

Central European Journal of Chemistry

QSPR modelling of normal boiling points and octanol/water partition coefficient for acyclic and cyclic hydrocarbons using SMILES-based optimal descriptors

Research Article

A.A. Toropov^{*1,2}, A.P. Toropova^{1,2}, E. Benfenati²

¹Institute of Geology and Geophysics, 100041 Tashkent, Uzbekistan

²Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, Italy

Received 26 November 2009; Accepted 8 May 2010

Abstract: Predictive quantitative structure – property relationships (QSPR) have been established for normal boiling points and octanol/water partition coefficient for acyclic and cyclic hydrocarbons using optimal descriptors calculated with simplified molecular input line entry system (SMILES). The probabilistic criteria for a rational definition of the domain of applicability of these models are discussed.

Keywords: QSPR • SMILES • Normal boiling point • Octanol/water partition coefficient • Applicability domain

© Versita Sp. z o.o.

1.Introduction

Quantitative structure – property/activity relationships (QSPR/QSAR) [1-3] are aimed to answer: what factors operate during a physical, chemical, and/or biochemical phenomenon? Representation of the molecular structure for these searches is based on molecular descriptors which as a rule, are presented as atoms (vertices) and their bonds (edges) in molecular graphs [4]. A conceptual alternative to molecular graphs is SMILES [5-7]. Fragment methods, in general, and SMILES-based optimal descriptors, in particular, are clear enough to interpret: each molecular fragment shows a defined influence of the phenomenon.

There are several reasons to search for SMILESbased QSPR/QSAR models. The first, comparison of models based on the molecular graph and those based on SMILES can be useful from a heuristic point of view. The second, the number of databases available on the Internet gradually increases. The third, SMILES notation can be built for substances which cannot be represented by molecular graphs, *e.g.* for mixtures or for inorganic substances.

The present study evaluated the ability of the SMILES-based fragment method for QSPR modelling of normal boiling points and octanol/water partition coefficient.

2. Experimental Procedure

2.1. Method

Data on normal boiling points (BP) and octanol/water partition coefficient (logP) for 90 cyclic and acyclic hydrocarbons were taken from [8]. Canonical SMILES [9] were used. The training set (n=45) and test set (n=45) were split randomly.

Descriptors of the correlation weights (DCW) were calculated by

^{*} E-mail: aatoropov@yahoo.com

$DCW = \Pi CW(s_{L}) \Pi CW(ss_{L}) \Pi CW(sss_{L})$ (1)

where \mathbf{s}_{μ} \mathbf{ss}_{μ} and \mathbf{sss}_{μ} are SMILES attributes (SA_{μ}) of one, two or three elements, respectively. The element of the SMILES can be a symbol of the SMILES notation (for instance, 'c', 'C', 'n', 'N', =, etc.), or two symbols of the SMILES encoding an image (for instance, 'Cl', 'Br', 'N+', 'O-', etc.); CW(x) is the correlation weight for the SMILES attribute x. The CWs are calculated by the Monte Carlo optimization procedure [6,7] that provides values of the CWs which used in Eq. 1 give a maximum for the correlation coefficient between the descriptor and property of interest. The notation of the SMILES elements was used according to the ASCII codes of the symbols. Each 'AB' composition can be represented in only one way (thus only 'AB' and not 'BA', and similarly only 'ABC' not 'CBA').

There are 66 SMILES attributes for the 90 substances under consideration. Some of the attributes are rare or absent in the training set. The threshold LimN described in [7] can be used for rational selection of the attributes: if a SMILES attribute occurs in the training set less than LimN times its correlation weight (CW) is defined as 1. Eq. 1 shows that CW=1 can not change the DCW value.

The prevalence of SA, in the training and test sets is important. The relative prevalence (RP) of SA, in the two sets can be calculated as

$$\Delta P(SA_k) = \frac{NS_{TR}(SA_k)}{NS_{TR}} - \frac{NS_{TS}(SA_k)}{NS_{TS}}$$
(2)

where $NS_{TR}(SA_k)$ and $NS_{TS}(SA_k)$ are the numbers of

Table 1. Probabilistic characteristics of the active SMILES attributes (SA,) with LimN=5 and their correlation weights for modelling the normal boliling points CW(SA_k)_{BP} and the octanol/water partition coefficient CW(SA_k)_{looP}

