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Abstract:
Long-range interactions occurring in heterogeneous materials are responsible for the dispersive character of
wave propagation. To capture these experimental phenomena without resorting to molecular and/or atomistic
models, generalized continuum theories can be conveniently used. In this framework, this paper presents a
three-length-scale gradient elasticity formulation whereby the standard equations of elasticity are enhanced
with one additional strain gradient and two additional inertia gradients to describe wave dispersion in mi-
crostructured materials. It is well known that continualization of lattice systems with distributed microstruc-
ture leads to gradient models. Building on these insights, the proposed gradient formulation is derived by
continualization of the response of a non-local lattice model with two-neighbor interactions. A similar model
was previously proposed in the literature for a two-length-scale gradient formulation, but it did not include all
the terms of the expansions that contributed to the response at the same order. By correcting these inconsisten-
cies, the three-length-scale parameters can be linked to geometrical and mechanical properties of the material
microstructure. Finally, the ability of the gradient formulation to simulate wave dispersion in a broad range of
materials (aluminum, bismuth, nickel, concrete, mortar) is scrutinized against experimental observations.
Keywords: enriched continua, gradient elasticity, internal length scale, lattice models, material microstructure,
wave dispersion
DOI: 10.1515/jmbm-2018-2002

1 Introduction

Dispersion of waves propagating in heterogeneous materials occurs because of nonlocal (long-range) interac-
tions taking place in the microstructure. According to experiments, different harmonic wave components travel
with different velocities [1], [2], [3], [4], [5], [6], [7], [8]. This dispersive behavior occurs because the wave length
is of the same order of magnitude as the dominant heterogeneities. According to the classical elasticity the-
ory, though, every wave number has the same phase velocity, which is reasonable for a (ideal) homogeneous
medium but in contrast to the above experimental observations in (realistic) heterogeneous materials. While
molecular and/or atomistic models can describe dispersive phenomena by incorporating nonlocal interactions
between atoms in a discrete fashion, there exists a field of research in mechanics that has focused on how to
describe these microstructural effects with continuum, rather than discrete, formulations. Evidently, there is
a need for additional terms in classical continuum theory in order to capture these physical phenomena. This
has given rise to the development of higher-order (or enhanced) continuum theories [9], including nonlocal
elasticity [10], [11], [12] and gradient elasticity [13], [14], [15], [16], [17]. In particular, gradient elasticity theo-
ries include higher-order spatial derivatives of relevant field quantities in the equations of motions, e.g. strains,
accelerations or stresses. Each higher-order term is accompanied by an internal length scale, which depends
upon the underlying material microstructure, see [18] for a recent overview.

This paper presents a three-length-scale gradient elasticity formulation to capture wave dispersion observed
in heterogeneous and microstructured materials. In line with previous studies from the relevant literature, in
Dario De Domenico is the corresponding author.
©2018 Walter de Gruyter GmbH, Berlin/Boston.
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addition to the classical strain gradients [19], [20], combined (mixed) spatial-temporal derivatives are included
through acceleration gradients (also called inertia gradients) [21], [22], [23], [24], [25], [26], [27]. This three-
length-scale gradient formulation, recently developed by the authors [28], [29], [30], [31], is featured by an
improved dispersive behavior due to the presence of two micro-inertia terms multiplying the 2nd order and
the 4th order spatial derivative of the acceleration field in the governing equations of motion.

This paper complements the previous research work in the following aspects. First, the gradient model
is here theoretically supported by a non-local lattice. It is well known that continualization of lattice systems
with distributed microstructure leads to gradient models [31], [32]. In this regard, in [33] a two-length-scale
gradient formulation with one strain gradient and only one inertia gradient has been derived by continualiza-
tion of a non-local lattice model with two-neighbor interactions and with uniform distribution of micro mass.
Building on this previous paper [33] but at the same time highlighting some inconsistencies noted in these
earlier derivations, the lattice model is here corrected and expanded to incorporate the two inertia gradients of
the present formulation. The equations of motions are obtained by applying Hamilton’s principle to the energy
functionals identified by standard continualization of the discrete equations resulting from the non-local lattice
model. Through these derivations, the length scale parameters can be interpreted based on geometrical and me-
chanical properties of the underlying microstructure. Then, the dispersive capabilities of the three-length-scale
gradient elasticity model are scrutinized against experimental findings on a broad range of materials, including
aluminum, bismuth, nickel, concrete and mortar.

