
Answer Set Programming for Modeling and
Reasoning on Modular and Reconfigurable

Transportation Systems
Walter Terkaj

Istituto di Tecnologie Industriali e Automazione
via A.Corti 12, 20131 Milano, Italy

Email: walter.terkaj@itia.cnr.it

Marcello Urgo, Daniela Andolfatto
Politecnico di Milano,

Mechanical Engineering Department,
via La Masa 1, 20156 Milano, Italy

Email: marcello.urgo@polimi.it,
daniela.andolfatto@mail.polimi.it

Abstract—This paper addresses the modeling of modular and
reconfigurable transportation systems, aiming at developing tools
to support the planning and control. Answer Set Programming
(ASP) is employed to formalize rules modeling the characteristic
of a transportation system and describing its dynamics. Then,
automatic reasoning can be exploited to find solutions in different
use cases, including the generation of optimal or alternative
paths, the generation and validation of control sequences. The
proposed methodology is applied to a reconfigurable industrial
transportation system consisting of multiple linear conveyor
modules with actuators enabling longitudinal and transversal
movements of pallets.

I. INTRODUCTION

R
ECONFIGURABLE Manufacturing Systems (RMS) [1],
[2] aim at tackling current market challenges such as

frequent product changes, product customization, demand vari-
ability, rapid changes in technologies and regulations. RMS
are conceived as a composition of elements, machines and
material handling systems, whose systemic configuration can
be easily changed. Reconfigurability should be met at both
hardware and software level to reduce reconfiguration time
(ramp-up), effort and cost.

Material handling systems (MHS) represent a key compo-
nent in an RMS, being the pieces of equipment devoted to
handling, storing, and controlling materials and parts. When
addressing the design of an RMS, the MHS plays a relevant
role, since it must support the reconfigurability at system level.
A possible solution are Reconfigurable Transportation Systems
(RTS), usually based on modular mechatronic transportation
units that can be combined to implement a logistic system
layout. Carpanzano et al. [3] identified three main challenges
to be addressed when designing and implementing RTSs:

(a) hardware reconfigurability, i.e., the design of transporta-
tion systems that meet the physical reconfigurability re-

This work has has been partially funded from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 636966
(Customer-driven design of product-services and production networks to adapt
to regional market requirements - ProRegio) and from the Italian research
project Smart Manufacturing 2020 within the Cluster Tecnologico Nazionale
Fabbrica Intelligente.

quirement. Mechanical and mechatronic interfaces are a
relevant issue when tackling this matter.

(b) software development of the control systems, including the
appropriate sensing solutions. The suggested architecture
is a distributed one, since all the modules should be
independent and considered as an autonomous control
block.

(c) real-time management of the production system, consider-
ing routings, dispatching policies, planning and schedul-
ing, maintenance.

In this work the main focus will be on (b) and (c). The
control problem (b) is particularly relevant when mechatronic
systems are involved, due to the difficulty of integrating
and managing all the components. The control system of an
automated MHS must be able to elaborate plans and instruc-
tions considering objectives such as throughput maximization,
response time and execution time optimization. Haneyah et
al. [4] presented an extensive study of generic planning and
control requirements for automated material handling systems.
These requirements include starvation, blocking and deadlock
avoidance, saturation and buffer balancing, urgencies, disrup-
tions and operational flexibility.

Cataldo and Scattolini [5] presented a methodology to
optimize the control of a transportation system where pallets
are moved along modular conveyors. The control system was
implemented by adopting Model Predictive Control (MPC)
with a multi-layer approach. In the low level control (LLC) of
the system there are the local Programmable Logic Controllers
(PLC) that manage each module sensors and actuators, while
at the highest level the MPC controller is implemented and
manages the flows of the pallets in real-time providing proper
control sequences. The High-Level Control (HLC) System
was implemented by representing the transportation system
as a directed graph, where nodes are machines and buffer
zones, whereas the arcs are the possible movements of the
pallet. Based on the graph, a mathematical representation of
the system was developed through a Mixed Linear Dynamical
(MLD) model and embedded in the MPC controller.

Hegny et al. [6] presented a non-traditional control ap-

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 587–596

DOI: 10.15439/2017F154
ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 587

proach, implementing a two-levels control architecture based
on Multi Agents System (MAS) technology.

In both cases, the need to divide the control system into
a low and high level is the solution to the reconfigurability
objective. This structure, in fact, allows easier reconfiguration
of the software system since the LLC is implemented on each
unit and the HLC is designed independently from the physical
system. This allows to separate the control of the functioning
of the elements composing the system from the high-level
control of the system as a whole and from the implementation
of planning and routing algorithms.

The planning problem (c) for an automated transportation
systems consists in defining routing and dispatching policies
regulating the movements of the processed pieces by defining
the sequence they visit machines and workstations. Routing
and dispatching policies are implemented in the high-level
control layer of the control system.

The goal of this paper is the development of an elaboration
tool to support the modeling of a transportation system and
reasoning on the system dynamics to derive its properties.
Possible applications of the tool include:

(i) the generation of paths and control sequences to imple-
ment movements of the objects along the transportation
system;

(ii) the generation of a reachability graph showing how the
positions in the transportation system can be connected;

(iii) validation of the control sequences generated by a plan-
ning algorithm;

(iv) configuration of a transportation system and its devices
enabling to meet the required functionalities expressed
in terms of movements in the system.

