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This paper describes a new hybrid regression method that combines the best features of

conventional numerical regression techniques with the genetic programming symbolic regression

technique. The key idea is to employ an evolutionary computing methodology to search for a model

of the system/process being modelled and to employ parameter estimation to obtain constants

using least squares. The new technique, termed Evolutionary Polynomial Regression (EPR)

overcomes shortcomings in the GP process, such as computational performance; number of

evolutionary parameters to tune and complexity of the symbolic models. Similarly, it alleviates

issues arising from numerical regression, including difficulties in using physical insight and over-

fitting problems. This paper demonstrates that EPR is good, both in interpolating data and in

scientific knowledge discovery. As an illustration, EPR is used to identify polynomial formulæ with

progressively increasing levels of noise, to interpolate the Colebrook-White formula for a pipe

resistance coefficient and to discover a formula for a resistance coefficient from experimental data.
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INTRODUCTION

The process of building mathematical models of complex

systems based on observed data is usually called system

identification. Colour coding of mathematical modelling is

often used to classify models according to the level of prior

information required, i.e. white-box models, black-box

models and grey-box models (Ljung 1999; Giustolisi 2004):

† A white-box model is a system where all necessary

information is available, i.e. the model is based on first

principles (e.g. physical laws), known variables and

known parameters. Because the variables and par-

ameters have physical meaning, they also explain the

underlying relationships of the system.

† A black-box model is a system for which there is no prior

information available. These are data-driven or

regressive models, for which the functional form of

relationships between variables and the numerical

parameters in those functions are unknown and need

to be estimated.

† Grey-box models are conceptual models whose math-

ematical structure can be derived through conceptualis-

ation of physical phenomena or through simplification of

differential equations describing the phenomena under

consideration. These models usually need parameter

estimation by means of input/output data analysis,

though the range of parameter values is normally known.

In addition to being founded on first principles, white-box

models have the advantage of describing the underlying

relationships of the process being modelled. However, the

construction of white-box models can be difficult because

the underlying mechanisms may not always be wholly

understood, or because experimental results obtained in the

laboratory environment do not correspond well to the

prototype environment. Owing to these problems,

approaches based on data-driven techniques are garnering

considerable interest.
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Although there exist other general-purpose data-driven

techniques, artificial neural networks (ANN) and genetic

programming (GP) are probably the most well known. Based

on our present understanding of the brain and its associated

nervous systems, ANN use highly simplified models com-

posed of many processing elements (‘neurons’) connected by

links of variable weights (parameters) to form black-box

representations of systems (Haykin 1999). These models have

the ability to deal with a great deal of information and to learn

complex model functions from examples, i.e. by ‘training’

using sets of input and output data. The greatest advantage of

ANN over other modelling techniques is their capability to

model complex, non-linear processes without having to

assume the form of the relationship between input and

output variables. Learning in ANN involves adjusting the

parameters (weights) of interconnections in a highly para-

metrised system. However, ANN require that the structure of

a neural network is identified a priori (e.g. model inputs,

transfer functions, number of hidden layers, etc). Further-

more, parameter estimation and over-fitting problems rep-

resent the principal disadvantages of model construction by

ANN, as reported in Giustolisi & Laucelli (2005). Another

difficulty with the use of ANNs is that they do not allow

knowledge derived from known physical laws to be incor-

porated into the learning process.

Genetic programming (GP) is another modelling

approach that has recently increased in popularity. It is an

evolutionary computing method that generates a ‘transpar-

ent’ and structured representation of the system being

studied. The most frequently used GP method is so-called

symbolic regression, which was proposed by Koza (1992).

This technique creates mathematical expressions to fit a set

of data points using the evolutionary process of genetic

programming. Like all evolutionary computing techniques,

symbolic regression manipulates populations of solutions

(in this case mathematical expressions) using operations

analogous to the evolutionary processes that operate in

nature. The genetic programming procedure mimics natural

selection as the ‘fitness’ of the solutions in the population

improves through successive generations. The term ‘fitness’,

in this instance, refers to a measure of how closely

expressions fit the data points. The nature of GP allows

global exploration of expressions and allows the user to

resolve further information on the system behaviour, i.e.

gives an insight into the relationship between input and

output data. However, the genetic-programming method of

performing symbolic regression has some limitations.

Principally, these are that GP is not very powerful in finding

constants and, more importantly, that it tends to produce

functions that grow in length over time (Davidson et al.

1999, 2000). Some notable attempts to mitigate those

disadvantages have been reported by Zhang & Muhlenbein

(1995), Soule & Foster (1999) and De Jong & Pollack (2003).

From a modelling point of view, a physical system

having an output value y dependent on a set of inputs X and

parameters u, can be mathematically formalized as

y ¼ FðX;uÞ ð1Þ

where F is a function in the space dimensionally equal to the

number of inputs. Data-driven techniques, i.e. ANNs and GP,

aim at reconstructing F from input/output data. Therefore,

GP generates formulæ/models for F, coded in tree structures

of variable size, performing a global search of the expression

for F as symbolic relationships among X while parameters

usually do not play a central role. On the other hand, ANNs

derive their modelling properties from their ability to map F,

maintaining at a lower level the knowledge of the functional

relationships among X. Indeed, the ANN goal is to map F,

rather than to find a feasible structure for F.

SYMBOLIC REGRESSION

Davidson et al. (1999, 2000) introduced a new regression

method for creating polynomial models based on both

numerical and symbolic regression. They used GP to find

the form of polynomial expressions and least squares

optimisation to find the values for the constants in the

expressions. The incorporation of least squares optimisation

within symbolic regression was made possible by a rule-

based component that algebraically transforms expressions

into equivalent forms that are suitable for least squares

optimisation. The paper describes an improved regression

methodology for creating polynomial models.