SA _k	ID	No.	CW(SA _k)	CW(SA _k)	N _{TR} (SA _k)	N _{TS} (SA _k)	NS _{TR} (SA _k)	NS _{TS} (SA _k)	dP(SA _k)
			BP	logP					
(1	1	0.9993545	1.0009505	86	100	28	33	-0.11111
1	2	2	1.0104724	0.9983162	60	60	30	30	0.0
2	3	3	1.0067214	1.0010740	28	30	14	15	-0.02222
3	4	4	0.9957615	0.9965525	6	6	3	3	0.0
C	6	5	1.0041399	1.0059730	186	182	41	40	0.02222
С	8	6	1.0043571	1.0049424	256	262	30	30	0.0
2 1	12	7	1.0040442	0.9988117	5	5	5	5	0.0
C(14	8	1.0036837	1.0001987	106	134	25	29	-0.08889
C1	15	9	1.0079944	1.0025893	5	10	5	10	-0.11111
CC	18	10	1.0024780	1.0021379	84	65	26	25	0.02222
с (20	11	1.0026192	0.9970252	54	56	18	18	0.0
c1	21	12	1.0006219	0.9962378	90	91	30	30	0.0
c2	22	13	1.0039974	1.0019023	41	44	13	15	-0.04444
c3	23	14	1.0054033	1.0035743	10	10	3	3	0.0
cC	24	15	1.0058187	1.0063872	25	25	25	25	0.0
c	25	16	0.9987972	1.0016258	144	146	30	30	0.0
(C_(26	17	0.9996478	1.0006016	31	44	19	25	-0.13333
1c_(29	18	0.9989729	0.9989317	8	7	8	7	0.02222
2c1	31	19	1.0008488	1.0026416	5	4	5	4	0.02222
C(35	20	0.9995191	1.0019752	6	4	3	2	0.02222
CC	36	21	0.9992593	0.9993537	31	46	12	15	-0.06667
CC_(39	22	1.0019924	1.0008759	41	39	14	17	-0.06667
CCC	41	23	1.0040603	1.0038414	40	24	17	10	0.15556
Cc_1	45	24	1.0045198	1.0021810	21	23	21	23	-0.04444
c(C	48	25	0.9990960	1.0036468	37	38	14	14	0.0
c(c	51	26	0.9978614	1.0079281	6	6	5	5	0.0
c1_c	52	27	1.0013400	1.0035067	30	31	30	30	0.0
c1_2	54	28	1.0030506	1.0018722	5	5	5	5	0.0
C1_C	55	29	1.0007957	1.0052779	5	10	5	10	-0.11111
c2_c	57	30	0.9987250	0.9946108	19	19	13	14	-0.02222
cCC	61	31	0.9990522	1.0035252	8	8	8	8	0.0
cc_2	62	32	1.0012829	0.9998930	28	31	13	15	-0.04444
cc_(63	33	1.0005657	1.0013465	36	31	17	18	-0.02222
cc_3	64	34	1.0060274	0.9990971	8	7	3	3	0.0
cc_1	65	35	1.0019073	0.9998137	52	51	30	30	0.0
cc	66	36	1.0029710	0.9990810	82	86	26	27	-0.02222

 $ID = number of SA_{\nu}$ in the whole list of 514 attributes

No. = number in list of active attributes

 $N_{TR}(SA_{k}) =$ the total number of SA_{k} in the training set

 $N_{TS}^{(n)}(SA_{k}) = the total number of SA_{k} in the test set$

 $N_{TR}^{S'}(\mathcal{A}_{\mu}) = number of SM ILES in the training set containing SA_k NS_{TS}(SA_{\mu}) = number of SMILES in the test set containing SA_k$

dP(SA) = relative prevalence of SA, in the training and test sets.

SAk	CW(SA _k)	
	1.0041399 1.0041399 1.0041399 1.0041399 1.0024780 1.0024780 1.0024780 1.0024780 1.0024780	
	1.0040603	

Table 2. Example of the DCW calculation for modelling normal boilingpointsSMILES="CCCC" No.1;CAS=106-97-8DCW= 1.0325737

Figure 1. LimN versus the average relative prevalence

Figure 2. Square of correlation coefficient versus the LimN for the training (circles) and test (triangles) sets for modelling normal boiling points.

SMILES containing the SA_k in the training and test sets, respectively and NS_{TR} and NS_{TS} are the total numbers of SMILES in the two sets. The ideal situation is $\Delta P(SA_k) = 0$, but $\Delta P(SA_k) > 0$ (RP of SA_k in the training set is higher than in the test set) and $\Delta P(SA_k) < 0$ (RP of the SA_k is higher in the test set) are also possible.