In particular this work will focus on the applications (i) and
(ii), with the aim of supporting the following users:

(1) system designers in the analysis and validation of alterna-
tive transportation system configurations;

(2) control designers addressing an existing hardware design
of a transportation system;

(3) control designers tackling an existing transportation sys-
tem through the extraction of knowledge, e.g., from the
analysis of PLCs, hardware components, etc.

Herein, the elaboration tool is conceived as a logic program
that adopts the Answer Set Programming (ASP) language to
represent the system in terms of rules and obtain solutions in
the form of stable models (i.e. answer set). Problems related
to the modeling of automation systems to support their control
are typically addressed using other techniques like automata,
finite state machine and Petri Nets (PN) [7]. In particular,
PN is in principle able to support the applications (i)-(iv)
previously defined. However, it must be noted that an approach
based on PN requires a quite verbose formalism that leads
to overly complex models with an explosion in terms of
number of places and transitions. More advanced PN exten-
sions can only partially reduce such complexity. Therefore,
even if a PN model can be used to easily derive relevant
properties of a system (e.g. reachability, liveness, boundedness,

deadlocks) using general purpose tools, still the generation
of the PN model itself is a relevant problem that requires
skilled modeling operations and thus represents a bottleneck
of the approach. This problem is particularly relevant when
dealing with reconfigurable transport systems since a physical
reconfiguration demands also a reconfiguration of the model.
Even if a modular PN approach can be employed (and it is
not immediate in the general case of non-identical transport
modules), anyhow it can be cumbersome to identify which are
the transitions linking the places in different PN sub-graphs.

The proposed ASP-based approach aims first and foremost
to support the generation of a formal model for a specific
transportation system by taking as input the description of
the physical system (facts) and the general description of the
dynamics and interactions between the basic components of
the system (rules). Therefore, ASP can be seen as complemen-
tary to PN for the generation of the formal model, whereas
regarding the reasoning over a formal model of the system
there can be an overlapping between ASP and PN, as it will
be discussed in the next sections.

The paper is organized as follows. Sect.II will briefly present
ASP and some relevant application of this language. Sect.III
will introduce the details of the reference transportation prob-
lem that is considered in this work. Sect.IV presents the details
of the model based on ASP rules. Sect.V shows which type
of reasoning can be performed and finally Sect.VI provides an
application example.

II. REASONING WITH ANSWER SET PROGRAMMING

Answer Set Programming [8], [9], [10] is a logic program-
ming language for knowledge representation and reasoning.
An ASP program consists of a set of rules of the form:

a← b1, ..., bm, not c1, ..., not cn (1)

where a, bi, cj are atoms. The left-hand side of the rule is
the head, whereas the right-hand side is the body. The head
is derived to be true if all the literals in the body are true. If
a rule has no body, then it is a fact. A rule without head is a
constraint. The symbol not in (1) represents a default negation

(or weak negation), that is a key feature of ASP and more
generally of non-monotonic reasoning. The solution of an ASP
program is an answer set (or stable model), i.e. the smallest
set of literals that satisfies the program. An ASP solver can
return zero, one or many answer sets.

Another useful feature of the ASP language and its exten-
sions is represented by cardinality atom. For instance, the form
l{a1, ..., an}k means that at least l and at most k atoms in
the set {a1, ..., an} are true. If l or k are missing, then the
corresponding side is unbounded.

ASP has been successfully applied in several domains, e.g.,
product configuration, aerospace, data management, music
and planning [10]. ASP is also a declarative language, i.e.
a program written in this language does not specify how to
search a solution (this is a key difference between ASP and
Prolog); indeed, the solution is independently found by the

588 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

solver also thanks to the availability of general purpose ASP
solvers.

Taking in consideration the scope of automation and control,
it is relevant to mention the work of [11] that discussed how
ASP can be generically employed to generate plans as alterna-
tive stable models. More specifically, [12] addressed how ASP
can be applied to support the planning of collaborative robot.
[13] proposed an approach to generate paths for robots in a
dynamic environment. Similarly, [14] focused on a cost-based
robot planning taking by formalizing the rigid knowledge,
time-dependent knowledge, action knowledge and incomplete
information. However, to the best of our knowledge, this
paper represents the first application of ASP in the domain
of modular transportation systems.

The relation between ASP and PN has been studied by
Anwar et al. [15], [16] and they demonstrated that PN models
can be actually encoded in ASP language. Once the model
is encoded in ASP, then it is possible to use ASP solvers to
analyze typical properties of the system as in the case of a PN
(e.g. reachability of a state, basic liveness). Simulations can
be run using either a PN or ASP approach, but ASP offers the
following advantages:

• ASP may return the enumeration of all possible evolu-
tions of a simulation [15]

• the formal model can be enriched with additional and
customized reasoning about the simulations [15]

Therefore, ASP can be used not only to generate a formal
model of the system, but also to analyze the system behavior
with a reasoning power that is not lower than what can be
done with PN. Given a specific transportation system to be
analyzed, the advantage of ASP is that it supports both the
generation of the formal model and also the reasoning about
its properties using the same language and solvers.

