1})_{12})$ .

Indeed, if $(\phi, S)$ belongs to the domain of $\Lambda$ , then by Theorem 3.5, equality
$S[\ovalbox{\tt\small REJECT}]=S$ holds if and only if $\Lambda[\emptyset, S]=0$ . Furtherrnore, $(\emptyset, S[\emptyset])$ belongs to

the domain of $\Lambda$ for all $\phi\in \mathscr{F}_{m}\alpha$ . We now check that the assumptions of the



770 M. LANZA DE CRISTOFORIS

Implicit Function Theorem are fulfilled. The membership of $(I-L)(D\phi\cdot(DS)^{-1})$

in $\subset_{V^{m,a}}$ when $(\emptyset, S)$ is in the domain of $\Lambda$ clearly follows from the identity
$(I+L)\circ(I-L)=0$ . The map $\Lambda$ is analytic because it is the composition of
analytic maps (cf. Lemma 2.17). We still have to prove that for all $\phi_{0}\in \mathscr{F}_{m,\alpha}$ ,
the Fr\’echet derivative $\Lambda_{s}[\phi_{0}, S[\phi_{0}]]$ of $S->\Lambda[\phi_{0}, S]$ at $S_{0}\equiv S[\phi_{0}]$ is a linear
homeomorphism of $c_{W_{m,a}\equiv C^{m+1.a}(c19}R^{2}$) $\cap\{S:S(O)=0\}$ onto $\subset\nu^{m.a}\cross C^{m+1.\alpha}(\partial g)$

$\cross R$ . By the open mapping Theorem, and by the continuity of $\Lambda_{s}[\phi_{0}, S[\phi_{0}]]$

it clearly suffices to show that $\Lambda_{s}[\phi_{0}, S[\phi_{0}]]$ is a bijection. By standard Calculus
in Banach space (cf. Lemma 2.17), $\Lambda_{s}[\phi_{0}, S[\phi_{0}]]$ exists and is defined by

(3.11) $\Lambda_{s}[\phi_{0}, S[\phi_{0}]](W)\equiv(-(I-L)[D\phi_{0}\cdot(DS_{0})^{-1}\cdot DW\cdot(DS_{0})^{-1}]$ ,

$(2S_{01}W_{1}+2S_{02}W_{2})_{I\partial 9},$ $(DW(0)\cdot(D\phi_{0}(0))^{-1})_{12})$ ,

where $S_{0}\equiv(S_{01}, S_{02})\equiv S[\phi_{0}]$ , and $W\equiv(W_{1}, W_{2})\in\wp_{m,\alpha}$ . We want to show that
given (V, $h,$ $c$) $\in^{c}U^{m,a}\cross C^{m+1.a}(\partial g)\cross R$ , there exists a unique $W\in\wp_{m}$

$a$ such that

$\Lambda_{s}[\phi_{0}, S[\phi_{0}]](W)=(V, h, c)$ .
NOW, equation

$-(I-L)[D\phi_{0}\cdot(DS_{0})^{-1}\cdot DW\cdot(DS_{0})^{-1}]=V$ in cl 9,

is equivalent to

(3.12) $-(I-L)[D(\phi_{0}\circ S_{0}^{(-1)})\cdot D(W\circ S_{0}^{(-1)})]=V\circ S_{0}^{(-1)}$ in cl 9.

Since the function $\phi_{0^{\circ}}S_{0}^{(-1)}(\cdot)$ is holomorphic in 9, and thus at least of class $C^{2}$

in 9, a direct computation shows that

(3.13) $(I-L)[D(\phi_{0}\circ S_{0}^{(-1)})\cdot D(W\circ S_{0}^{(-1)})]$

$=(I-L)\{D[D(\phi_{0}\circ S_{0}^{(-1)})\cdot{}^{t}(W\circ S_{0}^{(-1)})]\}$ in 9.

Equation (3.12) holds in c19 for some $W\in^{c}W_{m.\alpha}$ if and only if it holds in 9,

and thus it is equivalent to

(3.14) $-(I-L)\{D[D(\phi_{0}\circ S_{0}^{(-1)})\cdot{}^{t}(W\circ S_{0}^{(-1)})]\}=V\circ S_{0}^{(-1)}$ in 9.

Since $S_{0}(0)=0$ and $DS_{0}^{(-1)}(0)$ is invertible, we have

$DW(0)\cdot(D\phi_{0})^{-1}(0)=D(W\circ S_{0}^{(-1)})(0)\cdot(D(\phi_{0}\circ S_{0}^{\langle-1)})(0))^{-1}$ .
By definition of $S_{0}$ , the map $\phi_{0}\circ S_{0}^{(-1)}$ is holomorphic in 9, and $(\phi_{0}\circ S_{0}^{(-1)})’(0)$ is
a positive real number. Then

$D(W \circ S_{0}^{(-1)})(0)\cdot(D(\phi_{0}\circ S_{0}^{(-1)})(0))^{-1}=\frac{1}{(\phi_{0}\circ S_{0}^{\langle-1)})(0)}D(W\circ S_{0}^{(-1)})(0)$ .