The method presented in this paper builds on this idea

to combine numerical and symbolic regression, with the

elimination of the cumbersome, and often slow, rule-based

component. The method also borrows from the idea of

stepwise regression (Draper & Smith 1998), using
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instead an evolutionary process based on genetic algorithms

(Goldberg 1989) rather than following a hill-climbing

method of stepwise regression.

Rule-based symbolic regression

One of the major advantages of GP, or more precisely

symbolic regression, over numerical regression methods is

that the user does not have to specify the form of the

regression model in advance. Genetic programming finds

the form of expressions as well as parameter values.

However, if the optimal form of the model is known,

obtaining parameter values by numerical methods is more

efficient and ensures optimal values. Davidson et al. (1999,

2000) introduced a hybrid that combines the two

approaches: using GP to evolve the form of the expressions

while simultaneously optimising parameter values through

numerical methods. Their methodology limits the range of

operators normally used in symbolic regression to a subset

consisting of addition, multiplication and non-negative

integer powers. The expressions that result from applying

the limited set of operators are in the form of polynomials.

A rule-based program consisting of 56 unique rules

algebraically transforms all resulting expressions through

the evolutionary process of GP to the form of the right hand

side of Equation (2):

y ¼
Xm
j¼1

aj�zj þ ao ð2Þ

where:

y is the least squares estimate of the target value;

aj is an adjustable parameter for the jth term;

a0 is an optional bias;

m is the number of terms/parameters in the

expression;

zj is a transformed variable which is a function of

the independent predictor variables, inputs,

x1x2…xk, evaluated at the jth data point;

k is the number of independent predictor

variables (inputs).

In addition to transforming all expressions to this form, the

rule-based program eliminates all non-functional code

produced by evolutionary operations, such as terms formed

by the product of zero and other coefficients. The rule base

simplifies expressions by evaluating terms and coefficients

that consist entirely of constants and replaces them with a

single constant where possible. Once the rule base has

transformed the expressions to the form in Equation (2) the

program computes the optimal value for constants in the

expression (adjustable parameters aj) by the method of least

squares. Davidson et al. (1999) provide a description of the

rule based program and methods for optimising adjustable

constants. However, they also describe the problem of

‘combinatorial explosion’, i.e. when a small polynomial

expression requires an extremely lengthy transformation

process. In an example, they show that a program applied

rules over 3000 times to a simple expression.

Rule-based symbolic regression by Davidson et al.

(1999) keeps the traditional genetic programming represen-

tation, i.e. uses a tree structure to represent expressions/

computer programs. Unlike genetic algorithms which

manipulate fixed-length ‘chromosomes’, the length or

depth of the GP trees can vary as programs evolve. The

structure of the tree is reflective of the hierarchical structure

of the expressions/computer programs they represent.

EVOLUTIONARY POLYNOMIAL REGRESSION

General framework

As well as Rule-Based Symbolic Regression (R-BSR),

Evolutionary Polynomial Regression (EPR) is a two-stage

technique for constructing symbolic models: (i) structure

identification, and (ii) parameter estimation. The main

difference between the two approaches is in exploring the

model structure space. While R-BSR uses traditional parse

tree GP and rules to simplify expressions, EPR employs a

simple Genetic Algorithm (GA) to search in the model

structure space. The prior discussion on modelling tech-

niques highlighted the fact that the underlying function F of

the physical phenomena can be reconstructed assuming

general mathematical mapping structures and estimating

constants, i.e. through numerical regression by ANNs as in

Giustolisi (2000), or by searching for symbolic structures

more than estimating parameters. EPR searches for sym-

bolic structures in the first stage by GA and estimates

constant values by solving a Least Squares (LS) linear
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problem in the second stage, thus assuming a biunique

relationship between a structure and its parameters.

Over-fitting problems due to the flexibility of EPR may

occur as in any other modelling strategy. Despite this, it is to

be emphasised that parameter estimation is not the fore-

most problem causing over-fitting as in ANNs (Giustolisi &

Laucelli 2005), because of the low number of parameters as

will be shown. Accordingly, EPR will perform parameter

estimation minimising the sum of squared errors (SSE),

without employing a technique to avoid over-fitting,

attending only to the numerical problems. On the other

hand, an EPR model can fit training data very well because

enough flexibility exists for describing a particular noise

realisation by means of selecting an ad hoc structure.

Consequently, this paper will discuss some techniques to

avoid over-fitting for EPR: penalising the number of inputs

involved in structures (model complexity); controlling the

constant values whose term may describe noise when

the related constant is close to zero; and controlling the

variance of EPR terms with respect to noise variance in data

(estimated by model residuals).

Model structure search

For the development of the new methodology, it is useful to

transform Equation (2) into the following vector form:

YN£1ðu;ZÞ ¼ IN£1 Z
j
N£m

� �
£ a0 a1 … am

h iT

¼ ZN£d £ uT
d£1 ð3Þ

where

YN£1(u,Z) is the least squares estimate vector of N target

values;

u1£d is the vector of d ¼ m þ 1 parameters aj,

j ¼ 1:m, and a0;

ZN£d is a matrix formed by I, unitary column vector

for bias a0, and m vectors of variables Z j that for

a fixed j are a product of the independent

predictor vectors of variables/inputs,

X ¼ kX1X2…Xkl.