The average RP over all active (not blocked) $\mathsf{SA}_{\!_k}$ is calculated as follows

$$\overline{\Delta P} = \frac{\sum \Delta P(SA_k)}{N_{act}}$$
(3)

Figure 3. Square of correlation coefficient versus the LimN for the training (circles) and test (triangles) sets for modelling the octanol/water partition coefficient

where N_{act} is the total number of active SA_k . This parameter is a characteristic of the split into the training and test set, and the ideal situation is

$$\Delta \mathbf{P} = \mathbf{0} \tag{4}$$

However, this situation hardly is met.

The realistic estimation of the predictability for QSPR/QSAR models becomes a central problem for this field of theoretical chemistry (*i.e.*, for the QSPR/QSAR analyses). Criterions which are calculated with Eqs. 2 and 3 are aimed to involve probabilistic principles for solution of the above-mentioned problem (estimation of the predictability).

3. Results and Discussion

If LimN=5, the curve for the plot of the limN versus ΔP has a minimum (Fig. 1). The statistical quality of the models for normal boiling points and octanol/ water partition coefficient is best when LimN=5. Table 1 shows the probabilistic characteristics of the SMILES attributes which are active when LimN=5. Table 2 gives an example of the DCW calculation (for normal boiling points, limN=5).

The following models are obtained using SMILESbased optimal descriptors:

n=45, r²=0.997, q²=0.9969, s=4.39 (°C), F=15511 (training set)