NOW, we set
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$\varphi_{0}=\varphi_{1}+i\varphi_{2}$ , $(\varphi_{1}, \varphi_{2})\equiv\phi_{0}\circ S_{0}^{(-1\rangle}$ ,

$w=w_{1}+iw_{2}$ , $(w_{1}, w_{2})\equiv W\circ S_{0}^{(-1)}$ ,

$v=v_{1}+iv_{2}$ , $(\iota)_{1}v_{2})\equiv$ first row of the matrix $V\circ S_{0}^{(-1)}$ ,

$h_{0}\equiv h\circ S_{0}^{(-1)}$ .

The functions $\varphi_{0},$ $w,$ $v$ can be regarded as complex-valued functions on the unit
disk in $C$ . Then our linearized boundary-value problem takes the following
complexified form

(3.15) $\{$

20 $\{\varphi_{0}’(z)w(z)\}=-v$ $\forall z\in 9$ ,

$2{\rm Re} \frac{w(z)}{z}=h_{0}(z)$ $\forall z\in\partial g$ ,

$w(0)=0$ ,

$(\partial_{x_{2}}{\rm Re} w)(0)=\varphi_{0}’(0)c$ .

Since $(v, h_{0}, c)\in C^{m.a}(c19, C)\cross C^{m+1,\alpha}(\partial g)\cross R,$ $\varphi_{0}’\in C^{m,\alpha}(c19, C),$ $\varphi_{0}’\neq 0$ in cl 9,
then by Lemma 3.8, there exists $\psi\in C^{m+1.\alpha}(c19, C)$ such that

$2\varphi_{0}’\partial\psi=-v$ in 9, ${\rm Re}\psi=0$ on $\partial g$ .
NOW let $\tilde{\psi}\equiv\psi-\psi(0)$ . Then we have

$\{$

$2\varphi_{0}’\overline{\partial}\tilde{\psi}=-v$ in 9,

${\rm Re}\tilde{\psi}=-{\rm Re}\psi(0)$ on $\partial g$ ,

$\tilde{\psi}(0)=0$ ,

and the boundary-value problem for $w$ is clearly equivalent to the following
boundary-value problem for $\tau(z)\equiv w(z)-\tilde{\psi}(z)$ .

$\int_{2{\rm Re}_{\wedge}^{\underline{T(z)}}=}^{\partial\tau=0}h_{0}(z)-2{\rm Re}\frac{\tilde{\varphi^{f}}(z)}{z}$
$in9on\partial g$

(3.16)

1 $\tau(0)=0(\partial_{x_{2}}{\rm Re}\tau)(0)=\varphi_{0}’(0)c-(\partial_{x_{2}}{\rm Re}\tilde{\psi})(0)$

.

Since $h_{0}(^{\sim})-2{\rm Re}(\tilde{\psi}(z)/z)\in C^{m+1.\alpha}(\partial g)$ , by Privalov’s Theorem (cf. $e.g$ . Courant &
Hilbert (1962, p. 401) together with Vekua (1962, p. 313) $)$ there exists a (unique)
$\chi\in C^{m+1,\alpha}(c19, C)$ such that

$\{$

$\overline{\partial}x=0$ in 9,
$2{\rm Re}\chi(z)=h_{0}(z)-2{\rm Re}\tilde{\psi}(z)_{-}$ on $ag$

$z$

$-{\rm Im}\chi(0)=\varphi_{0}’(0)c-(\partial_{x_{2}}{\rm Re}\tilde{\psi})(0)$ .
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By setting $\tau(z)=z\chi(z)$ , it is easily seen that $\tau\in C^{m+1,\alpha}(c19, C)$ solves (3.16) and
consequently, that $w(z)\equiv z\chi(z)+\tilde{\psi}(z)$ solves (3.15). We now prove the uniqueness
for (3.15). If $w^{*},$ $w^{**}\in C^{m+1,\alpha}(c19, C)$ are two solutions of (3.15), then the
map $\sigma\equiv(w^{*}-w^{**})/z$ can be extended to a holomorphic function on 9, and
${\rm Re}\sigma=0$ on $\partial g$ . Then ${\rm Re}\sigma=0$ in cl g), and $\sigma=ik$ for some real constant $k$ .
Since $(\partial_{x_{2}}{\rm Re}(z\sigma))(0)=\partial_{x_{2}}(-kx_{2})=-k$ , we conclude that $\sigma=0$ . $\square$

4. Differentiability Theorems for the conformal representation.

We first introduce the following notation. Let $m\in N\alpha\in$ ] $0,1$ [. We denote
$C^{7n,a,0}(c19)$ the (well-known) subspace of those $f\in C^{m,\alpha}(c19)$ such that

$\lim_{\deltaarrow 0}\delta^{-\alpha}\sup\{|D^{\eta}f(x)-D^{\eta}f(y)| : |x-y|\leqq\delta, x, y\in c19\}=0$ ,

for all $\eta\in N^{n}$ such that $|\eta|=m$ . It can be proved (cf. Lanza (1994, (2.19c),