The key idea of the EPR is to start from Equation (3)

and search first for the best form of the function, i.e.

a combination of vectors of independent variables (inputs),

XS¼1:k, and then to perform least squares regression to find

the adjustable parameters u for each combination of inputs.

To avoid the pitfalls of hill-climbing search methodologies,

a global search algorithm is implemented for both the best

set of input combinations and related exponents simul-

taneously, according to the user-defined cost function.

The matrix of inputs X is given as

X ¼

x11 x12 x13 … x1k

x21 x22 x23 … x2k

x31 x32 x33 … x3k

… … … … …

xN1 xN2 xN3 … xNk

2
6666666664

3
7777777775

¼ X1 X2 X3 … Xk

h i
ð4Þ

where the kth column of X represents the candidate

variables for the jth term of Equation (3). Therefore, the

jth term of Equation (3) could be written as

Z
j
N£1¼

j
ðX1Þ

ESðj;1Þ�ðX2Þ
ESðj;2Þ�ðX3Þ

ESðj;3Þ�…�ðXkÞ
ESðj;kÞ

k

;j¼1…m
ð5Þ

where, Z j is the jth column vector whose elements are

products of candidate-independent inputs and ES is a

matrix of exponents. Therefore, the problem is to find the

matrix ESk£m of exponents whose elements can assume

values within user-defined bounds.

For example, if a vector of candidate exponents for

columns (inputs) in X is chosen to be EX ¼ [21, 0, 1] and

m ¼ 4 (the number of terms, bias excluded) and k ¼ 3 (the

number of candidate-independent variables/inputs), the

polynomial regression problem is to find a matrix of

exponents ES4£3. An example of such a matrix is given here:

ESm£k¼4£3 ¼

21 0 1

0 1 21

1 0 0

1 1 0

2
6666664

3
7777775 ð6Þ

When this matrix is substituted into Equation (5) the

following set of expressions is obtained:
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Z1 ¼ ðX1Þ
21�ðX2Þ

0�ðX3Þ
1 ¼ X21

1 �X3

Z2 ¼ ðX1Þ
0�ðX2Þ

1�ðX3Þ
21 ¼ X2�X21

3

Z3 ¼ ðX1Þ
1�ðX2Þ

0�ðX3Þ
0 ¼ X1

Z4 ¼ ðX1Þ
1�ðX2Þ

1�ðX3Þ
0 ¼ X1�X2

ð7Þ

Therefore, based on the matrix given in Equation (6), the

expression of Equation (3) is given as

Y ¼ a0 þ a1�Z1 þ a2�Z2 þ a3�Z3 þ a4�Z4

¼ a0 þ a1�X3=X1 þ a2�X2=X3 þ a3�X1 þ a4�X1X2 ð8Þ

The adjustable parameters aj could now be computed by

means of the linear Least Squares (LS) method using the

minimisation of the sum of squared errors (SSE) as the cost

function. Note that each row of ES determines the

exponents of the candidate variables of the jth term in

Equations (2) and (3). Each of the exponents in ES

corresponds to a value from the user-defined vector EX.

This allows the transformation of the symbolic regression

problem into one of finding the best ES, i.e. the best

structure of the EPR equation, e.g. in Equation (8).

The global search for the best form of Equation (8) is

performed by means of a standard GA (Holland 1975;

Goldberg 1989). The GA is an algorithmic model of

Darwinian evolution that begins with the creation of a set

of solutions referred to as a population of individuals. The

parameters being optimised are coded using ‘chromosomes’,

i.e. a set of character strings that are analogous to the

chromosomes found in DNA. Standard GAs use a binary

alphabet (characters may be 0’s or 1’s) to form chromo-

somes. Instead, integer GA coding is used here to determine

the location of the candidate exponents of EX in the matrix

ES. For example the positions in EX ¼ [21, 0, 1] corre-

spond to the following string for the matrix of Equation (6)

and the expression of Equation (8):

½1 2 3; 2 3 1; 3 2 2; 3 2 2� ð9Þ

Additionally, it is clear that the presence of at least one zero

in EX ensures the ability to exclude some of the inputs and/

or input combinations from the regression equation.

The following GA parameters were also used in the

current EPR implementation:

1. Multiple-point crossover (Spears & De Jong 1991);

2. Single point mutation;

3. Ranking selection based on the normalised geometric

distribution;

4. Termination criterion as a function of the length of the

chromosome, the number of polynomial terms j and the

number of inputs k in the matrix X.

Least squares solution by singular value decomposition

Computing aj in Equation (8) is an inverse problem that

corresponds to solving an over-determined linear system as

a LS problem. This problem is traditionally solved by

Gaussian elimination. However, an evolutionary search

procedure may generate candidate solutions (e.g. a combi-

nation of exponents of X) that correspond to an ill-

conditioned inverse problem. This often means that the

rectangular matrix ZN£d:

Z ¼ IN£1 Z1
N£1 Z2

N£1 Z3
N£1 … Zm

N£1

h i
N£ðmþ1Þ¼N£d

ð10Þ

may not be of full rank (if a solution contains a column of

zeros) or the columns Z j are linearly dependent. This could

pose serious problems to Gaussian elimination and a more

robust solver is therefore needed. Parameter estimation of aj

(or u) in EPR is performed by means of the Singular Value

Decomposition (SVD) of the matrix Z. This approach

makes the process of finding the solution to the LS problem

more robust, although in general the SVD is slower than

Gaussian elimination (Golub & Van Loan 1993). Finally,

the Moore–Penrose pseudo-inverse (Golub & Van Loan

1993) or the Tikhonov (1963) regularisation method can be

used to mitigate high condition number of Z. In this paper

the LS solution is given by,

u ¼ PinvðZÞ £ ðYÞ ð11Þ

where Pinv is the pseudo-inverse matrix.