2 Three-length-scale gradient elasticity formulation

Previous papers from the literature demonstrated that an effective class of gradient elasticity theories for cap-
turing wave dispersion should involve mixed spatial-temporal derivatives alongside higher-order derivatives
with respect to the spatial coordinates only. In physical terms, higher-order contributions should thus appear
both in the stiffness and the inertia terms. The simplest (and also the most popular in this class) gradient model
complying with this requirement contains two higher-order terms: one strain gradient and one inertia gradient,
each accompanied by a corresponding internal length scale [13], [21]. As an extension of this model, one more
inertia gradient can be added for an improved dispersive behavior, also motivated by nano-scale experimental
observations on materials with microstructure [28]. The equations of motion of this three-length-scale gradient
model read

𝜌( ̈𝑢𝑖 − 𝛼ℓ2 ̈𝑢𝑖,𝑛𝑛 + 𝛽ℓ4 ̈𝑢𝑖,𝑗𝑗𝑛𝑛) = 𝐶𝑖𝑗𝑘𝑙(𝑢𝑘,𝑗𝑙 − 𝛾ℓ2𝑢𝑘,𝑗𝑙𝑛𝑛) (1)

where α, β, γ are three coefficients that adjust the magnitudes between three-length-scale parameters, all multi-
plying the length scale ℓ of the material microstructure – introduced to ensure dimensional consistency between
the terms in Eq. (1). The two-length-scale gradient model discussed above is retrieved as a special case of Eq.
(1) for β = 0: in this case, γℓ2 may be viewed as a length scale in statics, while αℓ2 represents a length scale in
dynamics according to [13], [21]. Thus, βℓ4 is related to an additional length scale in dynamics. Through the
one-dimensional format of Eq. (1), longitudinal wave dispersion for a simple thin rod of constant cross section
is described by [28]

(𝜔ℓ
𝑐𝑒

)
2

= (𝑘ℓ)2 1 + 𝛾(𝑘ℓ)2

1 + 𝛼(𝑘ℓ)2 + 𝛽(𝑘ℓ)4
→ 𝑐2

𝑐2𝑒
= 1 + 𝛾(𝑘ℓ)2

1 + 𝛼(𝑘ℓ)2 + 𝛽(𝑘ℓ)4
(2)

where 𝑐𝑒 ≡ √𝐸/𝜌 is the one-dimensional wave velocity of classical elasticity, ω is the angular frequency, k the
wave number and c = ω/k the phase velocity. Modifying the relative magnitude of the three length scales gives
rise to a wide class of dispersive behaviors, as illustrated in [28], which makes the proposed model versatile in
capturing wave dispersion in a range of materials. This will be demonstrated in detail later on in this paper.

3 A non-local lattice model supporting the gradient model

The model in Eq. (1), in its one-dimensional format, can be derived from the continualization of the response
of a lattice. We here provide a derivation based on a similar lattice model proposed by Polyzos and Fotiadis
[33] for a two-length-scale gradient formulation (without the β term, only one inertia gradient). Assuming an
infinite domain for the non-local lattice model, boundary integrals will be ignored in the below derivations.
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The simple one-dimensional lattice model with two-neighbor interactions is depicted in Figure 1. It consists
of a periodic mass-and-spring chain model. Lumped masses M are located at uniform particle spacing ℓ, which
may be interpreted as the unit cell of a non-homogeneous material having mass density ρM = M/Aℓ, with A
denoting the cross-sectional area. The masses are connected to each other by springs of stiffness k1 and k2 if
the closest and second closest particles are considered; note that these springs are assumed to act in parallel
rather than in series. From the Hooke’s law, the stiffness of the springs is ki = EiA/ℓ (i = 1, 2), with E denoting
the Young’s modulus. Two values of the Young’s modulus E1 and E2 corresponding to neighboring and non-
neighboring masses, respectively, are introduced. As an example, with reference to the microstructure of a
composite material like concrete, the masses M simulate the aggregates, the springs of properties k1 reproduces
the elastic characteristics of the cementitious matrix and the ratio k2/k1 is a measure of the non-local to local
interactions within the concrete matrix due to the particle long-range interactions – cf. Figure 1.

