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Abstract

We consider the second order nonlinear ODE u′′ − f(t, u) = 0 and assume that

f(·, v0) ≡ 0, for some v0 ∈ R. We prove the existence of closed connected sets

Γ ⊆ R2 of initial points such that for each (α, β) ∈ Γ there exists a solution u(·)
of the given differential equation, with (u(t0), u

′(t0)) = (α, β) and (u(t), u′(t)) →
(v0, 0) as t → −∞ (or as t → +∞). These results are then applied to the search

of heteroclinic and homoclinic solutions.
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96 A. Margheri, C. Rebelo, F. Zanolin

1 Introduction

The search for heteroclinic or homoclinic solutions for second order non–autonomous
differential equations plays a crucial role in many different areas of applied mathe-
matics where these solutions represent relevant states for the systems under inves-
tigation. In the literature, different methods have been developed and applied for
dealing with such problems (see, for instance [1, 4, 5, 10, 16, 21, 22, 32, 34] and the
references therein).

Among these techniques, a possible approach already considered by some authors
(cf. [8, 14, 17] ) consists of gluing together the unstable and the stable manifolds
of some critical points. More precisely, let us suppose that p and q are zeros of a
given vector field and we want to find a solution u(·) of the corresponding second
order ODE such that (u(t), u′(t)) → (p, 0) as t → −∞ and (u(t), u′(t)) → (q, 0)
as t → +∞. In this situation, one could split the problem into the following three
parts. As a first step, we fix t0 ∈ R and look at the set W−

p (t0) of the initial points
(u(t0), u′(t0)) such that (u(t), u′(t)) → (p, 0) for t → −∞. Secondly, we fix t1 ∈ R,
with t1 ≥ t0 and look at the set W+

q (t1) of the initial points (u(t1), u′(t1)) such
that (u(t), u′(t)) → (q, 0) for t → +∞. Finally, if t0 = t1 , we can try to check that
W−

p (t0) ∩W+
q (t0) 6= ∅ (in some cases, like in the search of homoclinic solutions for

p = q, one would like also to prove that the intersection is nontrivial). Otherwise,
if t0 < t1 , one is led to the study of a generalized Sturm - Liouville boundary value
problem of the form





“ the given differential equation ”

(u(t0), u′(t0)) ∈ W−
p (t0), (u(t1), u′(t1)) ∈ W+

q (t1)

with the aim of finding a solution connecting the unstable manifold of (p, 0) to the
stable manifold of (q, 0). Results for generalized Sturm - Liouville type problems
may be found in [33] and in [31], where the authors seek solutions joining two
unbounded connected sets.

In some cases, the first two steps can be solved by using dynamical systems
techniques. This occurs, for instance, if the differential system is asymptotically
autonomous (like in [14, 17]). For the third step, one can study the displacement
φ[t0,t1](W

−
p (t0)) of W−

p (t0) under the action of the flow φt along the interval [t0, t1]
and check for the intersection of φ[t0,t1](W

−
p (t0)) with W+

q (t1).
In other cases, the conditions on the non–autonomous vector field are so mild

that the concept of unstable or stable manifolds must be considered in a topological
sense, without reference to the usual smoothness assumptions associated to these
sets. Hence, in general, proving the existence of (nontrivial) closed and connected
subsets Γ−p (t0) ⊆ W−

p (t0) and Γ+
q (t1) ⊆ W+

q (t1) is the best that one can hope to
achieve in order to apply some topological properties and thus successfully deal with
the third step.

In the present work we look for connected branches of initial points from which
depart solutions having a prescribed asymptotic behavior for t → −∞ or for t →
+∞. Even if the motivation of our study is that of applying these results to the
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Connected branches of initial points 97

search of heteroclinic and homoclinic solutions, the main part of the paper will be
devoted just to the first two steps of the procedure described above. Indeed, we
think that results in this direction may have some independent interest as they
are linked to the problem of the detection of the stable and unstable manifolds in
two-dimensional non-periodic time–dependent vector fields (see [20]).