Lemma 2.20 (iv) $))$ , that $C^{m,a.0}(c19)$ coincides with the closure in $C^{m,\alpha}(c19)$ of
the set $9(R^{2})$ of the polynomials in two real variables. It is immediate to
verify that if $0<\alpha<\beta\leqq 1$ , then $C^{m,\beta}(c19)$ is contained in $C^{m,a.0}(c19)$ . Since
$C^{m.\beta}(c19)$ is compactly imbedded in $C^{m,\alpha}(c19)$ , the imbedding of $C^{m,\beta}(c19)$

into $C^{m}$ . ” $0(c19)$ is also compact. Since $g[\emptyset]=\phi\circ S[\phi]^{(-1)}$ , and $S[\cdot]$ is analytic,
it is clear that the regularity properties of $g[\cdot]$ are entirely determined by
those of the operator which takes a function into its inverse and by that which
takes a pair of functions into the composite of the two. The following two
theorems state the differentiability properties for the composition and for the
inversion operator that we need. We now introduce the differentiability Theorem
for the composition operator. For a proof we refer to Lanza (1994, Lemma 2.20
(iv), (v), Theorems 3.3, 4.19).

4.1. THEOREM. Let $\alpha,$ $\beta\in$ ] $0,1$ [, $m\in N,$ $\gamma_{m}(\alpha, \beta)\equiv min\{\alpha, \beta\}$ if $m>0,$ $\gamma_{0}(\alpha, \beta)$

$\equiv\alpha\beta$ . Then the (composition) map $T$ defined by $T[f, h]=f\circ h$ satisfies the
following.

(i) $T$ is continuous from $C^{m,a}0(c19)\cross C^{m,\beta}$ ($c19$ , cl 9) to $C^{m,\gamma m(\alpha.\beta)}(c19)$ .
(ii) If $r\in N\backslash \{0\}$ , then $T$ as a map of $C^{m+r,a,0}(c19)\cross C^{m,\beta}$ ($c19$ , cl g) to

$C^{m.\gamma_{m}(\alpha,\beta)}(c19)$ is the restnctim of an operator $\hat{T}$ of class $C^{r}$ defined in an open
neighborhood of $C^{m+r.a.0}(c19)\cross C^{m}\beta$ ($c19$ , cl 9) in the space $C^{m+r,\alpha,0}(c19)\cross$

$C^{m,\beta}(c19, R^{2})$ . The differential of ff at each $(f_{0}, h_{0})\in C^{m+r.\alpha,0}(c19)\cross C^{m.\beta}(c19$ ,

cl 9) is delivered by the formula

(4.2) $d \hat{T}[f_{0}, h_{0}](v, w)=v\circ h_{0}+\sum_{\iota- 1}^{2}\frac{\partial f_{0}}{\partial\gamma_{l}}(h_{0})w_{l}$ ,

$\forall(v, w\equiv(w_{1}, w_{2}))\in C^{m+r}a.0(c19)\cross C^{m}\beta(c19, R^{2})$ .
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We now have the following differentiability Theorem for the ‘ inversion’
operator. For a proof, we refer the reader to Lanza (1994, Lemmas 2.20 (iv),

(v), 5.7, Theorems 5.9, 5.13).

4.3. THEOREM. Let $m\in N,$ $\alpha\in$ ] $0,1$ [, $\delta>0$ . Let $J$ be the (nonlinear) map of
$C^{m,\alpha}$ ($c19$ , cl $9$) $\cap(f\in Y_{0}$ : $f(c19)=c19\}$ to $C^{m,a}$ ($c19$ , cl 9) defined by $J[f]\equiv f^{(-1)}$ .
Then the followzng two statements hold.

(i) If $m>0$, then $J$ maps bounded subsets of $C^{m,\alpha}$ ($c19$ , cl $9$) $\cap\{f\in Y_{\delta}$ : $f(c19)$

$=c19\}$ into bounded subsets of $C^{m,\alpha}$ ($c19$ , cl 9), and is continuous from $C^{m,a,0}(c19$ ,

cl $9$) $\cap\{f\in Y_{0} : f(c19)=c19\}$ to $C$” $a,$ $0$($c19$ , cl 9).

(ii) Let $r\in N\backslash \{0\},$ $m\geqq 0$ . Let $J$ be definel from $C^{m+r,a,0}$ ($c19$ , cl $9$) $\cap\{f\in Y_{0}$ :
$f(c19)=c19\}$ to $C$ ” $\alpha 0$($c19$ , cl 9) and let $f_{0}$ be in the domain of J. Then there
exists an oPen neighborhood $\wp_{f_{0}}$ of $f_{0}$ in the normed space $C^{m+r,a,0}(c19, R^{2})$ , and
an operator $J_{f_{0}}$ of class $C^{r}$ from $\varphi_{f_{0}}$ to $C^{m,a,0}(c19, R^{2})$ such that

(4.4a) $\hat{J}_{f_{0}}[f]=J[f]$ , $\forall f\in^{c}W_{f_{0}}\cap\{f\in Y_{0} : f(c1g)=c19\}$ .