1045

			Normal boiling points. °C			Octanol/water partition		
CAS	Name Training set	SMILES	DCW	Ехр	Calc	DCW	Ехр	Calc
106-97-8	Butane	0000	1.0325737	-0.5	13.821	1.0386231	2.890	2,904
109-66-0	Pentane	00000	1.0436381	36.0	39.931	1.0510827	3.390	3.419
110-54-3	n-Hexane	CCCCCC	1.0548211	68.7	66.322	1.0636918	3.900	3.939
96-14-0	3-Methylpentane	CC(CC)CC	1.0534905	63.2	63.182	1.0481662	3.600	3.298
142-82-5	Heptane	000000	1.0661239	98.5	92.995	1.0764521	4.660	4.466
589-34-4	3-Methyl-hexane	CC(CC)CCC	1.0647790	91.0	89.821	1.0607402	3.710	3.817
565-59-3	Pentane, 2,3-dimethyl-	CC(C)C(C)CC	1.0625395	89.7	84.536	1.0537095	3.630	3.527
111-65-9	n-Octane	CCCCCCCC	1.0775478	125.6	119.954	1.0893655	5.180	4.999
589-81-1	3-Methyl-heptane		1.0761885	118.0	116.746	1.0734652	4.200	4.343
592-13-2	2,5-Dimethylnexane		1.0764439	109.1	117.349	1.0666424	4.120	4.061
564-94-1	2,3-Dimethylnexarie		1.0739230	110.0	110.004	1.0003000	4.120	4.049
1067-02-3	3-Ethyl-3-methylpentane		1.0745500	118.2	112.034	1.0075709	4.090	4.099
3221-61-2	2-Methyloctane	00(00)(00)00	1.0874146	143.2	143.239	1.0892629	4.690	4.995
2216-34-4	4-Methyloctane	CC(CCC)CCCC	1.0877203	142.4	143.960	1.0863428	4.690	4.874
71-43-2	Benzene	c1ccccc1	1.0597388	80.0	77.927	1.0220093	2.130	2.219
100-41-4	Ethylbenzene	CCc1ccccc1	1.0812561	136.1	128.705	1.0490460	3.150	3.335
108-38-3	1,3-Dimethylbenzene	Cc1cccc(C)c1	1.0850204	139.1	137.589	1.0472894	3.200	3.262
103-65-1	n-Propylbenzene		1.0928421	159.2	156.047	1.0616307	3.690	3.854
108-67-8	1.3.5-Trimethylbenzene		1.0990902	164.7	162 457	1.0610796	3 420	3.831
1074-17-5	1-Methyl-2-propylbenzene	CCCc1ccccc1C	1.1070193	185.0	189.503	1.0763883	4.500	4.463
1074-55-1	1-Methyl-4-propylbenzene	CCCc1ccc(C)cc1	1.1034563	183.4	181.095	1.0756097	4.600	4.431
141-93-5	1,3-Diethylbenzene	CCc1cccc(CC)c1	1.1031794	181.1	180.442	1.0693550	4.570	4.173
99-87-6	1-Methyl-4-isopropylbenzene		1.1029258	177.1	179.843	1.0657560	4.100	4.024
074-41-9	1 Ethyl 2 E dimethylbenzene		1.1009700	100.4	109.307	1.0736465	4.470	4.338
934-74-7 527-53-7	1.3.4.5-Tetramethylbenzene	Cc1cc(C)c(C)c(C)c1	1.1076092	198.0	190.895	1.0709299	4.550	4.238
538-68-1	1-Phenylpentane	CCCCCc1ccccc1	1.1163880	205.4	211.612	1.0872547	4.900	4.912
2050-24-0	1-Methyl-3,5-diethylbenzene	CCc1cc(C)cc(CC)c1	1.1138940	205.0	205.727	1.0834357	4.620	4.754
2049-95-8	2-Phenyl-2-methyl butane	CCC(C)(C)c1ccccc1	1.1093225	192.4	194.939	1.0718821	4.390	4.277
120-12-7	Anthracene	c1ccc2cc3cccc3cc2c1	1.1707520	339.9	339.905	1.0746416	4.450	4.391
91-57-6	2-Methyl-naphthalene	Cc1ccc2cccc2c1	1.1275063	241.1	237.850	1.0615886	3.860	3.852
2765-18-6	1-Propyl-naphthalene		1.1437996	274.5	276.300	1.0847127	4.700	4.807
575-41-7 571-61-0			1.1302175	263.0	258.407	1.0734330	4.420	4.341
575-37-1	1.7-Dimethyl-naphthalene	Cc1cccc2ccc(C)cc12	1.1406417	263.0	268.848	1.0758595	4.440	4.441
581-40-8	2,3-Dimethyl-naphthalene	Cc1cc2cccc2cc1C	1.1414168	268.0	270.677	1.0741823	4.400	4.372
581-42-0	2,6-Dimethyl-naphthalene	Cc1ccc2cc(C)ccc2c1	1.1384572	262.0	263.693	1.0755671	4.310	4.429
767-60-2	3-Methyl-1H-indene	C\C2=C\Cc1ccccc12	1.1110874	198.0	199.103	1.0586191	3.800	3.730
643-58-3	2-Methyl-biphenyl		1.1369436	255.5	260.121	1.0711996	4.300	4.249
644-08-6 613-33-2	4-Methyl-1, I -Diphenyl	Cc1ccc(cc1)c2ccccc2	1.1389509	207.5 295.0	204.858	1.0785178	4.630	4.551
612-94-2	2-Phenylnaphthalene	c1cc(cc2ccccc12)c3c	1.1713540	345.5	341.325	1.0882965	4.930	4.955
92-06-8	1,3-Diphenylbenzene	c1cc(ccc1)c2cccc(c2)c3	1.1822998	363.0	367.156	1.1029683	5.520	5.560
	Test set	00000						
75-28-5	2-Methylpropane	CC(C)C	1 0331090	-11 7	15 084	1 0292550	2 760	2 5 1 8
78-78-4	2-Methylbutane	CC(C)CC	1.0420287	27.8	36.133	1.0385252	2.720	2.900
107-83-5	2-Methylpentane	222(2)22	1.0531944	60.2	62,483	1.0509837	3.210	3.415
79-29-8	2.3-Dimethylbutane	CC(C)C(C)C	1.0534443	57.9	63.073	1.0443037	3.420	3.139
591-76-4	2-Methylhexane	CC(C)CCCC	1.0644798	90.0	89.115	1.0635915	3.710	3.935
108-08-7	2,4-Dimethylpentane	CC(C)CC(C)C	1.0650317	80.4	90.418	1.0539983	3.630	3.539
464-06-2	2,2,3-Trimethylbutane	CC(C)C(C)(C)C	1.0628399	80.8	85.245	1.0577574	3.590	3.694
592-27-8	2-Methylheptane	CC(C)CCCCC	1.0758861	117.6	116.033	1.0763507	4.200	4.462
589-53-7			1.0761885	117.7	116.746	1.0734652	4.200	4.343
565-75-3	2.3.4-Trimethylpentane	CC(C)C(C)C(C)C	1.0741798	113.5	112.006	1.0595725	4.050	3.769
540-84-1	2,2,4-Trimethylpentane		1.0745306	99.2	112.834	1.0675769	4.090	4.099
111-84-2	Nonane	CCCCCCCCC	1.0890941	150.8	147.202	1.1024338	4.760	5.538
2210-33-3	2 6-Dimethylbentane		1.0677203	135.2	143.960	1.0603420	4.690	4.674
108-88-3	Methylbenzene	Cc1ccccc1	1.0751555	110.6	114.308	1.0369372	2.730	2.835
95-47-6	1,2-Dimethylbenzene	Cc1ccccc1C	1.0891032	144.5	147.223	1.0513516	3.120	3.430
106-42-3	1,4-Dimethylbenzene		1.0855978	138.3	138.951	1.0505910	3.150	3.398
95-63-6	1.2.4-Trimethylbenzene		1.0903220	169.3	168,586	1.0598924	3.630 3.630	3.782 3.811
104-51-8	n-Butylbenzene	CCCCc1ccccc1	1.1045523	183.3	183.681	1.0743663	4.380	4.380
1074-43-7	1-Methyl-3-n-propylbenzene	CCCc1cccc(C)c1	1.1028694	182.0	179.710	1.0722294	4.670	4.292
135-01-3	1,2-Dietnylbenzene		1.1025427	184.0	1/8.939	1.0722693	3.720	4.293 4 310
933-98-2	1,2-Dimethyl-3-ethylbenzene	CCc1cccc(C)c1C	1.1053326	194.0	185.523	1.0742475	4.340	4.375
934-80-5	1,2-Dimethyl-4-ethylbenzene	Cc1ccc(CC)cc1C	1.1117770	189.5	200.731	1.0750837	4.500	4.409
488-23-3	1,2,3,4-Tetramethylbenzene		1.1118101	205.0	200.809	1.0719522	4.000	4.280
95-93-2 2049-94-7			1.1124017	195.0	202.205	1.0733315	4.000	4.420