In detail, we consider the second order ODE

u′′ − f(t, u) = 0, (1.1)

with f : R× R→ R satisfying the Carathéodory assumptions and suppose that

f(t, v0) = 0, for a.e. t ∈ R,

for some v0 ∈ R. Our goal is to perform a careful analysis of the sets

{(u(t0), u′(t0)) ∈ R2 : ∃u(·) solution of (1.1) : u(−∞) = v0 , u′(−∞) = 0}

{(u(t1), u′(t1)) ∈ R2 : ∃u(·) solution of (1.1) : u(+∞) = v0 , u′(+∞) = 0},
or, more precisely, to prove that such sets contain closed connected subsets Γ− and
Γ+ (respectively) satisfying suitable properties. In our analysis, we also discuss the
behavior and the sign (with respect to v0) of the solutions departing from Γ− or
from Γ+.

The plan of this paper is the following. In Section 2 we present the main results
about the existence of continua of initial points from which depart solutions of (1.1)
possessing prescribed asymptotic properties. Our main results are Theorem 2.1 and
its variants (theorems 2.2, 2.3 and 2.4). The argument in the proof makes use of an
approach previously employed in [24] for a different asymptotic problem (namely,
for the search of solutions presenting a blow up at the boundary of a certain inter-
val). It seems to us that such a technique, which represents a rather classical tool
in bifurcation theory [29, 30] and in the study of parameter dependent nonlinear
operator equations [3, 23], has not been fully exploited yet in the search of branches
of solutions possessing a prescribed asymptotic behavior. Theorem 2.5 deals with
the motion of an unstable manifold along the flow in a compact time interval. Since
we don’t assume the uniqueness of the solutions for the associated Cauchy prob-
lems, we apply a “shooting without uniqueness” technique from [9] which is based
on a refinement of an argument considered by Struwe in [33]. Section 3 contains
an extension of our main results to the case of unbounded connected sets of initial
points. In Section 4 we apply our theorems to the search of heteroclinic solutions.
Among other results, we show also an extension of a theorem previously obtained
by Conley [8] and motivated by a mathematical model in population genetics. The
choice of such an example as a model where to test our technique is also motivated
by the interest of putting in evidence the differences between our approach and
those based on Ważewski type methods. Indeed, compared to [8], our approach is
more functional–analytic and less geometric. With respect to [8], we don’t need to
find some Ważewski set in the extended phase–space {(t, x, x′) ∈ R3} where to check
suitable egress point conditions on the boundary. In our setting, the existence of a
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98 A. Margheri, C. Rebelo, F. Zanolin

continuum of initial points from which depart solutions with the desired asymptotic
properties is a consequence of the Leray - Schauder continuation theorem for pa-
rameter depending operator equations, combined with some topological lemmas on
metric continua. As a consequence, we can imitate some geometric features which
are present in [8], but with less expense in terms of conditions on the vector field.
See also [6] for yet another approach for the proof of heteroclinic solutions in the
population genetics model investigated by Conley.

Section 5 deals with the case of homoclinic solutions. Besides an application to
a second order non–autonomous ODE with a superlinear nonlinearity, we present
some examples of piecewise autonomous systems where a detailed analysis of the
time–map allows to provide precise existence and non–existence results. Finally, in
the Appendix, we recall some technical lemmas which are used in the main proofs
of Section 2.

We point out that our results can be applied to ODEs of the form

u′′ + c(t)u′ − g(t, u) = 0, (1.2)

by reducing (1.2) to (1.1) through a suitable change of variable. Clearly, one has
to adapt some integral conditions (like (H1) and (H2) of Theorem 2.1) to the new
framework. For simplicity, however, we confine ourselves only to the analysis of
equation (1.1) and don’t give explicit applications to (1.2).

Throughout the article, the following notation is used: R+ (respectively, R+
0 )

denotes the subset of R consisting of the nonnegative (respectively, positive) real
numbers. N = {1, 2, . . .} is the set of positive integers. By || · || we mean any fixed
norm in the plane R2 and denote by B[R] the closed disc

B[R] := {z ∈ R2 : ||z|| ≤ R}.