The differential of 1 at $f\in^{\mathfrak{c}}W_{f_{0}}\cap\{f\in Y_{0} : f(c1g)=c19\}$ is delivered by the fomula
(4.4b) ${}^{t}[dj_{f_{0}}[f](h)]=-[(Df)^{-1}\circ(f^{(-1)})]\cdot{}^{t}(h\circ f^{(-1)})$ ,

$\forall h\in C^{m+r.a}0(c19, R^{2})$ .

We now show that the following holds.

4.5. $L+MMA$ . Let $m\in N\backslash \{0\}$ , $\alpha\in]0,1$ [. If $\phi\in C^{m.a,0}(c19, R^{2})\cap Y_{0}$ , then
$S[\phi]\in C^{m.a,0}(c19, R^{2})$ .

PROOF. If $\phi\in C^{m}$ ’ ” $0(c19, R^{2})\cap Y_{0}$ , then as observed above, $\phi$ is a limit in
the $||\cdot||_{m,a}$-norm of a sequence $tp_{n}$ } of pairs of functions with polynomial
components. By Theorem 3.5 and by the well-known inclusion of $C^{\infty}(c19)$ in
$C^{k,\alpha}(c19),$ $\forall k\in N$ we have $S[p_{n}]\in C^{\infty}(c19, R^{2})$ . By Theorem 3.10, we have
$S[ \emptyset]=\lim_{n}S[p_{n}]$ in $C^{m,\alpha}(c19, R^{2})$ . Since cl 9 is a manifold with boundary of
class $C^{\infty}$ , all functions of class $C^{m+1}$ in cl 9 are restriction of some element of
$C^{m+1}(R^{2})$ (cf. $e.g$ . Troianiello (1987, p. 13)). Then by Weierstrass Theorem (cf.
$e.g$ . Rohlin&Fuchs (1981, p. 185) $)$ , all elements of $C^{\infty}(c19)$ can be approximated
in the $||\cdot||_{m+1}$ -norm by polynomials. Since $C^{m+1}(c19)$ is compactly imbedded in
$C^{m,\alpha}(c19)$ , we conclude that $S[\emptyset]\in C$ ” $a,$ $0(c19, R^{2})$ . $\square$

By Theorem 3.5 we have

(4.6) $g[\emptyset]=T[\phi, J\circ S[\phi]]$ , $\forall\phi\in C^{m,a}(c19, R^{2})\cap Y_{0}$ ,

when $m>0$ . Furthermore, we note that by Theorem 4.1 (ii), and by the charac-
terization of $C^{m.a,0}(c19)$ as the closure of $g(R^{l})$ in $C^{m.\alpha}(c19)$ mentioned above,



774 M. LANZA DE CRISTOFORIS

we have $T[f, h]\in C^{m,\gamma_{m}(\alpha.\beta),0}(c19)$ if $(f, h)\in C^{m+r,\alpha.0}(c19)\cross C^{m,\beta.0}$ ($c19$ , cl g).

Then Theorems 3.10, 4.1, 4.3, and Lemma 4.5 imply the validity of the following.

4.7. THEOREM. Let $r,$ $m\in N\alpha\in$ ] $0,1$ [. Then the following two statements
hold.

(i) If $r>0$, then $g[\cdot]$ is of class $C^{r}$ from $C^{r.a.0}(c19, R^{2})\cap Y_{0}$ to
C’ $\alpha^{8}.0(c19, R^{2})$ .

(ii) If $m>0,$ $r_{-}O$, then $g[\cdot]$ is of class $C^{r}$ from $C^{m+r.a,0}(c19, R^{2})\cap Y_{0}$ to
$C^{m,a.0}(c19, R^{2})$ .

By Theorem 4.7, we immediately deduce the validity of the following.

4.8. THEOREM. Let $r,$ $m\in N\alpha\in$ ] $0,1$ [, and let I be an open interval of $R$ .
Let $\Phi(\cdot)$ be a map of class $C^{r}$ from I to $C^{m+r.a,0}(c19, R^{2})\cap Y_{0}$ . Then the fol-
lowzng hold.

(i) If $m=0$ and $r>0$, then $g[\Phi(\cdot)]$ is of class $C^{r}$ from I to $C^{0.a^{2},0}(c19, R^{2})$ .
(ii) If $m>0$ and $r\geqq 0$, then $g[\Phi(\cdot)]$ is of class $C^{r}$ from I to $C^{m,a,0}(c19, R^{2})$ .

Then, by the inclusion of $C^{\infty}(c19)$ in $C^{m,a,0}(c19)$ , we have following.

4.9. THEOREM. Let $\alpha\in$ ] $0,1$ [, $m\in N$ and let I be an open subset of R. Let
$\Phi$ be a map of I to $C^{\infty}(c19, R^{2})\cap Y_{0}$ . Then the following hold.