Figure 1: Non-local lattice model with two neighbor interactions and physical counterpart.

Continualization is performed by replacing the displacement un(t) of the mass particle n located at xn with
the continuous displacement u(x, t); for the neighboring and non-neighboring particles this implies that un±1(t)
= u(x ± ℓ, t) and un±2(t) = u(x ± 2ℓ, t) because xn±1 = xn ± ℓ and xn±2 = xn ± 2ℓ, respectively. In order to incorporate
the effect of the micro-inertia on the axial vibration of the chain, springs k1 pertaining to neighboring mass
connections are not massless as in classical lattice models, but springs with uniformly distributed mass m1 and
density ρm1 (micro-volume density). In particular, the micro-mass distribution is representative of a discrete
set of small masses me, located between two neighbor particles M, connected with each other through springs
of stiffness ke, and such that ∑ 𝑚𝑒 = 𝑚1 and ∑ 1/𝑘𝑒 = 1/𝑘1. This micro-mass distribution is responsible for the
two micro-inertia terms of the proposed gradient elasticity formulation. To further extend the previous model
in [33], also springs k2 pertaining to non-neighboring mass connections are here assumed to have uniformly
distributed mass m2 and micro-density ρm2; whereas in the earlier paper [33] they were supposed as massless.
To compute the contribution of micro-masses me to the kinetic energy density of the system, in Figure 1 we
introduce a local coordinate system z and the velocity of each micro-mass me at z, by linear interpolation, is

̇𝑢(𝑧, 𝑡) = ̇𝑢(𝑥, 𝑡) + ̇𝑢(𝑥 + ℓ, 𝑡) − ̇𝑢(𝑥, 𝑡)
ℓ 𝑧 (3)

for the micro masses pertaining to springs k1 and, by analogy,

̇𝑢(𝑧, 𝑡) = ̇𝑢(𝑥, 𝑡) + ̇𝑢(𝑥 + 2ℓ, 𝑡) − ̇𝑢(𝑥, 𝑡)
2ℓ 𝑧 (4)

for the micro masses pertaining to springs k2. Therefore, a continualization approach for the micro-inertia is
performed, where the micro-mass-spring system me – ke is replaced by springs of stiffness k1 and mass m1 for
neighbor, and k2, m2 for non-neighboring particles.

For a unit cell ℓ corresponding to the nth mass M, the stored potential energy density (per unit macro-
volume) is
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𝒲 =
1
2

⎧{
⎨{⎩

1
2𝑘1[𝑢(𝑥, 𝑡) − 𝑢(𝑥 − ℓ, 𝑡)]2

𝐴ℓ +
1
2𝑘1[𝑢(𝑥 + ℓ, 𝑡) − 𝑢(𝑥, 𝑡)]2

𝐴ℓ
⎫}
⎬}⎭

+
1
2

⎧{
⎨{⎩

1
2𝑘2[𝑢(𝑥, 𝑡) − 𝑢(𝑥 − 2ℓ, 𝑡)]2

𝐴ℓ +
1
2𝑘2[𝑢(𝑥 + 2ℓ, 𝑡) − 𝑢(𝑥, 𝑡)]2

𝐴ℓ
⎫}
⎬}⎭

.
(5)

By using Taylor expansions for the terms u(x ± ℓ, t) and u(x ± 2ℓ, t) up to the ℓ5 terms

𝑢(𝑥 ± ℓ, 𝑡) ≈ 𝑢(𝑥, 𝑡) ± ℓ𝑢′(𝑥, 𝑡) +
1
2

ℓ2𝑢″(𝑥, 𝑡) ±
1
6

ℓ3 ̇𝑢‴(𝑥, 𝑡) +
1
24

ℓ4 ̇𝑢⁗(𝑥, 𝑡) ±
1
120

ℓ5 ̇𝑢′′′′′(𝑥, 𝑡)