For any given interval [a, b] ⊆ R, we denote by C1([a, b]) the Banach space of the
continuously differentiable functions u : [a, b] → R endowed with the norm

||u||1,∞ := ||u||∞ + ||u′||∞ .

We say that a function f = f(t, x) : J1 × J2 → R satisfies the Carathéodory
assumptions (where J1 , J2 ⊆ R are arbitrary intervals) if f(t, ·) is continuous for
almost every t ∈ J1 , f(·, x) is measurable for every x ∈ J2 and, for every pair
of compact intervals I1 ⊆ J1 and I2 ⊆ J2 there exists a nonnegative measurable
function ρ = ρ

I1,I2
∈ L1(I1,R+) such that

|f(t, x)| ≤ ρ(t), for a.e. t ∈ I1 , ∀x ∈ I2 .

In this case, solutions of x′′ = f(t, x) are considered in the generalized sense [12].
Of course, any continuous function satisfies the Carathéodory assumptions and, in
such a situation, the solutions of the corresponding ODE are of class C2.

By a continuum we mean any compact connected subset of a metric space.
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Connected branches of initial points 99

2 Main results

We consider the asymptotic boundary value problem

(P−)





u′′ − f(t, u) = 0
u(−∞) = v0

u′(−∞) = 0,

where f : (−∞, t0]× [v0, v] → R satisfies the Carathéodory assumptions and, more-
over,

f(·, v0) ≡ 0, (2.1)

∀ s ∈ ]v0, v] , f(t, s) ≥ 0 for a.e. t ∈ (−∞, t0]. (2.2)

Theorem 2.1 Assume (2.1) and (2.2) and suppose that the following conditions
hold:

(H1) for each a ∈ ]v0, v[ , there are ε > 0, tε ≤ t0 and a locally integrable
function γε = γa,ε : (−∞, tε] → R+ such that

∫ tε

−∞
γε(θ) dθ = +∞

and
f(t, s) ≥ γε(t), ∀ s ∈ [a, a + ε], for a.e. t ≤ tε ,

(H2) either f(t, v) > 0 in a subset of positive measure of (−∞, t0], or f(t, v) =
0 for a.e. t ∈ (−∞, t0] and there exist δ > 0 and a locally integrable function
η = ηδ : (−∞, t0] → R+ such that

∫ t0

−∞
η(θ) dθ = +∞

and

f(t, s) ≥ η(t)(v − s), ∀ s ∈ [v − δ, v], for a.e. t ∈ (−∞, t0].

Then, there exists a continuum Γ− ⊆ [v0, v]×R+ satisfying the following properties:

(i1) ∀α ∈ [v0, v] , ∃β ≥ 0 such that (α, β) ∈ Γ− .

(i2) Γ− ∩ (
[v0, v]× {0} )

= Γ− ∩ ( {v0} × R+
)

= {(v0, 0)}.

(i3) For each (α, β) ∈ Γ− , there exists a solution u(·) of (P−) such that
u(t0) = α, u′(t0) = β. Moreover, if α ∈ ]v0, v], then there is a maximal interval
]τu, t0] such that u(t) ∈ ]v0, v] and u′(t) > 0, for all t ∈ ]τu, t0]. If τu > −∞,
then u(t) = v0 and u′(t) = 0, ∀ t ≤ τu .
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100 A. Margheri, C. Rebelo, F. Zanolin

Proof. The proof is split into several steps. First we will construct a sequence of
continua Γn made of initial points of solutions of suitable auxiliary boundary value
problems. Then we will show that these continua are equibounded and we will
obtain the continuum Γ− through a limit process on the continua Γn . Finally, we
will show that Γ− actually satisfies (i1), (i2) and (i3).

We start by defining, for technical convenience, a suitable extension of f. Namely,

f̃(t, s) := f(t, P[v0,v](s)), (2.3)

where
P[v0,v](s) := max{v0, min{s, v}}

is the standard projection of R onto the interval [v0, v]. Clearly, any solution of u′′−
f̃(t, u) = 0, with u(t) ∈ [v0, v] for each t ∈ domu(·), is a solution of u′′−f(t, u) = 0
(and vice-versa).