(i) If $\Phi$ is of class $C^{r}$ from I to $(C^{\infty}(c19, R^{2})\cap Y_{0},$ $||\cdot||_{r.\alpha}),$ $\forall r\in N\backslash \{0\}$ ,

then $g[\Phi(\cdot)]$ is of class $C^{\infty}$ from I to $(C^{\infty}(c19, R^{2})\cap Y_{0},$ $||\cdot||_{0.\alpha 2})$ .
(ii) If $m>0$ , and if $\Phi$ is of class $C^{r}$ from I to $(C^{\infty}(c19, R^{2})\cap Y_{0},$ $||\cdot||_{m+r.\alpha})$ ,

$\forall r\in N$ then $g[\Phi(\cdot)]$ is of class $C^{\infty}$ from I to $(C^{\infty}(c19, R^{2})\cap Y_{0},$ $||\cdot||_{rn.a})$ .

4.10. RBMARK. A simple example of $\Phi$ in Theorem 4.8 is given by $\Phi(\epsilon)$

$=\phi_{0}+\epsilon u_{0}$ , where $\phi_{0}\in C^{m+r,a,0}(c19, R^{2})\cap Y_{0}$ , $u_{0}\in C^{m+r}$
, ” $0(c19, R^{2})$ , and $I\equiv$

$\{\epsilon\in R:\phi_{0}+\epsilon u_{0}\in Y_{0}\}$ . More general $\Phi’ s$ can be considered in the form $\Phi(\epsilon)=$

$m(\epsilon, \cdot)$ , where $m$ is a sufficiently regular function of $I\cross c19$ to $R^{2}$ . We do not
pursue in this paper an investigation of the appropriate conditions on $m$ which
ensure the fulfillment of the assumptions on $\Phi$ of Theorem 4.8. Similar con-
siderations can be done for $\Phi$ in Theorem 4.9.

4.11. REMARK. We now briefly illustrate how the differentiability statements
of this section for $\phirightarrow g[\emptyset]$ , can be used to study the dependence of the spectrum
of the Laplacian upon perturbation of the domain. Let $\Omega$ be a Jordan domain
bounded by a $C^{m}$

$a$ curve with nonvanishing tangent vector. As shown in
Lemma 2.13, we can represent $\Omega$ as $\phi(9)$ , for some $\phi\in C^{m.\alpha}(c19, R^{2})$ . As
well-known, $u$ is an eigenfunction with eigenvalue $\lambda$ for the Laplace operator

in $\Omega$ with Dirichlet boundary conditions if $\Delta u-\lambda u=0$ in $\Omega,$ $u=0$ on $\partial\Omega$ . By
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setting $v=u\circ g[\phi],$ $v$ satisfies $\Delta v-\lambda|g’[\emptyset]|^{2}v=0$ in 9, $v=0$ on $\partial g$ . Thus we
have transformed a problem for $u,$

$\lambda$ on the variable domain $\Omega$ , into a problem
for $v,$

$\lambda$ on the Pxed domain 9 and with coefficient $|g’[\phi]|^{2}$ determined by the
conformal representation $g[\emptyset]$ of $\Omega$ . It is then clear that the dependence of
the eigenvalues of $\Delta$ in $\phi(9)$ on the function $\phi$ which represents it, is dictated
by the dependence of $|g’[\emptyset]|^{2}$ , and thus of $g[\emptyset]$ on $\phi$ . We will pursue such
investigation in a forthcoming paper.

5. A necessary condition for the conformal representation
to be differentiable at a function.

According to Theorem 4.7, if $m>0$ the conformal representation $g[\cdot]$ is
differentiable from $C^{m+1}$ , ” $0(c19, R^{2})\cap Y_{0}$ to $C^{m.a}(c19, R^{2})$ . Since by Theorem
2.8, $g[\cdot]$ maps elements of $C^{m,\alpha}(c19, R^{2})\cap Y_{0}$ to elements of $C^{m.a}(c19, R^{2})$ ,
one may very well wonder whether the operator $g[\cdot]$ is differentiable from
$C^{m.\alpha}(c19, R^{2})\cap Y_{0}$ to $C^{m,\alpha}(c19, R^{2})$ , and whether it is really necessary to restrict
the domain of $g[\cdot]$ and to strengthen its topology in order to obtain a differen-
tiability result as Theorem 4.7. The following “ inverse result” somewhat
clarifies the situation. We first introduce the following elementary Lemma,
which is of immediate verification.

5.1. LEMMA. Let $X,$ $\wp,$ $Z$ be normed spaces. Let $\wp$ be imbedded in $\mathcal{Z}$ , and
let $J$ be the identity map of $QJ$ into Z. Let $O$ be an open subset of $X,$ $p\in \mathcal{O},$ $f$ a
map of $O$ to $\wp$ . If $j\circ f$ is differentiable from $O$ to $\mathcal{Z}$ at $p$ , with differential $L$ ,
and if $f$ is differentiable at $p$ , then $df(p)(u)=Lu,$ $\forall u\in X$ .

Then we have the following.

5.2. THEOREM. Let $m\in N\backslash \{0\}$ , $\alpha\in]0,1$ [. If $g[\cdot]$ is differentiable from
$C^{m,\alpha}(c19, R^{2})\cap Y_{0}$ to $C^{m,\alpha}(c19, R^{2})$ at $\phi_{0}$ , then $\phi_{0}\circ R[\phi_{0}]\in C^{m+1,a}(c19, R^{2})$ . (In

other words, the differentiabillity of $g[\cdot]$ at $\phi_{0}$ , implies that the conformal repre-
sentation $g[\phi_{0}]$ of $\phi_{0}(9)$ is of class $C^{m+1.a}.$ )

PROOF. We first show that the differential of $g[\cdot]$ at $\phi_{0}$ must be delivered
by the formula.