III. PROBLEM STATEMENT

In this work the attention is focused on MHS that consist of
conveyors. These transportation systems are bound to specific
operational routes and require the installation of fixed tracks.
The material is loaded on pallets or specific carriers trans-
ported along the conveyors (by means of chains, rollers, belts,
etc.). The structure of conveyor systems is usually obtained
by combining together standardized modular pieces. Mod-
ularity requires considerable design and investment efforts,
but it offers the possibility to expand and reconfigure the
transportation system according to the variable needs of the
plant. Moreover, automation also entails a high level of real-
time flexibility, thanks to the possibility of developing complex
planning and control software tools. An automated conveyor-
based transportation system also contains sensing devices and
actuators as well as control tools to manage all these elements.
Therefore, the generic transportation system that is taken as a
reference is defined as follows:

• the system consists of M linear conveyor modules;
• pallets are characterized by a rectangular shape and can

be moved along the system;

• each module is equipped with 1) sensing elements to
detect the presence of a pallet, 2) conveyor belts, or any
other similar movement device, 3) stacker cranes for cross
movement of the pallet along a direction orthogonal to
the movement of the main conveyor belt, 4) blocking
actuators to stop the movement of the pallet when it is
flowing along the conveyors;

• each module hosts N discrete positions for pallets, num-
bered from 1 to N, discretizing the space available on the
module on the basis of the pallet size and shape. Each
position can host only one pallet;

• each position is characterized by four sides, numbered
from 1 to 4 clock-wise (see Fig.1). Sides are used to
describe how positions are connected to each other (see
Sect.IV-B);

• the direction of movement of the conveyor belt is forward

if it causes the pallet to move along a direction with
increasing number id of the positions, backward in the
opposite case;

• the direction of movement of the stacker crane is left if it
causes the pallet to move on the left when looking from
position 1 to N, right in the opposite case;

• the blocking actuators are always coupled with sensing
elements. The actuators are designed so that the pallet
can move toward a position with an actuator even if it is
activated, whereas it can move out of the position only if
the actuator is not activated. An actuator can work both
when the pallet is moving forward or backward.

The transportation system consists of a set elements con-
nected together to form a complex system characterized by
the properties of reconfigurability, scalability and flexibility.
Reconfigurability is obtained through varying the arrangement
of modules in the plant in order to face changing functional
requirements. Similarly, the system is easily scalable by adding
or removing modules. Flexibility can be reached by allowing
different pallet routings.

Fig. 1. Representation of the sides and feasible movements in a 3-position
transportation module with one stacker crane.

IV. MODELING TRANSPORTATION MODULES USING ASP

This section presents the logic program written in ASP
language able to capture the basic characteristics and dynamics
of the transportation system and elaborate its evolution in time
in terms of the sequence of states reached by the system. The
state of the system is defined by the position of the pallets

WALTER TERKAJ ET AL.: ANSWER SET PROGRAMMING FOR MODELING AND REASONING 589

and the state of actuators and sensors. The dynamic behavior
of the system is subject to the following constraints:

• placement of the modules (system physical layout);
• characteristics of the modules in terms of hosted positions

and installed actuators;
• characteristics of the modules and cross elements in terms

of supported direction of movement.

The addressed problem requires the logic program to be
modular, clustering the rules. Each cluster addresses a char-
acteristic of the system or a specific modeling issue and is
independent from the others. In general, modularity allows
leaner development of the rules and faster maintenance. The
main clusters are described in the following subsections: Input

Facts describing the topological and physical characteristics
of the system (Sect.IV-A), the Rigid Knowledge defining how
the interactions between the system components determine the
possible system behavior (Sect.IV-B), and the Time-dependent

Knowledge defining how the state of the system changes along
time because of the control actions (Sect.IV-C).

The clusters of rules are presented by adopting the syntax
of clingo [17], including its extensions to the basic ASP
language. Like in most logic programming languages, the
symbol :- represents the leftwards arrow that separates the
head and body of a rule, as show in (1).

A. Input Facts

The physical and geometric characteristics of a specific
transportation system are defined in terms of input facts. The
following predicates (fluents) need to be properly instantiated:

• module(M) defines the transportation module M.
• pos(Y,M) defines a position Y on transportation module
M.

• cross(Y,M) defines the presence of a stacker crane
element on position Y of module M.

• act_stop(Y,M) defines that there is a blocking actu-
ator on position Y of module M.

• conn_mod(Y1,M1,S1,Y2,M2,S2) defines that the
side S1 of position Y1 in module M1 is adjacent to the
side S2 of position Y2 in module M2.

• conv(M,D1,D2) defines the feasible movement direc-
tions of the conveyor belt for module M. If the conveyor
belt supports both forward and backward direction, then
D1=f and D2=b, respectively. If the conveyor supports
only one movement direction, then corresponding vari-
able is set to 0.

• cross_conv(Y,M,D1,D2) defines the feasible direc-
tions of movement of a stacker crane that is placed on
position Y of module M. If it supports both the left and
right directions, then D1=l and D2=r, respectively. If
the stacker crane supports only one movement direction,
then the corresponding variable is set to 0.

B. Rigid Knowledge

Rigid knowledge refers to the information that is not
subject to change during the execution of the program and
its reasoning, i.e. spatial properties of the system, reachable

positions in the system, buffer zones. This knowledge is
general purpose because it can be exploited for any specific
system characterized by its corresponding input facts.