Next, we consider the auxiliary two-points boundary value problems

(Pn,λ)
{

u′′ − f̃(t, u) = 0
u(t0 − n) = v0 , u(t0) = λ,

where
v0 ≤ λ ≤ v and n ∈ N.

It is well known that, for each n ∈ N and λ ∈ [v0, v], the solutions of problem
(Pn,λ) are fixed points in the Banach space Xn := C1[t0 − n, t0], endowed with the
standard C1-norm, of the completely continuous operator T

(n)
λ : Xn → Xn defined

by

T
(n)
λ (u)(t) := ψλ,n(t) +

∫ t0

t0−n

Gn(t, θ)f̃(θ, u(θ)) dθ,

where Gn is the Green’s function associated to the problem
{ −u′′ = w(t)

u(t0 − n) = 0 , u(t0) = 0,

and
ψλ,n(t) := v0 +

λ− v0

n
(t− t0 + n), t ∈ [t0 − n, t0].

We also observe that the image T
(n)
λ (Xn) is bounded. In fact, by the Carathéodory

assumption, there is an integrable function ρ(·) such that

|f(t, s)| ≤ ρ(t), for a.e. t ∈ [t0 − n, t0], and for every s ∈ [v0, v].

Hence, from (Pn,λ) and the definition of T
(n)
λ , we easily find that || d

dtT
(n)
λ (u)||∞ ≤

λ−v0
n + ||ρ||1 ≤ v−v0

n + ||ρ||1 := c
(n)
1 , as well as ||T (n)

λ (u)||∞ ≤ v0 + nc
(n)
1 = v +

n
∫ t0

t0−n
ρ(θ) dθ := c

(n)
2 , so that we can conclude

||T (n)
λ (u)||1,∞ ≤ c

(n)
1 + c

(n)
2 := Mn .
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Connected branches of initial points 101

As a consequence, for every R > Mn , there are no fixed points of the operator T
(n)
λ

on the boundary ∂B(0, R) of the open ball, of center 0 and radius R, B(0, R) ⊆ Xn

and therefore, the Leray-Schauder degree

d := deg(I − T
(n)
λ , B(0, R), 0)

is well defined. If we introduce now the auxiliary parameter, µ ∈ [0, 1], by the above
estimates, we know that

u 6= µT
(n)
λ (u), ∀u ∈ ∂B(0, R), µ ∈ [0, 1]

and the invariance under homotopies of the Leray-Schauder degree guarantees that
d = deg(I,B(0, R), 0) = 1. We have thus proved that for every value of the param-
eter λ ∈ [v0, v],

deg(I − T
(n)
λ , B(0, R), 0) = 1 = constant w.r. to λ

and the theory of topological degree (see Leray-Schauder [19, Théorème Fondamen-
tal] and also [23]) ensures the existence of a continuum

Cn ⊆ [v0, v]×B(0, R) ⊆ R×Xn

such that
u = T

(n)
λ (u),

for every (λ, u) ∈ Cn and the projection of the set Cn on the first factor covers the
interval [v0, v].

Now, for every fixed n ∈ N, we can define the set

Γn := {(u(t0), u′(t0)) : (u(t0), u) ∈ Cn} = {(λ, u′(t0)) : (λ, u) ∈ Cn} ⊆ R× R.

We note that, for each n, the set Γn is a continuum and we have:

• Γn ⊆ [v0, v]× R, P r1(Γn) = [v0, v]

(where we have denoted by Pr1 : (x, y) 7→ x the projection of the plane onto
its first coordinate);

• for each (α, β) ∈ Γn , there exists a solution u = un,α,β to the differential
equation u′′ − f̃(t, u) = 0 such that u(t0 − n) = v0 and u(t0) = α, u′(t0) = β.