𝑢(𝑥 ± 2ℓ, 𝑡) ≈ 𝑢(𝑥, 𝑡) ± 2ℓ𝑢′(𝑥, 𝑡) + 2ℓ2𝑢″(𝑥, 𝑡) ±
4
3

ℓ3 ̇𝑢‴(𝑥, 𝑡) +
2
3

ℓ4 ̇𝑢⁗(𝑥, 𝑡) ±
4
15

ℓ5 ̇𝑢′′′′′(𝑥, 𝑡)
(6)

after some algebra and truncating terms beyond 𝒪(ℓ5) Eq. (5) is re-written as

𝒲 =
1
2

𝐸1 ⎡⎢
⎣
𝑢′2 +

ℓ2

4
𝑢′′2 +

ℓ2

3
𝑢′𝑢‴ +

ℓ4

36
𝑢″′2 +

ℓ4

24
𝑢″𝑢⁗ +

ℓ4

60
𝑢′𝑢′′′′′⎤⎥

⎦
+

+
1
2

𝐸2 ⎡⎢
⎣
4𝑢′2 + 4ℓ2𝑢′′2 +

16ℓ2

3
𝑢′𝑢‴ +

16ℓ4

9
𝑢″′2 +

8ℓ4

3
𝑢″𝑢⁗ +

16ℓ4

15
𝑢′𝑢′′′′′⎤⎥

⎦

(7)

wherein we omitted the space and time dependence of the displacement for brevity, i.e. u = u(x, t). In (7) we have
included all the terms that contribute to the strain energy up to ℓ4. We point out that this is the correct version of
continualization as truncation of the Taylor series should only be done once all terms of the same order of ℓ are
collected. This is clearly in disagreement with the model of Polyzos and Fotiadis [33] who truncated Taylor’s
expansion at an earlier stage and thus did not include particular terms in the expression of 𝒲. From Eq. (7) it
can be noted that the classic terms in the non-neighbor particles are scaled by a factor 4 as compared to the
neighbor particles, while the ℓ2 and ℓ4 terms are scaled by a factor 16 and 64, respectively. Therefore, Eq. (7) can
be compacted in the following form

𝒲 =
1
2

𝐸 ⎡⎢
⎣
𝑢′2 + ̄𝑟2 ⎛⎜

⎝
ℓ2

4
𝑢′′2 +

ℓ2

3
𝑢′𝑢‴⎞⎟

⎠
+ ̄𝑟4 ⎛⎜

⎝
ℓ4

36
𝑢″′2 +

ℓ4

24
𝑢″𝑢⁗ +

ℓ4

60
𝑢′𝑢′′′′′⎞⎟

⎠
⎤⎥
⎦

(8)

with

𝐸 = 𝐸1 (1 + 4
𝐸2
𝐸1

) (9)

̄𝑟2 =
1+ 16𝐸2

𝐸1

1+ 4𝐸2
𝐸1

; ̄𝑟4 =
1+ 64𝐸2

𝐸1

1+ 4𝐸2
𝐸1

(10)

where E is the effective Young’s modulus and ̄𝑟2, ̄𝑟4 are two ratios. The strain energy density of a simpler lattice
model where the non-neighbor particle interactions are neglected may be retrieved from (8) by setting E2 = 0,
which leads to E = E1 and ̄𝑟2 = ̄𝑟4 = 1 in (9) and (10).

Similarly, the kinetic energy density for the mass M (per unit macro-volume) is equal to

𝒯 𝑀 = 1
𝐴ℓ [

1
2

𝑀 ̇𝑢2] =
1
2

𝜌𝑀 ̇𝑢2 (11)

The kinetic energy density for the micro-mass-spring system corresponding to springs k1 and pertaining to the
unit cell ℓ is

𝒯 𝑚1 =
1
2

⎧{
⎨{⎩

1
2 ∫ℓ

0 𝜌𝑚1𝐴[ ̇𝑢−
1 (𝑧, 𝑡)]2d𝑧

𝐴ℓ +
1
2 ∫ℓ

0 𝜌𝑚1𝐴[ ̇𝑢+
1 (𝑧, 𝑡)]2d𝑧

𝐴ℓ
⎫}
⎬}⎭

. (12)
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with the coordinate z indicating the distance of each point of the spring from its left end (Figure 1), and
̇𝑢−
1 (𝑧, 𝑡), ̇𝑢+

1 (𝑧, 𝑡) denoting the point velocities of the springs with end velocities ̇𝑢(𝑥−ℓ, 𝑡), ̇𝑢(𝑥, 𝑡) and ̇𝑢(𝑥, 𝑡), ̇𝑢(𝑥+
ℓ, 𝑡), respectively. Considering particle spacing ℓ being very small, ̇𝑢−

1 (𝑧, 𝑡), ̇𝑢+
1 (𝑧, 𝑡) are obtained through linear

interpolation (3). Similarly to (6), Taylor expansions are applied to the resulting terms ̇𝑢(𝑥 ± ℓ, 𝑡) up to the order
ℓ6, i.e.