(5.3) ${}^{t}[dg[\phi_{0}](u)]=D\phi_{0}(R[\phi_{0}])\cdot{}^{t}[dR[\phi_{0}](u)]+^{t}u(R[\phi_{0}])$ ,

$\forall u\in C^{m.\alpha}(c19, R^{2})$ .
Let $0<\beta<\alpha$ . If $m\geqq 2$ , Theorem 4.7 (ii) implies that $g[\cdot]$ is differentiable from
$C^{m.\beta 0}(c19, R^{2})\cap Y_{0}$ to $C^{m-1.\beta}(c19, R^{2})$ . Then (4.2), (4.4), (4.6) and the chain
rule imply that (5.3) holds $\forall u\in C^{m.\beta,0}(c19, R^{2})$ . Since $C^{m,\alpha}(c19)$ is imbedded
in $C^{m.\beta.0}(c19)$ , and $C^{m,\alpha}(c19)$ is imbedded in $C^{m-1.\beta}(c19)$ , Lemma 5.1 implies
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that equality (5.3) holds when $g[\cdot]$ operates from $C^{m,a}(c19, R^{2})\cap Y_{0}$ to
$C^{m.\alpha}(c19, R^{2})$ . Similarly, if $m=1$ , Theorem 4.7 (i) implies that $g[\cdot]$ is differ-
entiable from C’ $\beta 0(c19, R^{2})\cap Y_{0}$ to $C^{0.\beta^{2}}(c19, R^{2})$ , and Lemma 5.1 implies that
(5.3) holds when $g[\cdot]$ operates from $C^{1.\alpha}(c19, R^{2})\cap Y_{0}$ to $C^{1,\alpha}(c19, R^{2})$ . Since
the matrix $(DR[\phi_{0}])$ is nowhere singular and $u(R[\phi_{0}])\in C^{m,\alpha}(c19, R^{2}),$ $(5.3)$

implies that for $m\geqq 1$

(5.4) $D(\phi_{0}\circ R[\phi_{0}])\cdot\{(DR[\phi_{0}])^{-1}\cdot{}^{t}[dR[\phi_{0}](u)]\}\in C^{m.\alpha}(c19, R^{2})$ ,

$\forall u\in C^{m,\alpha}(c19, R^{2})$ .
Next, we show that

(5.5) $(DR[\phi_{0}])^{-1}\cdot{}^{t}[dR[\phi_{0}](C^{m.\alpha}(c19, R^{2}))]\supseteqq\{^{t}\omega_{\psi} : \psi\in C^{m,\alpha}(c19)\}$ ,

where $\omega_{\psi}(x_{1}, x_{2})\equiv(-x_{2}\psi(x_{1}, x_{2}),$ $x_{1}\psi(x_{1}, x_{2}))$ .
We explain below how (5.5) implies that $\phi_{0}\circ R[\phi_{0}]$ belongs to $C^{m+1,a}(c1gR^{2})$ .
Since $R$ is the composite of $J,$ $S$ the same argument above used to prove (5.3),

based on Lemma 5.1, Theorems 3.10, 4.3, implies that

(5.6) $t\{dR[\phi_{0}](u)\}=-(DR[\phi_{0}])\cdot t\{[dS[\phi_{0}](u)]\circ R[\phi_{0}]\}$ ,

$\forall u\in C^{m,a}(c19, R^{2})$ ,

which in turn implies that (5.5) is equivalent to

(5.7) $dS[\phi_{0}](C^{m,\alpha}(c19, R^{2}))\circ R[\phi_{0}]\supseteqq\{\omega_{\psi} : \psi\in C^{m.\alpha}(c19)\}$ .
AS we have seen in the proof of Theorem 3.10, (5.7) is equivalent to the
following. For all $\psi\in C^{m,\alpha}(c19)$ there exists $u\in C^{m.\alpha}(c19, R^{2})$ such that

(5.8) $\Lambda_{s}[\phi_{0}, S[\phi_{0}]](W)=-\Lambda_{\phi}[\phi_{0}, S[\phi_{0}]](u)$ ,

where $W\equiv\omega_{\psi}\circ R[\phi_{0}]^{(}-1)$ Clearly $W\in W_{m-1,a}$ and

$S[\phi_{0}]\cdot W=[id_{c19}\cdot\omega_{\psi}]\circ S[\phi_{0}]=0$ ,

where $id_{c19}$ denotes the identity map in cl 9. Then, by (3.11) and by standard
calculus, equation (5.8) is equivalent to

(5.9) $(I-L)[D\phi_{0}\cdot(DS[\phi_{0}])^{-1}\cdot DW\cdot(DS[\phi_{0}])^{-1}]=(I-L)[Du\cdot(DS[\phi_{0}])^{-1}]$ in 9,

$\{DW(0)\cdot(D\phi_{0}(0))^{-1}\}_{12}=\{DS[\phi_{0}](0)\cdot(D\phi_{0}(0))^{-1}\cdot(Du(0))\cdot(D\phi_{0}(0))^{-1}\}_{12}$ .