Our next step is to prove the equiboundedness of the Γn. More precisely, we
claim that there is K > 0 such that

Γn ⊆ [v0, v]× [0,K], ∀n ∈ N. (2.4)
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102 A. Margheri, C. Rebelo, F. Zanolin

In order to check (2.4) we give some qualitative properties of the solutions of
problem (Pn,λ) . Let u be any solution of (Pn,λ) . By (2.2) and the definition of f̃ ,

we have that u′′(t) = f̃(t, u(t)) ≥ 0, for almost every t ∈ [t0 − n, t0], and therefore
u′ is non-decreasing on the interval [t0 − n, t0].

We claim that u′(t0 − n) ≥ 0. In fact, if, by contradiction, u′(t0 − n) < 0, it
follows that u(t) < v0 for t > t0 − n in a neighborhood of t0 − n. On the other
hand, we know that u(t0) = λ ≥ u(t0 − n) and therefore, there exists an interval
[t0 − n, t1] ⊆ [t0 − n, t0] such that u(t1) = u(t0 − n) = v0 and u(t) < v0 for all
t ∈ ]t0 − n, t1[ . By the definition of f̃ and (2.1) it follows that u′′ ≡ 0 on [t0 − n, t1]
and hence, u(t) = v0 for every t ∈ [t0 − n, t1], a contradiction (remember that u′ is
absolutely continuous).

Now that we have proved that u′ is non-decreasing with u′(t0 − n) ≥ 0, we can
conclude that u′(t) ≥ 0, ∀ t ∈ [t0−n, t0] and therefore v0 ≤ u(t) ≤ v, ∀ t ∈ [t0−n, t0].
Observe also that u′(t0) > 0 when u(t0) = λ > v0 .

It follows that if (α, β) ∈ Γn, then α ∈ [v0, v] and β ≥ 0. Therefore, in order to
complete the proof of (2.1) we must look for an upper bound for β.

Let u be a solution of Pn,α for some n ∈ N such that u′(t0) = β. Since u is
defined on [t0−n, t0], it is obviously defined also in [t0−1, t0], thus we can consider
a function ρ ∈ L1([t0−1, t0],R+) (which comes from the Carathéodory assumptions)
such that f̃(t, s) = |f̃(t, s)| = |f(t, s)| ≤ ρ(t) for every s ∈ [v0, v] and almost every
t ∈ [t0 − 1, t0]. From the equation in (Pn,λ), we then get

u′(t) ≥ β −
∫ t0

t0−1

f̃(θ, u(θ)) dθ ≥ β −
∫ t0

t0−1

ρ(θ) dθ := β −K1 , ∀ t ∈ [t0 − 1, t0].

Integrating again on [t0 − 1, t0], we have

v − v0 ≥ α− u(t) ≥ (β −K1)(t0 − t), ∀ t ∈ [t0 − 1, t0].

This gives immediately the estimate

β ≤ v − v0 + K1 := K (2.5)

with the constant K independent on n ∈ N and completes the proof of (2.4).
We are now in a position to apply a result about limits of continua (see, [2], [18,

§47,II;p.171]) which ensures that

Γ− := lim sup
n→∞

Γn ⊆ [v0, v]× [0,K] (2.6)

is a continuum. Note that
Pr1(Γ−) = [v0, v],

and hence (i1) holds.
Now we must prove (i2) and (i3). We start by analyzing the properties of some

solutions of the equation
u′′ − f̃(t, u) = 0 (2.7)
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Connected branches of initial points 103

with initial point in Γ−. These properties will be used in the proof of both (i2) and
(i3). More precisely, we will prove what follows:

(P1) for any (α, β) ∈ Γ− there exists a solution of equation (2.7) with u(t0) =
α, u′(t0) = β and such that u and u′ are non-decreasing functions with

v0 ≤ u(t) ≤ u(t0) = α, 0 ≤ u′(t) ≤ u′(t0) = β, ∀ t ∈ (−∞, t0]. (2.8)

Note that an immediate consequence of (P1) is that

lim
t→−∞

u(t) =: u−∞ ∈ [v0, v] and lim
t→−∞

u′(t) =: u′−∞ = 0. (2.9)

Now we start the proof of (P1). Let (α, β) ∈ Γ−. By definition, there exists a
sequence (αn, βn) ∈ Γn with (αn, βn) → (α, β). We also know that, for each n ∈ N,
there is at least one solution un to equation (2.7) with (un(t0), u′n(t0)) = (αn, βn)
and un(t0 − n) = v0 . We have already proved that v0 ≤ un(t) ≤ v, as well as
0 ≤ u′n(t) ≤ βn ≤ β + ε for every t ∈ [t0−n, t0], where the last inequality holds, for
any fixed ε and n sufficiently large (say n ≥ n̄ε).