̇𝑢(𝑥 ± ℓ, 𝑡) =
6

∑
𝑖=0

̇𝑢(𝑖)(𝑥, 𝑡)
𝑖! (±ℓ)𝑖. (13)

On the contrary, linear expansions for the velocities were considered in the earlier model by Polyzos and Fotiadis
[33], but this is somehow in contrast to the quadratic expansion in space adopted for the displacements by
the same authors in the same paper. By including these higher-order terms for the velocities, extra terms are
obtained that were not included in [33]. After some algebra, the following expression of the kinetic energy
density of the micro-mass-spring system k1 – m1 truncated up to ℓ6 is obtained

𝒯 𝑚1 =
1
2

𝜌𝑚1 ⎡⎢
⎣

̇𝑢2 +
ℓ2

3
̇𝑢′2 +

ℓ2

2
̇𝑢 ̇𝑢″ +

ℓ4

12
̇𝑢′′2 +

ℓ4

9
̇𝑢′ ̇𝑢‴ +

ℓ4

24
̇𝑢 ̇𝑢⁗+ �

�+
ℓ6

108
̇𝑢″′2+

ℓ6

72
̇𝑢″ ̇𝑢⁗ +

ℓ6

180
̇𝑢′ ̇𝑢′′′′′ +

ℓ6

720
̇𝑢 ̇𝑢′′′′′′⎤⎥

⎦
.

(14)

Another difference as compared to the model in [33] is the inclusion of micro masses also in the non-neighbor
springs k2, whose contribution to the kinetic energy density, by similarity with (12), can be expressed as

𝒯 𝑚2 =
1
2

⎧{
⎨{⎩

1
2 ∫2ℓ

0 𝜌𝑚2𝐴[ ̇𝑢−
2 (𝑧, 𝑡)]2d𝑧

𝐴(2ℓ) +
1
2 ∫2ℓ

0 𝜌𝑚2𝐴[ ̇𝑢+
2 (𝑧, 𝑡)]2d𝑧

𝐴(2ℓ)
⎫}
⎬}⎭

. (15)

In (15) ̇𝑢−
2 (𝑧, 𝑡), ̇𝑢+

2 (𝑧, 𝑡) are the point velocities of the springs with end velocities ̇𝑢(𝑥 − 2ℓ, 𝑡), ̇𝑢(𝑥, 𝑡) and
̇𝑢(𝑥, 𝑡), ̇𝑢(𝑥 + 2ℓ, 𝑡), respectively. Similarly to the previous case, they are computed through linear interpola-

tion (4), then Taylor expansions are considered for the terms ̇𝑢(𝑥 ± 2ℓ, 𝑡) [in line with (13)], which leads to

𝒯 𝑚2 =
1
2

𝜌𝑚2 ⎡⎢
⎣

̇𝑢2 +
4ℓ2

3
̇𝑢′2 + 2ℓ2 ̇𝑢 ̇𝑢′′2 +

4ℓ4

3
̇𝑢′′2 +

16ℓ4

9
̇𝑢′ ̇𝑢‴ +

2ℓ4

3
̇𝑢 ̇𝑢⁗+ �

�+
16ℓ6

27
̇𝑢″′2+

8ℓ6

9
̇𝑢″ ̇𝑢⁗ +

16ℓ6

45
̇𝑢′ ̇𝑢′′′′′ +

4ℓ6

45
̇𝑢 ̇𝑢′′′′′′⎤⎥

⎦
.