1) Spatial properties of the system: The possibility to move
a pallet between two adjacent positions must consider the
availability of proper actuators. Figure 2 shows some of the
types of connections. Specifically, the pallet can be moved
from a position to another only if the two positions are adjacent
and if the connecting elements are consistent in terms of
direction of movement. The feasibility of a transfer between

Fig. 2. Examples of adjacent positions enabling a movement.

two positions is defined by the following predicates:

• conv_to_conv(Y1,M1,Y2,M2,D1,D2) between
position Y1 of module M1 and position Y2 of module
M2 if the conveyor belt of M1 is moving in direction D1

(i.e. f or b) and the conveyor belt of M2 is moving in
direction D2 (see cases a. and b. in Fig.2);

• conv_to_cross(Y1,M1,Y2,M2,D1,D2) between
position Y1 of module M1 and position Y2 of module M2
if the conveyor belt of M1 is moving in direction D1 and
the stacker crane on position Y2 is moving in direction
D2 (see case c. in Fig.2);

• cross_to_conv(Y2,M2,Y1,M1,D1,D2) between
position Y1 of module M1 and position Y2 of module M2
if the stacker crane on position Y1 is moving in direction
D1 and the conveyor belt of M2 is moving in direction
D2 (see case d. in Fig.2);

• cross_to_cross(Y1,M1,Y2,M2,D1,D2)

between position Y1 of module M1 and position
Y2 of module M2 if the stacker crane on position Y1 is
moving in direction D1 and the stacker crane on position
Y2 is moving in direction D2 (see cases e. and f. in
Fig.2).

590 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

All the four types of connections can be derived from the
input facts. For example rules (2) and (3) defines feasible
conv_to_conv connections for adjacent positions belong-
ing to the same module (see Fig.2.a). Rule (2) deals with for-
ward movement, whereas rule (3) with backward movement.
The underscore symbol in conv(M,f,_) and conv(M,_,b
is a wildcard standing for any type of movement supported
by the conveyor belt for the case of backward and forward
movement, respectively.

conv_to_conv(Y1,M,Y2,M,f,f) :- Y2=Y1+1,

pos(Y1,M), pos(Y2,M),conv(M,f,_).

(2)

conv_to_conv(Y1,M,Y2,M,b,b) :- Y1=Y2+1,

pos(Y1,M),pos(Y2,M),conv(M,_,b).

(3)

If the adjacent positions belong to different modules (see
Fig.2.b), then other four rules can be defined to specify
the required movements of the two conveyor belts (forward
or backward) depending on the relative placement between
two position in terms of adjacent sides. For example, rule
(4) defines the feasible conv_to_conv connection from
position Y1 of module M1 to position Y2 of module M2

when the side 2 of Y1 is adjacent to side 4 of Y2. The
cardinality atom 1{conn_mod(Y1,M1,S1,Y2,M2,S2);

conn_mod(Y2,M2,S2,Y1,M1,S1)}1 takes into
account the fact that conn_mod is not considering
an order between two adjacent positions, i.e.
conn_mod(Y1,M1,S1,Y2,M2,S2) is equivalent to
conn_mod(Y2,M2,S2,Y1,M1,S1).

conv_to_conv(Y1,M1,Y2,M2,f,f):- S1=2,S2=4,

M1!=M2,pos(Y1,M1),pos(Y2,M2),

conv(M1,f,_),conv(M2,f,_),

1{conn_mod(Y1,M1,S1,Y2,M2,S2);

conn_mod(Y2,M2,S2,Y1,M1,S1)}1. (4)

The movement between not aligned modules is operated
by stacker crane actuators. Rules similar to (4) can be
defined taking in consideration all the possible couplings
(some of which are shown in Fig.2.c-Fig.2.f) to derive
the predicates conv_to_cross, cross_to_conv and
cross_to_cross. If a connection is not feasible, then
the rules are not satisfied and the corresponding predicate
is not derived. Due to space limitations, most of these rules
are omitted and only rule (5) is shown as an example of
conv_to_cross connection. In this case the connection
from position Y1 of module M1 to position Y2 of module
M2 is feasible if the side 2 of Y1 is adjacent to side 3 of Y2

and there is a stacker crane element on the second position
(cross(Y2,M2)).

conv_to_cross(Y1,M1,Y2,M2,f,l) :- S1=2,

S2=3,M1!=M2,pos(Y1,M1),pos(Y2,M2),

cross(Y2,M2),conv(M1,f,_),

cross_conv(Y2,M2,l,_),

1{conn_mod(Y1,M1,S1,Y2,M2,S2);

conn_mod(Y2,M2,S2,Y1,M1,S1)}1. (5)

2) Reachable positions: Grounding on the previous
rules, the predicate rch(Y1,M1,Y2,M2) representing the
reachability between two positions is derived if position
pos(Y2,M2) can be reached from position pos(Y1,M1)

via a feasible connection. Rule (6) shows an example in case
of conv_to_conv connection. Similar rules can be written
for the other possible connections (see Fig.2).

rch(Y1,M1,Y2,M2) :- pos(Y1,M1),pos(Y2,M2),

conv_to_conv(Y1,M1,Y2,M2,_,_).

(6)

3) Buffer zones: A buffer zone is defined by the predicate
b_zone(Y,M) if the pallet can be stopped in position Y of
module M thanks to the presence of a blocking actuator. The
blocking actuator is associated with a sensor able to detect the
presence of the pallet and/or the status of the actuator (on/off),
hence, a buffer zone is also an observable position. The buffer
zones can be derived from rule (7).

b_zone(Y,M) :- pos(Y,M),act_stop(Y,M). (7)

C. Time-dependent Knowledge

The assumption is made that the evolution of the transporta-
tion system along time can be represented by defining discrete
time intervals ranging from 0 to max_time. The following
predicates specify the evolution of the system along the time
horizon. For sake of simplicity, the case of a single pallet is
considered, but the rules can be extended to represent also the
general case of multi-pallet systems. The following predicates
are used to define the state of the system:

• p_pos(Y1,M1,T) defines that the pallet is in position
pos(Y1,M1) at time T;

• move(Y1,M1,Y2,M2,T) defines that at time T

the pallet has been moved from pos(Y1,M1) to
pos(Y2,M2);

• conv_on(M,D,T) defines that the conveyor of module
M is active at time T and moving in direction D (i.e. f or
b);

• cross_conv_on(Y,M,D,T) defines that the stacker
crane hosted in pos(Y,M) is active at time T and moving
in direction D (i.e. l or r);

• stop_on(Y,M,T) defines that the blocking actuator
installed in pos(Y,M) is active at time T.

