Wen-Zhao Xue, Qiang Hu*, Yu-Fei Song and Wei-Na Wu

Crystal structure of ethanol-bis(N-((5-(ethoxycarbonyl)-3,4-dimethyl-1Hpyrrol-2-yl)methylene)benzohydrazonato- $\kappa^2 N_0$, copper(II), C₃₆H₄₂N₆O₇Cu

Table 1: Data collection and handling.

Crystal:	Brown block
Size:	$0.16 \times 0.14 \times 0.13~\text{mm}$
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	0.67 mm^{-1}
Diffractometer, scan mode:	SMART detector, $oldsymbol{arphi}$ and $oldsymbol{\omega}$
$ heta_{\max}$, completeness:	27.4°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	18896, 8026, 0.055
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 5977
N(param) _{refined} :	473
Programs:	SHELX [1], Bruker [2]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Ato	m <i>x</i>	у	Z	U _{iso} */U _{eq}
Cu1	0.58033(4)	0.65052(2)	0.22980(2)	0.04688(14)
01	0.5943(3)	0.52211(14)	0.21912(15)	0.0547(5)
02	0.5433(3)	1.00774(17)	0.33665(18)	0.0663(6)
03	0.6248(4)	1.13971(17)	0.4739(2)	0.0846(8)
04	0.6426(3)	0.77094(14)	0.21670(14)	0.0559(5)
05	0.3041(4)	0.3346(2)	0.2342(2)	0.0926(9)
06	0.1055(4)	0.2098(2)	0.1409(3)	0.0980(10)
07	0.3729(4)	0.6933(2)	0.3228(2)	0.0935(9)
Η7	0.374025	0.750173	0.362237	0.140*
N1	0.7809(3)	0.60301(17)	0.35735(18)	0.0527(6)
N2	0.7329(3)	0.68563(17)	0.35240(17)	0.0479(5)
N3	0.6896(3)	0.89660(16)	0.40507(17)	0.0490(6)
H3	0.637085	0.865698	0.347808	0.059*
N4	0.4882(3)	0.68792(16)	0.06650(17)	0.0474(6)
N5	0.4470(3)	0.61425(16)	0.10065(17)	0.0449(5)
N6	0.2918(3)	0.42428(17)	0.11428(19)	0.0523(6)
H6	0.366734	0.452728	0.163565	0.063*
C1	0.8189(5)	0.2608(3)	0.2808(3)	0.0761(11)
Η1	0.845892	0.203568	0.279357	0.091*
C2	0.7431(5)	0.2645(3)	0.2000(3)	0.0787(11)
H2	0.717326	0.209367	0.143506	0.094*
С3	0.7039(5)	0.3500(2)	0.2015(3)	0.0667(9)
H3A	0.652517	0.351906	0.145979	0.080*
C4	0.7408(4)	0.4323(2)	0.2851(2)	0.0502(7)
C5	0.8189(5)	0.4275(3)	0.3665(3)	0.0674(9)
H5	0.846894	0.482567	0.423072	0.081*
C6	0.8553(5)	0.3424(3)	0.3645(3)	0.0799(11)
H6A	0.904852	0.339734	0.420115	0.096*
C7	0.7027(4)	0.5248(2)	0.2873(2)	0.0472(6)
C8	0.7967(4)	0.7616(2)	0.4281(2)	0.0501(7)
H8	0 867249	0 751038	0 471685	0.060*

https://doi.org/10.1515/ncrs-2018-0279 Received July 31, 2018; accepted October 17, 2018; available online October 30, 2018

Abstract

C₂₀H₂9N₃O₅, triclinic, ΡĪ (no. 2), a = 8.482(6) Å, b = 15.272(12) Å, c = 15.285(12) Å, $a = 112.024(11)^{\circ}$ $V = 1788(2) \text{ Å}^3$, $\beta = 95.325(9)^{\circ}$, $\gamma = 98.958(9)^{\circ}$, Z = 2. $R_{\rm gt}(F) = 0.0570, wR_{\rm ref}(F^2) = 0.1687, T = 296(2)$ K.

CCDC no.: 1873689

Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title complex was prepared according to the literature method while using ethanol as solvent [5].