Model selection

In regression-based modelling the ‘fitness’ usually refers to a

measure of how closely the regression expression fits the data

points. However, it is widely accepted that the best modelling

approach is also the simplest that fits the purpose of the
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application. This principle, often called Occam’s razor, is

attributed to the medieval philosopher William of Occam (or

Ockham, 1300–1349). The so-called principle of parsimony

states that for a set of otherwise equivalent models of a given

phenomenon one should choose the simplest one to explain a

set of data. There is also a need to include a measure of trade-

off between the model complexity (i.e. addition of new

parameters) and the quality of fit in the fitness in regression-

based models.

For a given set of observations or data, a regression-based

technique needs to search among a large if not an infinite

number of possible models to explain those data. By varying

the exponents for the columns of matrix X and by searching

for the best-fit set of parameters u, the EPR methodology

searches among all those models. It does, however, require an

objective function that will ensure the best fit, without the

introduction of unnecessary complexity. Unnecessary com-

plexity is here defined as the addition of new terms or

combinations of inputs that fit some noise in the raw data

rather than the underlying phenomenon. Therefore, the key

objective here is to find a systematic means to avoid the

problem of over-fitting. There are three possible approaches

to this problem: (1) to penalise the complexity of the

expression by minimising the number of terms; (2) to control

the variance of aj constants (the variance of estimates) with

respect to the their values; and (3) to control the variance of

aj·Zj terms with respect to the variance of residuals.

Complexity penalisation

In order to choose a model of optimal complexity

corresponding to the smallest prediction (generalisation)

error for future data, one needs to be able to compare two

models with different levels of complexity and model fit.

The sum of squared errors (SSE) is normally used to guide

the search toward the best-fit model:

SSE ¼

PN
i¼1 ðyiðu;ZÞ2 yiÞ

2

N
ð12Þ

where yi are the target values in the training data set and

yi(u,Z) are the model predictions computed by using the

polynomial expression obtained by EPR. In order to allow

the trade-off between the quality of fit (SSE) and the model

complexity (number of input combinations), the

following penalisation of complexity (PCS) fitness function

is proposed:

PCS ¼
SSE

ðNd 2 px þ 1Þa
ð13Þ

where Nd ¼ k·m is the maximum number of inputs that can

be considered, px is the actual number of inputs selected by

the GA and a is an adjustable exponent, which controls the

degree of pressure to control complexity. This form of the

fitness function will be better understood if the derivative of

the fitness function with respect to px is derived:

›

›px

SSE

ðNd 2 px þ 1Þa

� �
¼

›SSE

›px
þ

a�SSE

Nd 2 px þ 1
ð14Þ

The fitness decreases with respect to px if the derivative in

Equation (14) is negative (see Figure 1). Therefore the

following inequality should hold:

a�SSE

Nd 2 px þ 1
# 2

›SSE

›px
¼ 2VARpxðSSEÞ ð15Þ

In other words, the addition of another combination of

inputs X, needs not only to be justified on the basis of

decreasing SSE, but also needs to take into account the

terms (Nd-px) and a·SSE. The concept is shown in Figure 1.

The bold line is the derivative of SSE with respect to px(P),

while the curve is the natural SSE variation due to the

increase in the number of input parameters. Equation (15)

requires a value of the SSE derivative at P greater than or

equal to the term on the left side of the inequality. Equation

px (P) 

P

px

SSE  

SSE (px) 

Figure 1 | SSE variation vs. px.
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(15) illustrates that, when the actual number of inputs px

approaches the maximum Nd, the left term of the inequality

increases and, consequently, a high absolute variation of

SSE is required (VAR(SSE) is always negative). This fact

results in penalisation of complex structures by way of

controlling the total number of inputs in the formula.

Variance of aj

EPR maycontrol thepolynomial termcontributiontovariance

of Y expressed through their parameters during GA search. It

may be argued that low constant value with respect to variance

of estimates corresponds to terms that begin to describe noise

in preference to the underlying function of phenomena.

Therefore, the distribution of estimated constant values is

used to eliminate those parameters whose value is not

sufficiently larger than zero. Hence, we can write

PN ¼ lo�ðPinvðZÞ £ PinvðZT ÞÞ ð16Þ

where Pinv is the Moore–Penrose pseudo-inverse (Golub &

Van Loan 1993) matrix (here used to be consistent with the

SVD solution) of Z, l0 is the noise variance estimated by

Equation(12)andPN is its covariancematrix. It is assumed that

the parameter variation follows the Gaussian probability

density function N(aj0, PN). Hence, the following expression

is used:

jajoj2 g�
ffiffiffiffi
Pjj

q
ø jajj2 g�

ffiffiffiffi
Pjj

q
# 0 ) aj ¼ 0 ð17Þ

where
ffiffiffiffi
Pjj

p
is the standard deviation of the estimated constant

aj from the diagonal elements of the covariance matrix and g is

the standard score (from the Standard Normal Table).

Equation (17) states that if, for example, the modulus of the

estimated constant value is lower than 2.578
ffiffiffiffi
Pjj

p
, which

corresponds to a confidence level of 99%, the constant value is

assumed to be equal to zero.