WALTER TERKAJ ET AL.: ANSWER SET PROGRAMMING FOR MODELING AND REASONING 591

1) Dynamics: The following rules generates the sequence
of movements of the pallet along the transportation system.
Rule (8) states that if a pallet is in a buffer zone, then the
following time step it can remain in the same position or move
to a reachable position; on the other hand, rule (9) states that
if a pallet is in a position that is not a buffer zone, then the
following time step it must be moved to a reachable position.
Rule (10) makes explicit the movement of a pallet. Rule (11)
guarantees that the same pallet cannot be in two different
positions at the same time step. Finally, rule (12) is optional
and can be enabled if the pallet is forbidden to visit twice the
same position within the same control sequence.

{p_pos(Y3,M3,T+1): rch(Y2,M2,Y3,M3);

p_pos(Y2,M2,T+1)}1 :- p_pos(Y2,M2,T),

b_zone(Y2,M2),T<max_time. (8)

{p_pos(Y3,M3,T+1): rch(Y2,M2,Y3,M3)}1 :-

p_pos(Y2,M2,T),not b_zone(Y2,M2),

T<max_time. (9)

move(Y1,M1,Y2,M2,T+1) :-

p_pos(Y1,M1,T), p_pos(Y2,M2,T+1),

pos(Y1,M1)!=pos(Y2,M2),T<max_time. (10)

:- p_pos(Y1,M1,T), p_pos(Y2,M2,T),

pos(Y1,M1)!=pos(Y2,M2),T<=max_time. (11)

:- move(Y,M,_,_,A),move(Y,M,_,_,B),A!=B.

(12)

2) Control Actions: Given the movements of the pallet,
rules can be used for deriving the required sequence of
control actions, (e.g. activation of actuators). Rules (13) and
(14) derive the activation of the conveyor belt in case of a
connection conv_to_conv. Other rules are defined (omitted
due to space limitations) to derive the activation of the
conveyor belt and/or the stacker crane for the other types
of connections (conv_to_cross, cross_to_conv and
cross_to_cross) as introduced in Sect.IV-B.

conv_on(M,D,T) :-

conv_to_conv(Y,M,Y1,M1,D,D1),

move(Y,M,Y1,M1,T),T<=max_time. (13)

conv_on(M1,D1,T) :-

conv_to_conv(Y,M,Y1,M1,D,D1),

move(Y,M,Y1,M1,T),T<=max_time. (14)

In addition, rules (15)-(17) define if and when the blocking
actuator must be activated. Rules (18) and (19) guarantee that

both the conveyor belt and the stacker crane can activate only
one direction of movement at the same time.

-stop_on(Y,M,T) :- move(Y,M,Y2,M2,T),

b_zone(Y,M),T<=max_time. (15)

stop_on(Y2,M2,T) :- move(Y,M,Y2,M2,T),

b_zone(Y2,M2),T<max_time.

(16)

stop_on(Y,M,T+1) :- p_pos(Y,M,T),

b_zone(Y,M),not move(Y,M,_,_,T+1),

T<=max_time. (17)

:- conv_on(M,D1,T),conv_on(M,D2,T),D1!=D2.

(18)

:- cross_conv_on(Y,M,D1,T),D1!=D2,

cross_conv_on(Y,M,D2,T). (19)

V. REASONING

This section shows how the ASP formalization (Sect.IV)
can be exploited to perform some reasoning related to:

• possible paths between two positions and generation of
the corresponding control actions (Sect.V-A);

• which are the buffer zones that can be directly reached
from a given position (Sect.V-B.)

The following predicates are used to characterize the first and
last position in a sequence of movements of a pallet:

• start(Y,M) defines that the pallet will start from
position pos(Y,M);

• end(Y,M) defines that the pallet will end at position
pos(Y,M);

Given the additional predicates, Rule (20) specifies the
starting condition, i.e. the position of the pallet at time 0.
Rule (21) is a constraint imposing to reach the end position
at any time. Rule (22) terminates the generation of further
movements as soon as the pallet reaches the end position.

p_pos(Y,M,0) :- start(Y,M). (20)

:- not p_pos(Y,M,_),end(Y,M). (21)

:- p_pos(Y,M,Q), end(Y,M), p_pos(_,_,Q+1).

(22)

A. Path generation

The generation of a path requires as input facts the starting
position start(Y,M), the target position end(Y,M) and
the constant max_time as the maximum number of time
steps. In this way the ASP solver may potentially generate
one or more paths to link the start and end position. Rule
(23) can be added to introduce an objective function in the
ASP program that will minimize the number of time steps

592 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

needed to reach the end position. In this case the ASP solver
will return only one feasible path (if existing).

#minimize{Q@1: p_pos(Y,M,Q),end(Y,M)}.