It is convenient now to extend un to (−∞, t0] by setting

(−∞, t0] 3 t 7→
{

un(t0 − n), for t ≤ t0 − n
un(t), for t ≥ t0 − n.

We continue to call un the new function as no confusion occurs. By Ascoli-Arzelà’s
theorem and a standard diagonal argument, we can conclude that there exists a
C1-function u : (−∞, t0] → R which is the pointwise limit of a subsequence of the
(un)n and the convergence is uniform on each compact subset of (−∞, t0]. Writing
(2.7) in an integral form and passing to the limit as n →∞ on such a subsequence,
we can also check that u is a solution of (2.7) on (−∞, t0] and

u(t0) = α, u′(t0) = β.

From the fact that un and u′n are non-decreasing functions with v0 ≤ un(t) ≤ v for
all t ∈ [t0 − n, t0] and 0 ≤ u′n(t) ≤ βn for all t ∈ (−∞, t0], we conclude that u and
u′ are non-decreasing functions which satisfy property (2.8) (and, as a consequence,
property (2.9)).

Having established these properties for some solutions of equation (2.7) origi-
nating from Γ−, we are now ready to prove (i2).

We note first that, if α = v0 , then by (2.8), for the solutions constructed above
we have necessarily β = 0 and u(t) = v0 , for every t ∈ (−∞, t0]. This implies that
Γ− ∩ ( {v0} × R+

)
= {(v0, 0)}.

Suppose now that (α, 0) ∈ Γ− for some α ∈ ]v0, v[ and let u be the corresponding
solution of (2.7), with (u(t0), u′(t0)) = (α, 0), given by (P1). Again by (2.8), we
conclude that u(·) = α on (−∞, t0]. Hence, f̃(t, α) = f(t, α) = 0 for almost every t ∈
(−∞, t0], and this contradicts (H1). We have thus verified that Γ−∩(

[v0, v[×{0} )
=

{(v0, 0)}.
To end the proof of (i2), it remains to check the case (α, β) = (v, β) ∈ Γ− and

prove that, in such a situation, β > 0.
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104 A. Margheri, C. Rebelo, F. Zanolin

Assume, by contradiction, that β = 0. By the properties of the solutions given
by (P1), we obtain that u(t) = v and u′(t) = 0, ∀ t ≤ t0. Hence,

f(t, v) = 0, for a.e. t ∈ (−∞, t0].

We claim that there are ᾱ and β̄ with v0 < ᾱ < v and β̄ > 0, such that every
solution u of equation (2.7) with u(t0) = α ∈ ]ᾱ, v[ , u′(t0) ∈ ]0, β̄[ and such that
u(t) ∈ [v0, v] ∀ t ≤ t0, satisfies u′(t∗) < 0 for a suitable t∗ < t0 . Since, for each point
(α, β) ∈ Γ−, with α ∈ ]v0, v[ and β > 0, we have found solutions of (2.7) originating
from that point at time t0 and we know that those solutions remain in the interval
[v0, v] with nonnegative derivative, we’ll then infer that Γ− ∩ (

]ᾱ, v[× ]0, β̄[
)

= ∅.
On the other hand, Γ− is a continuum which projects onto [v0, v] and thus we’ll
conclude that (v, 0) 6∈ Γ−.

To prove our claim, we assume by contradiction that there is a sequence xn(·) of
solutions to equation (2.7) defined on (−∞, t0] satisfying the following properties:

v0 ≤ xn(t) ≤ αn := xn(t0) ↗ v, 0 ≤ x′n(t) ≤ x′n(t0) := βn ↘ 0+ .