Variance of aj·Zj

EPR may control the polynomial term contribution to the

variance of Y explained through evaluating aj·Zj with

respect to variance of the noise in the raw data during GA

search. Indeed, a level of noise may exist under which

the variance of the terms aj·Zj will describe noise, causing

over-fitting related problems. This level of noise is not

known a priori and, therefore, the residual vector E could be

used to estimate noise. In this manner, we can compare the

standard deviation of E with the standard deviation of terms

aj·Zj, obtaining

jStDðaj�ZjÞj , b�jStDðEÞj ) aj ¼ 0 ð18Þ

where b is a user-selected tuning parameter. In point of fact,

it is not easy to choose b, but it is possible to consider b ¼ 1

as giving a pressure to EPR for formulae having variance of

each term greater than the variance of the residuals.

EXTENSION OF EVOLUTIONARY POLYNOMIAL

REGRESSION

EPR allows pseudo-polynomial expressions as in Equations

(2) and (3), allowing structures such as

Y¼a0þ
Xm
j¼1

aj�ðX1Þ
ESðj;1Þ�…�ðXkÞ

ESðj;kÞ�

f
�
ðX1Þ

ESðj;kþ1Þ
�
�…�f

�
ðXkÞ

ESðj;2kÞ
�

case0

Y¼a0þ
Xm
j¼1

aj�f
�
ðX1Þ

ESðj;1Þ�…�ðXkÞ
ESðj;kÞ

�
case1

Y¼a0þ
Xm
j¼1

aj�ðX1Þ
ESðj;1Þ�…�ðXkÞ

ESðj;kÞ�

f
�
ðX1Þ

ESðj;kþ1Þ�…�ðXkÞ
ESðj;2kÞ

�
case2

Y¼g a0þ
Xm
j¼1

aj�ðX1Þ
ESðj;1Þ�…�ðXkÞ

ESðj;kÞ

0
@

1
A case3

ð19Þ

Thus, EPR’s model space may be extended by the structures

in Equations (19), which remain based on polynomial

regression as in Equation (3). User-specified functions f

reported in Equations (19) may be natural logarithmic,

exponential, tangent hyperbolic, etc. Note that the last

structure in Equations (19) requires the assumption of an

invertible function g, because of the subsequent stage of

parameter estimation. The term ‘pseudo-polynomial

expressions’ is used here because the parameters of any of

the expressions in (19) can be computed as for a linear

problem and/or for true polynomial expressions. Moreover,

Equations (19) are transformed into the form of Equation

(3) during evolutionary search. Finally, the inclusion of

exponential and logarithmic functions in the general
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expression of Equations (19) allows EPR to explore a large

space of formulae where the analyst’s understanding of the

physical process warrants their inclusion. However, if such

functions are not naturally describing the phenomenon

being modelled EPR search would find exponent values for

such inputs to be equal to zero.

TESTING THE ABILITY OF EPR TO RETAIN

MATHEMATICAL STRUCTURE OF PHENOMENA

EPR was tested by generating some artificial outputs Yi as

Y ¼ a0 þ a1�Z1 þ a2�Z2 þ a3�Z3

¼ 10 þ 1�X1=X2 þ 1�X2=X3 þ 1�X3=X1 ð20Þ

Yi ¼ 10 þ 1�X1=X2 þ 1�X2=X3 þ 1�X3=X1 þ Nð0;siÞ ð21Þ

where X1, X2 and X3, are three random variables (uniformly

distributed random numbers in the range [0,1]), which play

the role of inputs; and N(0,si) are four sequences of normally

distributed random numbers having zero mean and standard

deviation si equal to 5%, 10%, 20%, 30% and 35% of the

standard deviation of Y. Table 1 reports some statistical

values forYandZi. Therefore, from Equations (20) and (21) it

is possible to show ei ¼ Nð0;siÞ ¼ Yi 2 Y for i ¼ 1, 2, 3, 4, 5.

Figure 2 shows the output variable values Y (without noise)

and error term ei, while Table 2 gives some error statistics.

The EPR approach was used to find the formula in

Equation (21) starting from inputs (X1, X2, X3) and output

(six Yi) data. The aim was to test the ability of EPR to get

both the structure and constant values of Equation (21)

with a progressively increasing level of noise N(0,si)

introduced. The vector EX of candidate exponents was

fixed to [0, 22, 21, 1, 2] and the PCS objective function

(Equation (13)) was used. With respect to constants aj, EPR

will find one model for each number of constants given,

thus the user has to select the number of constants and

whether to include the bias term. For example, if the user

selects 3, 4 and 5 constants, the EPR algorithm will

sequentially search for three models not exceeding the

prescribed maximum number of terms. However, shorter

models are likely to be found, as shown in Table 4. The table

gives the results of the tests performed with the following

requirements: 3 models with 3, 4 and 5 constants (plus the

bias term) for output Yi¼0:4; 5 models with 3, 4, 5, 6, and 7

constants (plus the bias term) for output Yi¼4; and 11

models with 3–13 constants (plus the bias term) for output

Yi¼5. Table 3 reports parameters for EPR evidencing the fact

that EPR was forced to search in a larger model space

(candidate structures through exponents and number of

terms) than that of Equation (20).

The general conclusion that can be drawn from the

results in Table 4 is that the agreement between the formulæ

found by EPR and that of Equation (20) is excellent with

respect to both the structure and parameter values.