Since $D(\phi_{0}\circ S[\phi_{0}]^{(-1)})(0)$ is a diagonal invertible matrix, (5.9) is easily seen to be
equivalent to

(5.10a) $(I-L)\{D(\phi_{0}\circ S[\phi_{0}]^{(-1)})\cdot D(W\circ S[\phi_{0}]^{(-1)})\}=(I-L)(D(u\circ S[\phi_{0}]^{(-1)}))$ in 9,

(5.10b) $\{D(W\circ S[\phi_{0}]^{(-1)})(0)-[D(\phi_{0}\circ S[\phi_{0}]^{(-1)})(0)]^{-1}\cdot D(u\circ S[\phi_{0}]^{(-1)})(0)\}_{12}=0$ .
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AS in the proof of Theorem 3.10, by setting

$\varphi_{0}\equiv\varphi_{01}+i\varphi_{02}$ , $(\varphi_{01}, \varphi_{02})\equiv\phi_{0}\circ S[\phi_{0}]^{(-1)}$ ,

$W\equiv w_{1}+iw_{2}$ , $(w_{1}, w_{8})\equiv W\circ S[\phi_{0}]^{(-1)}$ ,

$\mu\equiv\mu_{1}+i\mu_{2}$ , $(\mu_{1},$ $\mu_{2}\equiv uS[\phi_{0}]^{(-1)}$ ,

and by exploiting assumption $\varphi_{0}’(0)\in]0,$ $\infty$ [ it is easy to see that (5.10) can be
rewritten as

(5.11) $\{$

$\partial(\varphi_{0}’w)=\partial\mu$ in 9,

$\varphi_{0}’(0)\partial_{x_{2}}{\rm Re} w(O)=\partial_{x_{2}}{\rm Re}\mu(0)$ .

Since $\partial(\varphi_{0}’w)=\varphi_{0}’\overline{\partial}w\in C^{m-1,\alpha}(c19, R^{2})$ , equation $\partial f=\partial(\varphi_{0}’w)$ has at least a solution
$f\in C^{m,\alpha}(c19, R^{2})$ . In fact, we can choose such $f$ uniquely by imposing ${\rm Re} f=0$

on $\partial 9,$ ${\rm Im} f(O)=0$ (cf. Lemma 3.8). We can easily obtain a solution of system
(5.11), by setting $\mu(z)=icz+f(z)$ where $c$ is the unique real number determined
by $\partial_{x_{2}}{\rm Re}[ic(x_{1}+ix_{2})](0)=\varphi_{0}’(0)\partial_{x_{2}}{\rm Re} w(0)-\partial_{x_{2}}{\rm Re} f(0)$ and the proof of (5.7) is
complete. We now show that (5.4) and (5.7) imply that $\phi_{0^{Q}}R[\phi_{0}]\in C^{m+1.a}(c1g, R^{2})$ .
A straightforward computation shows that the $2\cross 1$ real matrix

(5.12) $D(\phi_{0}\circ R[\phi_{0}])\cdot{}^{t}(-x_{2}\psi(x_{1}, x_{2}),$ $x_{1}\psi(x_{1}, x_{2}))$

equals the first column of the matrix

(5.13) $\psi\{D(\phi_{0}\circ R[\phi_{0}])\cdot(\begin{array}{ll}-x_{2} -x_{1}x_{1} -x_{z}\end{array})\}$ .

Since $\phi_{0}\circ R[\phi_{0}](\cdot)$ is holomorphic in 9, the entries of the second column of the
matrix (5.13) are, up to a factor $(-1)$ equal to the entries of the first column of
the same matrix. Then conditions (5.4) and (5.5) together with the arbitrariness
of $\psi\in C$” $a(c1g)$ imPly that

$D(\phi_{0}\circ R[\phi_{0}])\cdot(\begin{array}{ll}-x_{2} -x_{1}x_{1} -x_{2}\end{array})\in C^{m.a}(c19, M_{2}(R))$ .

Since the determinant of the $C^{\infty}$ matrix $(\begin{array}{ll}-x_{2} -x_{1}x_{1} -x_{2}\end{array})$ vanishes only at $(x_{1}, x_{2})=$

$(0,0)$ , and since the jacobian matrix $D(\phi_{0}\circ R[\phi_{0}])$ of the holomorphic function
$\phi_{0}\circ R[\phi_{0}]$ is of class $C^{\infty}$ in a neighborhood of $(0,0)$ , we conclude that $D(\phi_{0}\circ R[\phi_{0}])$

$\in C^{m.\alpha}(c19, M_{2}(R))$ , and that consequently $\phi_{0}\circ R[\phi_{0}]\in C^{m+1.\alpha}(c19, R^{2})$ . $\square$

Since we have seen that the differentiability of $g[\cdot]$ at $\phi_{0}$ implies that
$\phi_{0}\circ R[\phi_{0}]$ belongs to $C^{m+1,a}(c19, R^{2})$ , we now confine our attention to a vector
subspace of $C^{m.a}(c19, R^{2})$ of elements $\phi$ such that $\phi\circ R[\phi]\in C^{m+1.a}(c19, R^{2})$ .
Since by Theorem 2.8, $\phi\in C^{m+1,\alpha}(c19, R^{2})$ and $l[\emptyset]>0$ imply that $g[\emptyset]\in$
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$C^{m+1,a}(c1g, R^{2})$ , we now consider $C^{m+1,\alpha}(c19, R^{2})$ and prove the following,
which clarifies why the spaces $C^{m,a.0}$ have been introduced.