Arguing as in [8], we use polar coordinates around (v, 0) and evaluate the angular
displacement of the solutions in the phase–plane. We take the point (v, 0) as origin
and set

x(t) := v + ρ(t) cos ϕ(t), x′(t) = y(t) := ρ(t) sin ϕ(t),

in order to obtain

−ϕ′(t) = sin2(ϕ(t)) +
f̃(t, x(t))
v − x(t)

cos2(ϕ(t)). (2.10)

By taking n sufficiently large, we can suppose that αn > v − δ
2 (for δ > 0 as in

(H2)) and therefore we can define t∗n < t0 such that ]t∗n, t0] is the maximal interval
such that xn(t) > v− δ for all t ∈ ]t∗n, t0]. One can see that t∗n → −∞. In fact, either
t∗n = −∞, or δ

2 ≤ xn(t0)− xn(t∗n) ≤ (t0 − t∗n)βn , so that t∗n ≤ t0 − δ
2βn

. From (H2)
and (2.10) we can now write

−ϕ′(t) ≥ sin2(ϕ(t)) + η(t) cos2(ϕ(t)), for a.e. t ∈ ]t∗n, t0] (2.11)

and thus we see that ϕ is strictly decreasing as long as x′ > 0. The length of the
time-interval on which ϕ(t) ∈ [π

2 , 3π
4 ] is at most π

2 . Therefore, we can take

τ∗n ∈ [t0 − π

2
, t0]

such that
ϕ(t) ∈ [

3π

4
, π], ∀ t ∈ [t∗n, τ∗n].

Now, from (2.11), we have

−ϕ′(t) ≥ 1
2

η(t), for a.e. t ∈ ]t∗n, τ∗n].
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Connected branches of initial points 105

An integration of this inequality on [t∗n, τ∗n] yields
∫ τ∗n

t∗n

η(t) dt ≤ π.

As a consequence, we find
∫ t0

t∗n

η(t) dt ≤ π + M, with M :=
∫ t0

t0−π
2

η(t) dt.

Letting n → ∞ and recalling that t∗n → −∞, we get a contradiction with respect
to (H2). This ends the proof of (i2).

Now we complete the proof of (i3). We check first that u−∞ = v0 in the case
when u(t0) = α ∈ ]v0, v] and (by (i2)) u′(t0) = β > 0. To this aim, we argue by
contradiction as follows. Assume u−∞ > v0 . If α = v, as β > 0 we have u−∞ < v.
Hence, we have v0 < u−∞ < v. With respect to a = u−∞ , there are ε, tε and γε

as in assumption (H1). We also take ε < v − a and denote by τε the largest t ≤ tε
such that u(θ) ∈ [a, a+ε] for every θ ≤ t. An integration of (2.7) gives the following
estimate:

β ≥ u′(τε) = u′(t) +
∫ τε

t

f̃(θ, u(θ)) dθ ≥
∫ τε

t

γε(θ) dθ := Gε(t)

and the first condition in (H1) leads to a contradiction. In fact, Gε(−∞) = +∞.
At last, for each (α, β) ∈ Γ− with α ∈ ]v0, v] and β > 0, let u be any solution

to equation (2.7) and let us denote by ]τ1
u , t0] the maximal interval where u(t) > v0

and by ]τ2
u , t0] the maximal interval where u′(t) > 0, respectively. We have already

proved that β > 0 so that both the intervals are well defined. By definition, we
have that, if τ2

u > −∞, then u′(t) = 0 and also u(t) = u(τ2
u) for every t ≤ τ2

u .
Hence, u(τ2

u) = v0 and therefore, τ2
u ≤ τ1

u . Conversely, if τ1
u > −∞, since we

know that u(t) ≥ v0 , then u(t) = v0 for every t ≤ τ1
u . Hence we conclude that

u′(t) = 0 for every t ≤ τ1
u which proves that τ1

u ≤ τ2
u . This suffices to guarantee that

τ1
u = τ2

u := τu and u(t) > v0 as well as u′(t) > 0 for all t ∈ ]τu, t0] with ]τu, t0] the
maximal interval with such property. Moreover, if τu > −∞, then u(t) = v0 and
u′(t) = 0, ∀ t ≤ τu .