(16)

The sum of the kinetic energy densities given in (11), (14) and (16) represents the total kinetic energy density of
the rod. By comparing (16) with (14), it is noted that the ℓ2 terms in the non-neighbor particles are scaled by a
factor of 4, the ℓ4 terms are scaled by a factor of 16 and the ℓ6 terms by a factor 64. Thus, the following compact
expression for 𝒯 can be written

𝒯 = 𝒯 𝑀 + 𝒯 𝑚1 + 𝒯 𝑚2 =

=
1
2

𝜌
⎧{
⎨{⎩

̇𝑢2 + 𝜌𝑚1
𝜌

⎡⎢
⎣

̂𝑟2 ⎛⎜
⎝

ℓ2

3
̇𝑢′2 +

ℓ2

2
̇𝑢 ̇𝑢″⎞⎟

⎠
+ ̂𝑟4 ⎛⎜

⎝
ℓ4

12
̇𝑢′′2 +

ℓ4

9
̇𝑢′ ̇𝑢‴ +

ℓ4

24
̇𝑢 ̇𝑢⁗⎞⎟

⎠
+��

��+ ̂𝑟6 ⎛⎜
⎝

ℓ6

108
̇𝑢″′2+

ℓ6

72
̇𝑢″ ̇𝑢⁗ +

ℓ6

180
̇𝑢′ ̇𝑢′′′′′ +

ℓ6

720
̇𝑢 ̇𝑢′′′′′′⎞⎟

⎠
⎤⎥
⎦

⎫}
⎬}⎭

(17)

where ρ = ρM + ρm1 + ρm2 is the total mass density of the lattice system and the ̂𝑟𝑖 ratios are

̂𝑟2 = 1 + 4
𝜌𝑚2
𝜌𝑚1

; ̂𝑟4 = 1 + 16
𝜌𝑚2
𝜌𝑚1

; ̂𝑟6 = 1 + 64
𝜌𝑚2
𝜌𝑚1

. (18)

We point out that several terms entering the kinetic energy density (17) were not present in the formulation
discussed in [33] because of the following reasons:

1. linear expansion of the velocity field was considered in [33], whereas terms up to ℓ6 are included in the
Taylor’s expansion (13);
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2. the contribution ρm2 was not present in [33] because the springs k2 were assumed massless in the previous
model;

3. other terms were simply ignored in [33] because the authors truncated the Taylor series at an earlier stage,
before collecting all terms with equal powers of ℓ. Consequently, the higher order terms were incomplete
in [33]. As an example, there is no reason for omitting terms like ̇𝑢′ ̇𝑢‴ and retaining terms like ̇𝑢′′2, because
they are both accompanied by ℓ4 powers, thus they contribute to the overall response at the same order of
approximation. Similar statements also hold for the potential energy density – compare Eq. (8) with Eq.
(43) of the Polyzos and Fotiadis paper [33]. Instead, the correct truncation should be done after applying
the Hamilton’s variational principle in a consistent manner, as done in this paper.

Once the energy functionals (8) and (17) are determined, the derivation of the equations of motion follows the
usual procedures underlying the Hamilton’s variational principle, which yields

𝜌 ⎛⎜
⎝

̈𝑢 + ̂𝑟2𝜌𝑚1
𝜌

ℓ2

6
̈𝑢″ + ̂𝑟4𝜌𝑚1

𝜌
ℓ4

72
̈𝑢⁗ + ̂𝑟6𝜌𝑚1

𝜌
ℓ6

2160
̈𝑢′′′′′′⎞⎟

⎠
= 𝐸 ⎛⎜

⎝
𝑢″ +

̄𝑟2ℓ2

12
𝑢⁗ +

̄𝑟4ℓ4

360
𝑢′′′′′′⎞⎟

⎠
(19)

which is the sought equation of motion of the non-local lattice model. The micro-inertia properties of the ma-
terial are characterized by the ratio ρm1/ρ (micro-to-macro density ratio) and by the ̂𝑟𝑖 ratios that control the
ρm2/ρm1 parameter, while the micro-stiffness properties are governed by the ̄𝑟𝑖 ratios that reflect the E2/E1
parameter. It is observed that this continualization approach provides results that are consistent with contin-
ualizing the equations of motions. For simplicity, we ignore for the moment the influence of the spring-mass
system k2 – m2 by setting E2 = 0 and ρm2 = 0 so that all the ̂𝑟𝑖 and ̄𝑟𝑖 ratios are equal to one and Eq. (19) can be
factorized as