Table 3. Experimental and values calculated with Eqs. 5 and 6 for normal boiling points and octanol/water partition coefficients (logP)

Continued Table	3. Experimental and	values calculated with Eqs. 5 an	d 6 for normal boiling points and	l octanol/water partition coefficients (logP)
Continuen			01	

			Normal boiling points, °C			Octanol/water partition coefficient		
CAS	Name Test set	SMILES	DCW	Ехр	Calc	DCW	Ехр	Calc
700-12-9 91-20-3 85-01-8 939-27-5 573-98-8 571-58-4 575-43-9 569-41-5 582-16-1 496-11-7 92-52-4 643-93-6 605-39-0 7383-90-6 605-02-7 92-94-4	Pentamethylbenzene Naphthalene Phenanthrene 2-Ethylnaphthalene 1,2-dimethylnaphthalene 1,4-Dimethylnaphthalene 1,6-Dimethylnaphthalene 1,8-Dimethylnaphthalene Indan Biphenyl 3-Methylbiphenyl 2,2'-Dimethylbiphenyl 3,4'-Dimethylbiphenyl 1-Phenylnaphthalene 1,4-Diphenylbenzene	Cc1cc(C)c(C)c(C)c1C c1ccc2ccccc12 c2cc3cc1ccccc123cc2 Cc1ccc2ccccc2c1 Cc1c2cccccccc12 Cc1ccc(C)c2cccc12 Cc1ccc(C)ccc12 Cc1ccc2cc(C)cc12 Cc1ccc2cc(C)c12 Cc1ccc2cc(C)cc2 cc1ccc2c(C)cc2 Cc1ccc2c(C)cc2 Cc1cccc(c1)c2cccc2 Cc1cccc(c1)c2cccc2 Cc1cccc(c1)c2cccc2 Cc1cccc(c1)c2cccc2 Cc1cccc(c1)c2cccc2 Cc1cccc(c1)c2ccc(C)c2 c1cc(cc2)c2cc(C)c2 c1cc(cc2)c2cc(C)c2 c1cc(cc2)c2cc(c)c2 c1cc(cc2)c2ccc(c2)c3 cccc3 cccc3	1.1246711 1.1134715 1.1648177 1.1339040 1.1421333 1.1419188 1.1362175 1.1400350 1.1377430 1.1172435 1.1226195 1.1226195 1.1283451 1.1516930 1.1494012 1.1704197 1.1809775	232.0 217.9 340.0 258.0 268.0 264.0 265.0 265.0 177.9 256.1 272.7 256.0 289.0 334.0 376.0	231.159 204.730 325.900 252.948 272.368 271.862 258.407 267.416 262.007 213.631 226.318 263.428 294.928 289.519 339.120 364.035	1.0821528 1.0465904 1.0759686 1.0739853 1.0763457 1.0735403 1.0724785 1.0734052 1.0659955 1.0629913 1.0751284 1.0860903 1.0751284 1.0826553 1.1053511	4.560 3.300 4.460 4.310 4.310 4.260 4.260 4.260 4.260 3.180 4.260 4.280 4.300 4.850 4.850 4.850 4.850	4.701 3.233 4.446 4.364 4.364 4.346 4.341 4.302 4.340 4.034 3.910 4.411 4.864 4.864 4.864 5.659