5.14. PROPOSITION. Let $\alpha\in$ ] $0,1$ [, $m\in N\backslash \{0\}$ . Let $g[\cdot]$ be differentiable at
$\phi_{0}\in C^{m+1,\alpha}(c19, R^{g})\cap Y_{0}$ as a map of $C^{m+1.\alpha}(c19, R^{2})\cap Y_{0}$ to $C^{m.a}(c19, R^{2})$ .
Then $\phi_{0}\circ R[\phi_{0}]\in C^{\tau n+1.a.0}(c19, R^{2})\cap Y_{0}$ .

PROOF. Let $u\in C^{m+1.a}(c19, R^{2})$ and $u\neq 0$ (i.e. $u$ not identically zero). Then
the assumption of differentiability of $g[\cdot]$ at $\phi_{0}$ implies that

$\lim_{\epsilonarrow 0}||\frac{g[\phi_{0}+\epsilon u]-g[\phi_{0}]}{\epsilon||u||_{\tau n+1.a}}dg[\phi_{0}](\frac{u}{||u||_{m+1.a}})||_{m.a}=0$ .

By Theorem 2.8 and by assumption $\phi_{0}\in C^{m+1.\alpha}(c19, R^{2})\cap Y_{0}$ and $u\in$

$C^{m+1.a}(c19, R^{2})$ , we have

$\frac{g[\phi_{0}+\epsilon u]-.g[\phi_{0}]}{\epsilon||u||_{m+1a}}\in C^{m+1.a}(c1gR^{2})$ ,

when $\epsilon$ is small and nonzero. Then $dg[\phi_{0}](u/||u||_{m+1.\alpha})$ can be approximated in
the $||\cdot||_{m,a}$-norm by elements of class $C^{2n+1.\alpha}(c19, R^{2})$ , which can be approximated
in the $||\cdot||_{m.\alpha}$-norm by pairs of polynomials by virtue of the imbedding of
$C^{m+1.a}(c19, R^{8})$ in $C^{m.\alpha.0}(c19, R^{g})$ . Then we have $dg[\phi_{0}](u)\in C^{m.\alpha.0}(c19, R^{l})$ .
By formula (5.3), we have

$\iota[dg[\phi_{0}](u)]=D\phi_{0}(R[\phi_{0}])\cdot{}^{t}[dR[\phi_{0}](u)]+^{t}u(R[\phi_{0}])$ ,

$\forall u\in C^{m+1.\alpha}(c19, R^{2})$ .
AS in the proof of Theorem 5.2, the membership of $D(\phi_{0}\circ R[\phi_{0}])\in C^{m.a,0}(c19$,
$M_{2}(R))$ can be deduced from the following

(5.15) $(DR[\phi_{0}])^{-1.t}\{dR[\phi_{0}](C^{m+1,a}(c19, R^{2}))\}\supseteqq\{^{t}\omega_{\psi} : \psi\in C^{m+1.a}(c19, R^{2})\}$ .
Indeed $\phi_{0^{\circ}}R[\phi_{0}]$ is of class $C^{\infty}$ in a neighborhood of $(0,0)$ and $C^{m+1.a}(c19, R^{2})$

is imbedded in $C^{m.a.0}(c19, R^{2})$ . As in the proof of Theorem 5.2, the proof of
(5.15) is easily reduced to the following. For all $\psi\in C^{m+1.a}(c19)$ , there exists
$\mu\in C^{m+1.a}(c19, C)$ such that

$\{$

$\partial\mu=\partial(\varphi_{Q}’w)$ in 9,

$\partial_{x_{2}}{\rm Re}\mu(0)=\varphi_{0}’(0)\partial_{x_{2}}{\rm Re} w(O)$ ,

where

$\varphi_{0}=\varphi_{01}+i\varphi_{02}$ , $(\varphi_{01}, \varphi_{02})\equiv\phi_{0^{\circ}}S[\phi_{0}]^{(-1)}$

$w=w_{1}+iw_{2}$ , $(w_{1}, w_{2})\equiv(-x_{2}\psi(x_{1}, x_{\epsilon}),$ $x_{1}\psi(x_{1}, x_{g}))$ .
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The existence of such $\mu\in C^{m+1.\alpha}(c19, C)$ follows as in the proof of Theorem 5.2
because $\overline{\partial}(\varphi_{0}’w)=\varphi_{0}’\partial w\in C^{m,a}(c19, C)$ . $\square$
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