(23)

B. Graph generation

A directed graph (or reachability graph) can be used to
represent the feasible transitions of a pallet between two
adjacent buffer zones, as presented in [5]. The arcs can be
generated by solving the ASP program consisting of the rules
in Sect.IV together with rules (24)-(27). The number of arcs
coming out of the buffer zones will be equal to the number
of stable models generated by the ASP solver. Rules (24)
and (25) impose the start and end position to be in a buffer
zone, respectively. Rule (26) guarantees that the start and end
positions are different, whereas rule (27) sets the end position
as soon as the pallet visits a position corresponding to a buffer
zone.

1{start(Y,M): b_zone(Y,M)}1. (24)

1{end(Y,M): b_zone(Y,M)}1. (25)

:- end(Y,M),start(Y,M). (26)

end(Y,M) :- p_pos(Y,M,T),b_zone(Y,M),

T>0,T<=max_time. (27)

VI. EXPERIMENTS

This sections demonstrates how the reasoning capabilities
presented in Sect.V can be exploited when addressing a real-
istic modular transportation system. The ASP solver clingo
was used to run the experiments.

A. Path generation

The generation of a path and the corresponding control
sequence (cf. Sect.V-A) is tested taking in consideration the
transportation system represented in Fig.3 that consists of two
identical modules (Module 1 and Module 2) with three
positions each, a stacker crane and blocking actuators in the
first and last positions. The conveyor belt and the stacker
cranes allow both directions of movement.

The input facts representing the system characteristics are:

module (1) . module (2) . pos ((1 ; 2 ; 3) , 1) .
pos ((1 ; 2 ; 3) , 2) . c r o s s ((1 ; 3) , 1) .
c r o s s ((1 ; 3) , 2) . a c t _ s t o p ((1 ; 3) , 1) .
a c t _ s t o p ((1 ; 3) , 2) . conn_mod (1 , 1 , 3 , 3 , 2 , 3) .
conn_mod (2 , 1 , 3 , 2 , 2 , 3) .
conn_mod (3 , 1 , 3 , 1 , 2 , 3) .
conv (1 , f , b) . conv (2 , f , b) .
c r o s s _ c o n v (1 , 1 , l , r) . c r o s s _ c o n v (3 , 1 , l , r) .
c r o s s _ c o n v (1 , 2 , l , r) . c r o s s _ c o n v (3 , 2 , l , r) .
c o n s t max_time =5 .

The rules elaborating the layout derive the following feasi-
ble connections:

Fig. 3. Test case 1.

r c h (1 , 1 , 2 , 1) r c h (2 , 1 , 3 , 1) r c h (1 , 2 , 2 , 2)
r c h (2 , 2 , 3 , 2) r c h (2 , 1 , 1 , 1) r c h (3 , 1 , 2 , 1)
r c h (2 , 2 , 1 , 2) r c h (3 , 2 , 2 , 2) r c h (1 , 1 , 3 , 2)
r c h (3 , 1 , 1 , 2) r c h (3 , 2 , 1 , 1) r c h (1 , 2 , 3 , 1)

If the rule (23) is disabled and the start and end positions are
defined as start(1,1) and end(3,2), then the program
generates six stable models:

Answer : 1
p_pos (1 , 1 , 0) p_pos (3 , 2 , 1) move (1 , 1 , 3 , 2 , 1)
c r o s s _ c o n v _ o n (1 , 1 , r , 1)
c r o s s _ c o n v _ o n (3 , 2 , l , 1)
Answer : 2
p_pos (1 , 1 , 0) p_pos (1 , 1 , 1) p_pos (3 , 2 , 2)
move (1 , 1 , 3 , 2 , 2) c r o s s _ c o n v _ o n (1 , 1 , r , 2)
c r o s s _ c o n v _ o n (3 , 2 , l , 2)
Answer : 3
p_pos (1 , 1 , 0) p_pos (1 , 1 , 1) p_pos (1 , 1 , 2)
p_pos (3 , 2 , 3) move (1 , 1 , 3 , 2 , 3)
c r o s s _ c o n v _ o n (1 , 1 , r , 3)
c r o s s _ c o n v _ o n (3 , 2 , l , 3)
Answer : 4
p_pos (1 , 1 , 0) p_pos (1 , 1 , 1) p_pos (1 , 1 , 2)
p_pos (1 , 1 , 3) p_pos (3 , 2 , 4)
move (1 , 1 , 3 , 2 , 4) c r o s s _ c o n v _ o n (1 , 1 , r , 4)
c r o s s _ c o n v _ o n (3 , 2 , l , 4)
Answer : 5
p_pos (1 , 1 , 0) p_pos (1 , 1 , 1) p_pos (1 , 1 , 2)
p_pos (1 , 1 , 3) p_pos (1 , 1 , 4) p_pos (3 , 2 , 5)
move (1 , 1 , 3 , 2 , 5) c r o s s _ c o n v _ o n (1 , 1 , r , 5)
c r o s s _ c o n v _ o n (3 , 2 , l , 5)
Answer : 6
p_pos (1 , 1 , 0) p_pos (2 , 1 , 1) p_pos (3 , 1 , 2)
p_pos (1 , 2 , 3) p_pos (2 , 2 , 4) p_pos (3 , 2 , 5)
move (1 , 1 , 2 , 1 , 1) move (2 , 1 , 3 , 1 , 2)
move (3 , 1 , 1 , 2 , 3) move (1 , 2 , 2 , 2 , 4)

WALTER TERKAJ ET AL.: ANSWER SET PROGRAMMING FOR MODELING AND REASONING 593

move (2 , 2 , 3 , 2 , 5)
conv_on (1 , f , 1) conv_on (1 , f , 2)
c r o s s _ c o n v _ o n (3 , 1 , r , 3)
c r o s s _ c o n v _ o n (1 , 2 , l , 3)
conv_on (2 , f , 4) conv_on (2 , f , 5)
SATISFIABLE Models : 6 , Time : 0 .1 1 5 s

Answer 1 and Answer 6 are the relevant solutions and
are graphically represented in Fig.4 with a dashed line and a
continuous line, respectively. Indeed, Answer 2-Answer 5

are equivalent to Answer 1 with a delay in the starting
position. If the minimization objective in rule (23) is enabled,
then the program returns Answer 1 as the best solution.