Figure 5. Octanol/water partition coefficient: experimental versus calculated with Eq. 6 values

n=45, r²=0.982, r²_{pred}=0.9805, R_m^2 =0.9465, s=11.8, F=2394 (test set)

n=45, r²=0.943, q²=0.9381, s=0.153, F=710 (training set)

n=45, r²=0.855, r²_{pred}=0.8350, R_m^2 =0.8339, s=0.269, F=253 (test set)

Fig. 4 shows the normal boiling points model and Fig. 5 shows the model for octanol/water partition coefficient. There are three outliers (#1, #2, and #3) indicated in Table 4 and Figs. 4 and 5.

We have expected that SMILES attributes [6,7] can give a good predictive model for the normal boiling points and octanol/water partition coefficient. One can see that statistical characteristics of the models for normal boiling points and octanol/water partition coefficient are quite good.

In order to additionally check the predictability of the models which are calculated with Eqs. 5 and 6 we have

References

- P.R. Duchowicz, E.A. Castro, F.M. Fernandez, M.P. Gonzalez, Chem. Phys. Lett. 412, 376 (2005)
- [2] S.C. Basak, D. Mills, B.D. Gute, R. Natarajan, Top. Heterocycl. Chem. 3, 39 (2006)
- [3] Q-N. Hu, Y.-Z. Liang, K.-T. Fang, J. Data Sci. 1, 361 (2003)
- [4] B.D. Gute, S.C. Basak, J. Mol. Graphics Model 20, 95 (2001)
- [5] D. Vidal, M. Thormann, M. Pons, J. Chem. Inf. Model. 45, 386 (2005)
- [6] A.A. Toropov, A.P. Toropova, D.V. Mukhamedzhanova,I. Gutman, Indian J. Chem. Sec. A, 44, 1545 (2005)
- [7] A.A. Toropov, E. Benfenati, Comput. Biol. Chem. 31, 57 (2007)

calculated the R_m^2 metric [10,11]. According to [9,10] the R_m^2 should be greater than 0.5. Thus the abovementioned criterion confirms predictability of these models.

The number of databases containing SMILES gradually increases so SMILES-based descriptors become convenient for QSPR/QSAR analyses. However, it is preferable to base this modelling on SMILES generated by the same software [9,12].

Applications of the LimN and the ΔP need validation with other properties (activity) and other classes of compounds. If the utility of the plot of LimN versus ΔP as an indicator of the quality of the split into training and test sets is confirmed for other properties and other substances, these plots will be useful for the rational definition of the domain applicability.

4. Conclusions

SMILES-based optimal descriptors are reasonably good predictors of the normal boiling points (°C) and octanol/water partition coefficient (logP) of acyclic and cyclic hydrocarbons. The average relative prevalence of these attributes is a tool for rational definition of the LimN before constructing these models.

Acknowledgements

The authors thank the Marie Curie Fellowship for financial support (contract ID 39036, CHEMPREDICT).

- [8] D.R. Lide, CRC Handbook of Chemistry and Physics, 76th edition (CRC Press, New York, 1995/1996)
- [9] ACD/ChemSketch Freeware, version 11.00 (Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2007) www.acdlabs.com
- [10] K. Roy, P.P. Roy, Eur. J. Med. Chem. 44, 2913 (2009)
- [11] P.P. Roy, S. Paul, I. Mitra, K. Roy, Molecules 14, 1660 (2009)
- [12] MDL QSAR version 2.2. (MDL Information Systems Inc., San Leandro, CA, 2003)