For example, for all 3 values for constants aj the expression

of Equation (20) is accurately reproduced in the first row of

Table 4. Rows 2 and 3 give the resulting expressions for the

variance of e equal to 2.6% and 15.9% of a2Z2 variance,

respectively. Despite the levels of noise introduced and the

fact that the term a2Z2 is very sensitive to it (see Table 2),

Table 1 | Some statistics of output Y and terms Z i

Y Z1 5 X1/X2 Z2 5 X2/X3 Z3 5 X3/X1

Maximum 16.205 30.229 11.623 61.177

Minimum 13.030 0.026 0.024 0.080

Variance 50.972 20.299 4.132 39.382

Mean 16.205 2.379 1.612 2.214

var(Y) var(Z1)/var(Y) var(Z2)/ var(Y) var(Z3)/ var(Y)

50.972 0.398 0.081 0.773
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the EPR algorithm identified expressions very similar to that

of Equation (20). Even in the cases of the ratio var(e3)/

var(a2Z2) equal to 55.6% (Yi¼3) and of the ratio var(e4)/

var(a2Z2) equal to 98.4% (Yi¼4), EPR identified the correct

form of the equation and that of the term a2Z2 (for m ¼ 6

and m = 7 terms, respectively). In the final case, for the ratio

var(e5)/var(a2Z2) equal to 146.1% (Yi¼5), the term a2Z2 was

correctly identified for m ¼ 13 (the last row).

Furthermore, referring to Table 4, it can be seen that for

increasing variance of ei EPR requires more than three

terms to find Equation (20). This behaviour is expressed in

the choice of parameters for the PCS criterion (a ¼ 1) that

influences model selection in EPR. Indeed, for example in
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Figure 2 | Outputs of Equation (20) and errors of Equation (21).

Table 2 | Some statistics of errors

e1 e2 e3 e4 e5

Maximum 0.629 2.106 4.573 4.570 5.491

Minimum 20.799 22.163 23.651 26.089 25.521

Variance 0.108 0.659 2.296 4.067 6.037

Mean 20.053 0.005 20.148 20.170 -0.437

var(ei)/var(a1Z1) 0.005 0.032 0.113 0.200 0.297

var(ei)/var(a2Z2) 0.026 0.159 0.556 0.984 1.461

var(ei)/var(a3Z3) 0.003 0.017 0.058 0.103 0.153
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the case of e3, assuming m ¼ 3 the formula in Table 4 is the

best fitting with respect to PCS in Equation (13) because

the true formula has Nd-px þ 1 ¼ 9 2 6 þ 1 ¼ 4, while

the EPR formula has Nd-px þ 1 ¼ 9 2 5 þ 1 ¼ 5, thus

being better for the PCS criterion. However, Nd becomes

greater, increasing the number of terms m, for example

Nd ¼ 12 for m ¼ 4. Thus the true formula is less penalised

by the PCS criterion because Nd-px þ 1 ¼ 12 2 6 þ 1 ¼ 7

increases. This self-tuning effect of the PCS criterion results

in the location of the correct formula when EPR is exploring

in a larger model space.

The case for the ratio var(e5)/var(a2Z2), formula for

m ¼ 13, is different because an error term appears together

with terms of the true formula in Equation (20). The

effect of this error term is to describe the specific

realisation of noise, but doing so, it corrupts the

estimation of constant values of the other terms with

respect to true formula in Equation (20). It is a difficult

task to contend with error terms and specific strategies or

physical insight (i.e. dimensional information) are

required to undertake this.

Table 5 reports the number of generations and

processor time for finding the best formula (results relate

to a PC equipped with an Intel Pentium 4, 2600 MHz

processor and the Windows XP operating system). Both the

number of generations and computing time confirm that

EPR is very fast in exploring the space of formulae. Clearly,

this fact is directly related to EPR’s evolutionary approach

which transforms the general evolutionary search of GP

into a very simplified evolutionary search for exponents,

therefore requiring a simpler GA engine.

Table 3 | Parameters of EPR

Values

Search exponents [22 21 0 1 2]

EPR type Case 0 of Equations (19)
without function

Number of aj See Table 4

Bias Yes

Scale parameters No scaling of Y and X

O.F. for model selection Complexity penalisation a ¼ 1

GA population size 40

Crossover probability rate 0.4

Mutation probability rate 0.1

Table 4 | Selected EPR results

Yi 2 Y Number of aj EPR formulae

1 5 0 3, 4, 5 YEPR ¼ 10 þ 1�X1=X2 þ 1�X2=X3 þ 1�X3=X1

11 3, 4, 5 YEPR ¼ 9:9884 þ 1:0008�X1=X2 þ 0:97882�X2=X3 þ 0:99574�X3=X1

12 3, 4, 5 YEPR ¼ 9:9983 þ 0:99823�X1=X2 þ 1:0317�X2=X3 þ 0:98168�X3=X1

13 3 YEPR ¼ 10:2326 þ 0:78962�X1=X2 þ 0:49317=X3 þ 1:0136�X3=X1

4, 5 YEPR ¼ 9:8774 þ 1:0047�X1=X2 þ 0:95116�X2=X3 þ 1:019�X3=X1

14 3 YEPR ¼ 13:7599 þ 0:01685�X1=X2 þ 0:01344=ðX1Þ
2 þ 0:018073=ðX3Þ

2

6, 7 YEPR ¼ 10:193 þ 0:92388�X1=X2 þ 0:92137�X2=X3 þ 0:97504�X3=X1

15 3, 4 YEPR ¼ 11:116 þ 0:9688�X1=X2 þ 0:0074=ðX1Þ
2 þ 0:4305=X1

13 YEPR ¼ 9:33 þ 1:054�X1=X2 þ 0:735�X2=X3 þ 0:685�X3=X1 þ 0:297=X1
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SOME APPLICATIONS

Interpolation of Colebrook–White formula

The objective of the example application was to find an

explicit polynomial function for the friction factor f for

Reynolds number R ranging from 100,000 to 1000,000 and

relative roughness K from 0.001 to 0.01 as in Davidson et al.