It can be noticed that the solutions define how and when the
actuators must be activated. For instance, Answer 1 requires
only cross(1,1) and cross(3,2) to be activated at
time 1 moving in direction r and l, respectively.

Fig. 4. Test case 1 and possible paths.

B. Graph generation

The generation of a graph to represent the feasible
transitions of a pallet between two adjacent buffer zones (cf.
Sect.V-B) is tested taking in consideration the transportation
system represented in Fig.5 that consists of five different
modules with two or three positions each. Given the position
of the blocking actuators and the the stacker cranes, the buffer
zones consist in the positions pos(2,1), pos(2,2),
pos(3,2), pos(1,4), pos(3,4), pos(2,3),
pos(3,5), pos(1,5), pos(1,3).

The input facts representing the system characteristics are:

module (1) . pos ((1 ; 2) , 1) . a c t _ s t o p (2 , 1) .
conv (1 , f , 0) .
module (2) . pos ((1 ; 2 ; 3) , 2) . a c t _ s t o p (2 , 2) .
a c t _ s t o p (3 , 2) . c r o s s (2 , 2) . conv (2 , f , 0) .
c r o s s _ c o n v (2 , 2 , l , r) .
module (3) . pos ((1 ; 2) , 3) . a c t _ s t o p ((1 ; 2) , 3) .
c r o s s (2 , 3) . conv (3 , f , b) .

c r o s s _ c o n v (2 , 3 , l , r) .
module (4) . pos ((1 ; 2 ; 3) , 4) . c r o s s ((1 ; 3) , 4) .
c r o s s _ c o n v (1 , 4 , l , r) . c r o s s _ c o n v (3 , 4 , l , r) .
a c t _ s t o p ((1 ; 3) , 4) . conv (4 , f , b) .
module (5) . pos ((1 ; 2 ; 3) , 5) . c r o s s ((1 ; 3) , 5) .
a c t _ s t o p ((1 ; 3) , 5) . conv (5 , f , b) .
c r o s s _ c o n v (1 , 5 , l , r) . c r o s s _ c o n v (3 , 5 , l , r) .
conn_mod (2 , 1 , 2 , 1 , 2 , 4) .
conn_mod (2 , 3 , 2 , 2 , 2 , 3) .
conn_mod (1 , 4 , 1 , 1 , 1 , 3) .
conn_mod (1 , 4 , 3 , 3 , 5 , 3) .
conn_mod (2 , 4 , 1 , 2 , 1 , 3) .
conn_mod (2 , 4 , 3 , 2 , 5 , 3) .
conn_mod (3 , 4 , 1 , 1 , 2 , 3) .
conn_mod (3 , 4 , 2 , 2 , 3 , 1) .
conn_mod (3 , 4 , 3 , 1 , 5 , 3) .
conn_mod (1 , 5 , 4 , 1 , 3 , 1) .

Fig. 5. Test case 2.

The graph can be generated if a program with the rules
presented in Sect.V-B is run:

Answer : 1
s t a r t (2 , 3) end (1 , 3)
Answer : 2
s t a r t (2 , 3) end (3 , 4)
Answer : 3
s t a r t (1 , 5) end (3 , 4)
Answer : 4
s t a r t (2 , 2) end (3 , 2)
Answer : 5
s t a r t (3 , 4) end (2 , 3)
Answer : 6
s t a r t (1 , 3) end (2 , 3)
Answer : 7
s t a r t (2 , 2) end (2 , 3)
Answer : 8
s t a r t (2 , 3) end (2 , 2)
Answer : 9

594 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

s t a r t (3 , 4) end (1 , 5)
Answer : 10
s t a r t (1 , 4) end (3 , 5)
Answer : 11
s t a r t (3 , 5) end (1 , 4)
Answer : 12
s t a r t (1 , 5) end (3 , 5)
Answer : 13
s t a r t (3 , 4) end (1 , 4)
Answer : 14
s t a r t (3 , 5) end (1 , 5)
Answer : 15
s t a r t (2 , 1) end (2 , 2)
Answer : 16
s t a r t (1 , 4) end (3 , 4)
SATISFIABLE Models : 16 , Time : 0 .1 1 3 s

Since 16 stable models are obtained, it means that 16
directed arcs must be added to the reachability graph rep-
resenting the considered transportation system, as shown in
Fig.6. For instance, since the position pos(2,2) can be
reached from the position pos(2,1), then an arc from node
pos(2,1) to node pos(2,2) is added to the graph.

Fig. 6. Reachability graph of Test case 2.

VII. CONCLUSIONS

This paper presented an initial study showing the use of
ASP to enable automatic generation of a formal model repre-
senting a modular and reconfigurable transportation systems.
In addition, the reasoning capabilities of ASP can be exploited
to derive system properties and control sequences. Further
developments will address:

• an extension to the multi-pallet case. This will require to
modify and the rules in Sect.IV-C to specify the position
of each pallet. Moreover, it will be needed to constrain
that in a position there can only one pallet.