𝜌 ̈𝑢 = (1 +
ℓ2

12
∇2 +

ℓ4

360
∇4) (𝐸𝑢″ −

1
6

ℓ2𝜌𝑚1 ̈𝑢″) . (20)

which is different to the final equation presented by Polyzos and Fotiadis [33] for the reasons outlined above.
The destabilizing terms entering Eq. (20) can be resolved using Padé approximations of the differential operator
which, after some algebra, leads to

𝜌 ⎛⎜
⎝

̈𝑢 −
ℓ2

12
̈𝑢″ + (

1
240

+
1
72

𝜌𝑚1
𝜌 −

1
36

𝜌𝑚1
2

𝜌2 ) ℓ4 ̈𝑢⁗⎞⎟
⎠

= 𝐸 ⎛⎜
⎝

𝑢″ −
ℓ2

6
𝜌𝑚1
𝜌 𝑢⁗⎞⎟

⎠
. (21)

Comparing Eq. (1) and Eq. (21) leads to a clear, one-to-one identification of the α, β, γ constants of the proposed
three-length-scale gradient elasticity formulation

𝛼 =
1
12

; 𝛽 =
1
240

+
1
72

𝜌𝑚1
𝜌 −

1
36

𝜌𝑚1
2

𝜌2 ; 𝛾 =
1
6

𝜌𝑚1
𝜌 . (22)

which are linked to geometrical and mechanical properties of the material microstructure, represented by the
non-local lattice model.

4 Comparison with experiments

Here, the ability of the three-length-scale gradient model to capture wave dispersion for a broad range of ma-
terials is scrutinized. Comparison against experimental findings on metals and alloys (aluminum, bismuth,
nickel), as well as concrete (in the fresh and hardened state) and mortar is displayed in Figure 2 and Figure 3,
respectively. The length scale parameters in Eq. (2) result from a non-linear least square minimization proce-
dure. It is seen that the proposed gradient elasticity formulations are versatile, as they are able to describe a
range of dispersive characteristics arising from experiments. These include: i) inflection points for metals and
alloys beyond the first Brillouin zone – this experimental observation cannot be captured without the addi-
tional β term, as already demonstrated in [28]; ii) a phase velocities curve that decreases with increasing wave
numbers in fresh concrete; iii) a phase velocities curve that increases with increasing wave numbers in hard-
ened concrete and hardened mortar. Overall, the proposed gradient model captures all qualitative aspects of
the experimental results.
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Figure 2: Experimental dispersion curves for aluminum, bismuth [3], [4] and nickel [5] vs. simulations with proposed
gradient elasticity model.

Figure 3: Experimental dispersion curves for fresh concrete [7], hardened concrete and hardened mortar [8] vs. simula-
tions with proposed gradient elasticity model.

5 Conclusions

Wave dispersion occurring in heterogeneous and microstructured materials can be described through gener-
alized continuum theories with higher-order terms. To this end, a three-length-scale gradient formulation has
been used to capture experimental results concerning dispersive wave propagation in a range of materials. This
formulation is featured by one strain gradient and two inertia gradients – the latter ensuring an improved dis-
persive behavior in comparison with a simpler model with just one micro-inertia term, widely employed in
the literature. Despite being introduced by a simple phenomenological deduction based on observations of the
dispersion curve of microstructured materials, this three-length-scale gradient model also has some physical
justifications. This has been demonstrated here by the authors through the introduction of a non-local lattice
model with two neighbor interactions, which can be viewed as the idealization of matrix stiffness and particle
long-range interactions in composite materials and heterogeneous media. A similar non-local lattice model was
earlier presented in the literature for a simpler gradient formulation, but the authors have pointed out in the
present paper that the previous model did not contain all the terms that contributed to the response at the same
order – thus, the higher order terms were incomplete. By correcting the above inconsistencies, and by properly
extending the Taylor series the three length scale parameters are directly linked to geometrical and mechani-
cal properties of the materials microstructure. Finally, the ability of the gradient formulation to capture wave
dispersion characteristics arising from real experiments on a broad range of materials has been scrutinized.
This has revealed a great versatility of the model to fit a variety of dispersive behaviors for different materials,
spanning from metals and alloys to concrete and cementitious materials at different states.
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