(1999). The data set consists of a two-dimensional grid of 100

data points, created from ten Reynolds values selected in

equal increments of 100,000 on the interval of 100 000 to

1000,000, and 10 relative roughness values selected in equal

increments of 0.001 on the interval of 0.001 to 0.01. The target

friction values for the 100 points are values obtained using the

Colebrook–White formula (Colebrook & White 1937):

1ffiffi
f

p ¼ 22 log 10
2:51

R
ffiffi
f

p þ
K

3:71

 !
ð22Þ

Haaland (1983) provides Equation (23) as an explicit

approximation to the Colebrook–White formula above:

1ffiffi
f

p ¼ 21:8 log 10
6:9

R
þ

K

3:7

� �1:11
" #

: ð23Þ

In comparison to Equation (23) the fourteen-term poly-

nomial (Davidson et al. 1999) is 33% more accurate over the

selected region. Davidson et al. (1999) used a scaling of f K

and R. The largest absolute value of error of Davidson’s

fourteen-term polynomial over 100 selected data points was

1.94 £ 1024 while the absolute value of errors for Equation

(23) was 2.08 £ 1024. The sum of absolute values of errors for

the 100 data points was 2.967 £ 1023 for the fourteen-term

polynomial and 4.55 £ 1023 for Equation (23).

EPR searched for 12 potential formulae, using the

parameters as shown in Table 6. Table 7 shows SSE values

for increasing m, showing that the best result is obtained

with an eleven-terms polynomial plus bias:

f ¼ 6:1661�1027K21 2 9:5754�1025K20:5 þ 0:2522K0:5

20:14174Kþ 0:79627K1:5 2 5:6256�102R21:5

29:991�1023R20:5 2 0:92716K21:5R21:5

þ0:2055K21R21 þ 4:6695K20:5R21

þ3:980�103K2R21 þ 0:014171

ð24Þ

Figure 3(a) shows that the largest absolute value of errors

for Equation (24) was 1.12 £ 1026, while the sum of

absolute values of errors for the 100 data points was

1.23 £ 1025.

The EPR result was much better than that of R-BGP

both from an interpolation and from a computing perform-

ance point of view, as can be seen from Table 8. Moreover,

EPR was easier to use from a numerical standpoint because

it was not necessary to scale the input–output variables as

in Davidson et al. (1999).

A search for a formula like Equation (23) by means of

EPR obtained a solution in 8 generations of GA (about 0.5 s):

Table 5 | EPR computational performance on a PC with an Intel Pentium 4 2600MHz

processor

Yi 2 Y Number of aj Generation number Time in seconds

1 ¼ 0 3 255 11.38

4 34 2.64

5 38 3.81

11 3 25 2.40

4 111 8.40

5 32 3.24

12 3 36 3.25

4 66 5.93

5 37 6.15

13 3 66 3.67

4 57 5.24

5 86 7.59

14 3 28 1.24

6 39 4.58

7 52 5.94

15 3 201 9.42

4 26 2.20

13 196 35.96
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1ffiffi
f

p ¼ 22 log 10
16:84998

R
þ

K

3:70939
2 447:74053

K

R

� �
ð25Þ

whose largest absolute value of errors was 7.216 £ 1025,

while the sum of absolute values of errors for the 100 data

points was 8.452 £ 1024. Also in this case, EPR is able to

interpolate the Colebrook–White formula by means of

three parameters whilst preserving von Kàrmàn’s universal

constant related to coefficient 2 of log10. The computational

performance and the interpolation accuracy were, again,

very good (Cunge 2003).

Knowledge discovery based on data: friction factor of

corrugated pipes

GP was used to determine the Chèzy resistance coefficient

for full circular corrugated channels (Giustolisi 2004). Three

corrugated plastic pipes were experimentally studied in

order to generate test data. Experiments were undertaken to

measure hydraulic parameters of the open-channel flow for

some slopes, from 3.49–17.37% (2–108), in order to

discover the dependence of channel resistance coefficient

– or friction factor – when wake-interference flow occurs

(Giustolisi et al. 2003). Giustolisi (2004) presented a very

parsimonious formula obtained by GP:

Cad ¼
Cffiffi
g

p ¼

ffiffi
8

f

s

¼
1

0:534
ln

2R

hs

� �
þ 1:0973ln

hs
ds
hs

RS
þ 20:6863

 !
ð26Þ

Table 6 | Parameters of EPR

Davidson test equation (24) Haaland test equation (25)

Search exponents [22 21.5 21 2 .5 0 .5 1 1.5 2] [22 21 0 1 2]

EPR type Case 0 of equations (19) without function Case 3 of equations (19) with Y ¼ 1
.

22
ffiffi
f

p� �

Number of aj [1:12] 3

Bias Yes No

Scale parameters No scaling of f and K,R No scaling of f and K,R

O.F. for model selection Control of aj Control of aj

GA population size 40 40

Crossover probability rate 0.4 0.4

Mutation probability rate 0.1 0.1

Table 7 | EPR results in search for 12 potential formulae

Search terms (aj 1 bias) Actual terms (aj 1 bias) SSE

2 2 1.08 £ 1027

3 3 9.19 £ 1029

4 4 5.27 £ 10210

5 5 9.26 £ 10211

6 5 2.93 £ 10211

7 5 9.05 £ 10212

8 8 1.04 £ 10212

9 6 2.58 £ 10212

10 10 1.21 £ 10213

11 11 6.49 £ 10214

12 11 8.37 £ 10213

13 12 3.90 £ 10214
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where Cad is the dimensionless resistance coefficient of

Chèzy, R is the hydraulic radius of flow, S is the pipe slope,

dS is the longitudinal spacing of the wall-roughness

elements and hS is the height of the wall-roughness

elements. The formula in Equation (26) fits very well the

whole set of data, see Table 10 and Figure 4. This formula

was obtained by ‘physical post-refinement’ (Giustolisi 2004)

of the symbolic result of the GP strategy.