Experimental details

The structure was solved by direct methods and refined with the SHELX software package [1]. Each of the carbon atoms of

Open Access. © 2019 Wen-Zhao Xue et al., published by De Gruyter. (cc) BY License.

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Qiang Hu, School of Physics and Electronic Information Engineering, Henan Polytechnic, University, Jiaozuo 454000, P.R. China, e-mail: 421022884@qq.com

Wen-Zhao Xue, Yu-Fei Song and Wei-Na Wu: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R. China

Tabl	le 2	(continue	hر)
Iab		(continue	.u,

Table 2 (continued)

Atom	x	у	Z	U _{iso} */U _{eq}
C9	0.7778(4)	0.8589(2)	0.4566(2)	0.0472(6)
C10	0.8446(4)	0.9323(2)	0.5453(2)	0.0492(7)
C11	0.7961(4)	1.0165(2)	0.5478(2)	0.0515(7)
C12	0.6999(4)	0.9928(2)	0.4611(2)	0.0506(7)
C13	0.9503(4)	0.9218(3)	0.6240(2)	0.0657(9)
H13A	0.980811	0.982700	0.677806	0.099*
H13B	0.891763	0.874586	0.642934	0.099*
H13C	1.045655	0.901280	0.601316	0.099*
C14	0.8405(5)	1.1143(2)	0.6300(3)	0.0683(9)
H14A	0.749994	1.125930	0.662875	0.102*
H14B	0.868765	1.163276	0.605828	0.102*
H14C	0.931108	1.115744	0.673498	0.102*
C15	0.6210(4)	1.0553(2)	0.4263(3)	0.0599(8)
C16	0.4595(5)	1.0633(3)	0.2954(3)	0.0842(12)
H16A	0.537267	1.107710	0.281099	0.101*
H16B	0.397049	1.100343	0.340201	0.101*
C17	0.3513(6)	0.9946(4)	0.2067(3)	0.0942(14)
H17A	0.294701	1.029463	0.178078	0.141*
H17B	0.414359	0.958446	0.162722	0.141*
H17C	0.274698	0.951109	0.221589	0.141*
C18	0.7673(5)	0.9906(2)	0.0459(3)	0.0730(10)
H18	0.807865	1.039325	0.026520	0.088*
C19	0.6362(6)	0.9190(3)	-0.0093(3)	0.0821(12)
H19	0.586641	0.920526	-0.065423	0.099*
C20	0.5776(5)	0.8451(2)	0.0178(2)	0.0651(9)
H20	0 490383	0 796543	-0.020706	0.078*
(21	0.490909	0.84323(19)	0 10220(19)	0.0447(6)
C22	0.7765(4)	0.9159(2)	0.1578(2)	0.0626(9)
H22	0.823670	0.916295	0 215375	0.075*
(23	0.8367(5)	0.9892(2)	0 1290(3)	0.0731(10)
H23	0.924807	1 037438	0.166884	0.0791(10)
(24	0.524007	0 76268(19)	0 13058(19)	0.0443(6)
(25	0.3302(3)	0.5432(2)	0.0385(2)	0.0475(6)
H25	0.337667	0.5492(2)	0.0303(2)	0.0475(0)
(26	0.2611(4)	0.550182	-0.013052	0.037
(27	0.2011(4) 0.1285(4)	0.4333(2)	0.0433(2)	0.0492(7)
(2)	0.1205(4)	0.3333(2)	-0.0230(2)	0.0550(7)
(20	0.0790(4)	0.3170(2)	0.0105(3)	0.0594(8)
(2)	0.1630(4)	0.3399(2)	0.0945(3)	0.0383(8)
	0.0529(4)	0.3934(3)	-0.1139(3)	0.0714(10)
	0.107803	0.449608	-0.120790	0.107*
	0.061523	0.336742	-0.16/315	0.107*
П30С	-0.059186	0.395945	-0.111926	0.10/*
	-0.0602(5)	0.2326(3)	-0.0370(3)	0.0863(13)
H3IA	-0.111683	0.235079	-0.094450	0.130*
H31B	-0.021106	0.1/3/91	-0.052588	0.130*
П3IС С22	-0.136922	0.234954	0.00581/	0.130*
(32	0.1903(5)	0.28/1(3)	0.1566(3)	0.0/18(10)
C33	0.3283(9)	0.2863(4)	0.2984(4)	0.132(2)
нзза	0.232411	0.237764	0.288707	0.158*
нззв	0.418701	0.254288	0.284742	0.158*
C34	0.3607(10)	0.3564(5)	0.3972(4)	0.158(3)