• the addition of rules to support the applications (iii) and
(iv) defined in Sect.I

• testing the programs on problems of larger size. The rules
have already been tested on the plant presented in [18]
showing an acceptable performance.

• the integration with a semantic representation of the
system for an automatic generation of the input facts
and the results of the reasoning to better support the
interoperability with other tools [19], [20].

• a more extended comparison between ASP and Petri Nets.
Moreover, given the input facts characterizing a system
(cf. Sect.IV-A), then the rigid knowledge (cf. Sect.IV-B)
with additional rules can be actually used to automatically
generate a formal model of the system as a Petri Net. This
would be the reciprocal of what developed by Anwar et
al. [15] and would pave the way to a synergistic use of
ASP and Petri Nets.

ACKNOWLEDGMENT

The authors thank Dr. Andrea Cataldo for his support in the
definition of the problem statement and the formalization and
analysis of the case studies.

REFERENCES

[1] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and
H. V. Brussel, “Reconfigurable manufacturing systems,” CIRP Annals -

Manufacturing Technology, vol. 48, no. 2, pp. 527–540, 1999.
[2] A. Gola and A. Swic, “Reconfigurable manufacturing systems as a

way of long-term economic capacity management,” Actual Problems

of Economics, vol. 166, no. 4, pp. 15–22, 2015. cited By 0.
[3] E. Carpanzano, A. Cesta, A. Orlandini, R. Rasconi, and A. Valente, “In-

telligent dynamic part routing policies in plug&produce reconfigurable
transportation systems,” CIRP Annals - Manufacturing Technology,
vol. 63, no. 1, pp. 425–428, 2014.

[4] S. Haneyah, J. Schutten, P. Schuur, and W. Zijm, “Generic planning and
control of automated material handling systems: Practical requirements
versus existing theory,” Computers in Industry, vol. 64, no. 3, pp. 177
– 190, 2013.

[5] A. Cataldo and R. Scattolini, “Modeling and model predictive control
of a de-manufacturing plant,” in 2014 IEEE Conference on Control

Applications (CCA), pp. 1855–1860, Oct 2014.
[6] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M. Merdan, “Inte-

grating software agents and iec 61499 realtime control for reconfigurable
distributed manufacturing systems,” in 2008 International Symposium on

Industrial Embedded Systems, pp. 249–252, June 2008.
[7] C. A. Petri, Kommunikation mit Automaten. PhD thesis, UniversitÃd’t

Hamburg, 1962.
[8] M. Gelfond and V. Lifschitz, “The stable model semantics for logic

programming,” in Proceedings of International Logic Programming

Conference and Symposium (R. Kowalski, Bowen, and Kenneth, eds.),
pp. 1070–1080, MIT Press, 1988.

[9] V. Lifschitz, “What is answer set programming?,” in Proceedings of

the 23rd National Conference on Artificial Intelligence - Volume 3,
AAAI’08, pp. 1594–1597, AAAI Press, 2008.

[10] G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming at
a glance,” Commun. ACM, vol. 54, pp. 92–103, Dec. 2011.

[11] V. Lifschitz, “Answer set programming and plan generation,” Artificial

Intelligence, vol. 138, no. 1, pp. 39 – 54, 2002.
[12] E. Aker, V. Patoglu, and E. Erdem, “Answer set programming for reason-

ing with semantic knowledge in collaborative housekeeping robotics,”
IFAC Proceedings Volumes, vol. 45, no. 22, pp. 77 – 83, 2012.

[13] J. J. Portillo, C. L. Garcia-Mata, P. R. Márquez-Gutiérrez, and R. Baray-
Arana, “Robot platform motion planning using answer set program-
ming,” in LA-NMR, 2011.

[14] F. Yang, P. Khandelwal, M. Leonetti, and P. Stone, “Planning in answer
set programming while learning action costs for mobile robots,” in AAAI

Spring 2014 Symposium on Knowledge Representation and Reasoning

in Robotics (AAAI-SSS), March 2014.

WALTER TERKAJ ET AL.: ANSWER SET PROGRAMMING FOR MODELING AND REASONING 595

[15] S. Anwar, C. Baral, and K. Inoue, “Encoding petri nets in answer set pro-
gramming for simulation based reasoning,” CoRR, vol. abs/1306.3542,
2013.

[16] S. Anwar, C. Baral, and K. Inoue, Encoding Higher Level Extensions of

Petri Nets in Answer Set Programming, pp. 116–121. Springer Berlin
Heidelberg, 2013.

[17] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele, “Potassco User Guide,” 2015.
Available online: http://potassco.sourceforge.net (Last accessed on 11
September 2017).

[18] A. Cataldo, R. Scattolini, and T. Tolio, “An energy consumption eval-
uation methodology for a manufacturing plant,” {CIRP} Journal of

Manufacturing Science and Technology, vol. 11, pp. 53 – 61, 2015.
[19] M. R. Blackburn and P. O. Denno, “Using semantic web technologies

for integrating domain specific modeling and analytical tools,” Procedia

Computer Science, vol. 61, pp. 141 – 146, 2015. Complex Adaptive
Systems San Jose, CA November 2-4, 2015.

[20] W. Terkaj, T. Tolio, and M. Urgo, “A virtual factory approach for in situ
simulation to support production and maintenance planning,” {CIRP}

Annals - Manufacturing Technology, vol. 64, no. 1, pp. 451 – 454, 2015.

596 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