Equation (26) appears to explain better the role of

roughness in the Chèzy resistance coefficient for corrugated

channels with respect to its traditional expression for rough

channels (Morris 1959; Giustolisi 2004). Finally, Giustolisi’s

work stressed the fact that the GP hypothesis can be

easily manipulated by means of ‘human’ physical insight

(Keijzer & Babovic 2002). Therefore, GP should be

considered more than a simple data-driven technique,

especially when it is used to perform scientific knowledge

discovery (Giustolisi 2004).

A formula was sought by means of EPR with natural

logarithm as shown in Table 9. In this instance, the number

of adjusting parameters was fixed to 4 (including bias). The

result was the expression

Cad ¼
1

0:6489
ln

2R

ds

� �
þ 0:39728

ds

hs

� �2

ln
hs

ds

� �(

þ
4:0508�1023S

ds2
ln

S�ds

R

� �
þ 18:146

) ð27Þ

Table 10 and Figure 4 show that the formula of Equation

(27) fits the data from the training set extremely well, while
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Figure 3 | (a) Errors of Colebrook–White formula interpolated by EPR, Equation (24). (b) Errors of Colebrook–White formula interpolated by EPR, Equation (25).
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the statistical performance on the test set of ’unseen data’

demonstrates that over-fitting did not occur. Indeed, the

expression in Equation (27) has few parameters and an

understandable structure from a physical point of view.

It should be emphasised that EPR performed far better than

the classical GP algorithm. Moreover, both Equations (26)

and (27) allow some physical interpretations of the rough-

ness effect in corrugated pipes: for example, regarding the

value of von Kàrmàn’s universal turbulence constant

(which is higher than 0.4, i.e. the value normally found in

the literature), roughness index (hs/ds) and relative

Table 8 | EPR velocity performances on PC with an Intel Pentium 4 2600MHz

processor

Number of aj Generation number Time in seconds

1 5 0.2628

2 16 0.8832

3 19 1.3056

4 16 1.3776

5 17 1.4364

6 186 17.688

7 496 52.092

8 465 51.864

9 703 84.936

10 256 32.88

11 821 104.81

12 829 111.59

Table 9 | Parameters of EPR

Values

Search exponents [22 21 0 1 2]

EPR type Case 2 of Equations (19),
function ¼ natural logarithm

Number of aj 3

Bias Yes

Scale parameters No scaling of Cad and hs, ds, R, S

O.F. for model selection SSE i.e. complexity penalisation
with a ¼ 0

GA population size 40

Crossover probability rate 0.4

Mutation probability rate 0.1

Table 10 | EPR results vs. GP results

Training set Test set

AVG CoD AVG CoD

Eq. (26) – GP 2.17% 0.9224

Eq. (27) – EPR 1.24% 0.9709 1.29% 0.9728

AVG ¼ 100�
# of data

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 Cadcomputed=CadexperimentalÞ

2
q

# of data

CoD ¼ 1 2
# of data 2 1

# of data

# of data

P
ðCadcomputed 2 CadexperimentalÞ

2

# of data

P
ðCadexperimental 2 meanðCadexperimentalÞÞ

2
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roughness (R/ds). See Morris (1959), Giustolisi et al. (2003)

and Giustolisi (2004) for further details about the hydraulics

of the problem. This case also showed that the performance

of the EPR search was very fast, taking about 384

generations in a time of about 25 s on PC with an Intel

Pentium 4 2600 MHz processor.

CONCLUSIONS

In this paper a new methodology for symbolic modelling of

environmental phenomena is presented. The methodology,

named Evolutionary Polynomial Regression (EPR), is based

on both numerical and symbolic regression. EPR uses a

genetic algorithm to find the form of polynomial expressions

and least squares optimisation to find the values for the

constants in the expressions. The incorporation of least

squares optimisation within symbolic regression enables

fast and effective model building.

In order to test the ability of EPR to discover the

mathematical structure of a phenomenon, an ad hoc

artificial formula was used. The experiments conducted

show that EPR is able to identify both the symbolic

structure and constants from data which were generated

by this formula corrupted with progressively increasing

Gaussian noise. The efficiency of the algorithm is also high,

which is attributed to EPR’s evolutionary approach that

transforms the general evolutionary (and often slow) search

of GP into a very simplified evolutionary search for

exponents. This is then performed by a simpler GA which

is computationally more efficient.

Furthermore, the performance of EPR has been com-

pared with Rule-Based Genetic Programming (Davidson

et al. 1999) at interpolating the Colebrook–White formula

and with Dimensionally Aware Genetic Programming

(Babovic & Keijzer 2000) for performing scientific knowl-

edge discovery from data for the resistance coefficient in

corrugated pipes. In both cases EPR identified more

accurate formulae than those found by the Rule-Based or

Dimensionally-Aware GP algorithms. Moreover, the for-

mulae obtained allow some physical interpretations of the

phenomena studied: for example, regarding the value of von

Kàrmàn’s universal constant of turbulence.

The methodology described in this paper is

implemented in a software program developed within the

MATLAB environment. The program fills a need in the

hydroinformatics research community for a freely available

tool for developing and testing data-based models. The

software is freely available for research and evaluation

purposes from the authors or via its web site: http://www.

poliba.it/Taranto/software/hydroinformatics/index.htm.
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