Atom	X	У	z	$U_{\rm iso}*/U_{\rm eq}$
H34A	0.376629	0.324069	0.439410	0.237*
H34B	0.456339	0.403962	0.406750	0.237*
H34C	0.270486	0.387477	0.410706	0.237*
C35 ^a	0.268(2)	0.5817(11)	0.3880(10)	0.133(5)
H35A ^a	0.372310	0.565734	0.383313	0.199*
H35B ^a	0.186499	0.523685	0.368603	0.199*
H35C ^a	0.264697	0.622770	0.452957	0.199*
C35A ^b	0.169(3)	0.594(2)	0.357(2)	0.191(13)
H35D ^b	0.119021	0.638168	0.338699	0.287*
H35E ^b	0.136542	0.593114	0.415010	0.287*
H35F ^b	0.135750	0.530250	0.306922	0.287*
C36 ^a	0.2350(11)	0.6329(6)	0.3247(7)	0.073(3)
H36A ^a	0.191864	0.585755	0.260299	0.088*
H36B ^a	0.153867	0.670573	0.347006	0.088*
C36A ^b	0.326(2)	0.6208(12)	0.3696(14)	0.093(6)
H36C [♭]	0.373179	0.564798	0.341509	0.112*
H36D ^b	0.368146	0.650902	0.437544	0.112*

^aOccupancy: 0.61(2), ^bOccupancy: 0.39(2).

ethanol molecule occupied two positions with the occupancy ratio of C35(C36)/C35A(C36A) being 0.61/0.39. All hydrogen atoms were placed at calculated positions.

Comment

Acylhydrazones are an important class of ligands in coordination chemistry and have been found extensive application [3]. Our previous work shows that acylhydrazone ligands bearing pyrrole units and their complexes exhibit considerable antibacterial and antitumor activity [4–6]. As part of our continuous work, the title complex was synthesized and characterized by X-ray diffraction.

In the title crystal structure, the central copper ion is coordinated with two enolizated acylhydrazone ligands by NO bidentate donor sets and an additional coordination of ethanol (*cf.* the figure). The maximal two angles between the coordination atoms and Cu(II) ion are 174.36(10)° and 156.76(11)°, respectively. According to the Addison rule [5], the geometric index τ value is 0.293, indicating that the irregular coordination geometry of the copper ion should be described as a distorted square-pyramidal geometry. There also exist classical intermolecular N–H···O hydrogen bonds in the crystal.

References

- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 2. Bruker. SMART and SAINT. Bruker AXS Inc., Madison, WI, USA (2007).

- Dong, W.-K.; Li, X.-L.; Wang, L.; Zhang, Y.; Ding, Y.-J.: A new application of Salamo-type bisoximes: as a relay – sensor for Zn²⁺/Cu²⁺ and its novel complexes for successive sensing of H⁺/OH⁻. Sens. Actuators, B **229** (2016) 370–378.
- Han, X.-F.; Cai, H.-X.; Jia, L.; Wu, W.-N.; Zhang, X.; Xu, J.; Zhang, Z.-P.; Wang, Y.: Syntheses, characterizations and antitumor activities of two copper(II) complexes with an acylhydrazone ligand bearing Pyrrole unit. Chin. Inorg. Chem. Commun. **31** (2015) 1453–1459.
- Ye, X.-P.; Wang, G.-J.; Pan, P.; Zhang, Z.-P.; Wu, W.-N.; Wang, Y.: Syntheses, crystal structures and biological activities of two Cu(II) complexes with an acylhydrazone ligand bearing pyrrole unit. Chin. Inorg. Chem. Commun. **30** (2014) 2789–2795.
- Ye, X.-P.; Zhu, T.-F.; Wu, W.-N.; Ma, T.-L.; Xu, J.; Zhang, Z.-P.; Wang, Y.; Jia, L.: Syntheses, characterizations and biological activities of two Cu(II) complexes with acylhydrazone ligand bearing pyrrole unit. Inorg. Chem. Commun. 47 (2014) 60–62.