We have thus proved that all the properties (i1)-(i2)-(i3) hold with respect to
the solutions of the truncated equation (2.7) emanating from Γ− at t = t0 . Since
we have found solutions with range in the interval [v0, v] we can conclude that the
same is true also with respect to the solutions of u′′ − f(t, u) = 0. ¤

Remark 2.1 In property (i3) of the theorem above we claim that for every (α, β) ∈
Γ− there is at least one solution with the desired asymptotic properties. Since we
don’t assume the uniqueness of the solutions to the Cauchy problems, we cannot
guarantee that the same is true for every solution of u′′ − f(t, u) = 0 with initial
values in Γ−. In fact, one could imagine the situation in which there is a solution
starting at (α, β) ∈ Γ− for t = t0 , reaching the level v0 in finite time (say t = τu <
t0) and then being extended for t < τu in any (nonconstant) manner compatible to
the fact of being a solution of the differential equation.
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106 A. Margheri, C. Rebelo, F. Zanolin

Remark 2.2 Condition (H2) in Theorem 2.1 is adapted (in a more general setting)
from a similar assumption considered by Conley in [8] for a particular model. Since
(H2) looks rather technical, a natural question is if such a condition may be avoided.
Indeed, from a first look, the convexity and monotonicity of the positive solutions,
with respect to v0 , of problem (P−) would lead to the conjecture that the continuum
Γ− we find is the graph of a monotonically non-decreasing function with respect to
u(t0) and therefore it cannot end in (v, 0) even in the case when f(·, v) ≡ 0. This
conjecture is indeed true in the autonomous case and it may be verified in various
interesting situations; however, it is not true in general. The next example shows
that if f(·, v) ≡ 0, then some extra condition like (H2) must be imposed in order to
prevent the possibility that there exists an unstable manifold of (v0, 0) which ends
in (v, 0). The same example also shows that the monotonicity of Γ− as a graph of
the u(t0)–variable is not guaranteed.

Example 2.1 Let ν : R→ R be a C1–function with

ν(0) = 0, ν(1) = 1, ν′(s) > 0, ∀ s ∈ [0, 1].

Observe that ν([0, 1]) = [0, 1] and define the continuously differentiable map

Ψ = (Ψ1, Ψ2) : R2 → R2, Ψ : (t, s) 7→ (t, x), with x = ν(s) exp
(
(1− s)t

)
.

It is easy to check that Ψ is a bijection of (−∞, 0]× [0, 1] onto itself and also a C1–
diffeomorphism on a neighborhood of (−∞, 0]× [0, 1]. Let Φ = (Φ1, Φ2) : R2 → R2

be a C1–map such that

Φ(t, x) = Ψ−1(t, x), ∀ (t, x) ∈ (−∞, 0]× [0, 1].

Now we define
f(t, x) := x(1− Φ2(t, x))2.

By construction,
f(t, 0) = f(t, 1) = 0, ∀ t ∈ (−∞, 0]

and the continuum

C− := {( ν(s), ν(s)(1− s)
)

: s ∈ [0, 1] } ⊆ R2 (2.12)

is such that, for each (α, β) ∈ C− \ {(1, 0)} , there exists a solution u(·) of (P−), for
v0 = 0, satisfying u(0) = α, u′(0) = β. Indeed, for (α, β) = (ν(s), ν(s)(1 − s)), the
solution is given by

u(t) = us(t) = ν(s) exp
(
(1− s)t

)
. (2.13)

Of course, for (α, β) = (1, 0) ∈ C−, the unique solution departing at time t = t0 := 0
from that point is the constant one u ≡ 1.

Finally, we point out that, as a consequence of results on exponential dichotomy
and hyperbolic critical sets for non-autonomous systems (see [36, Th. 3.6.3, p.56]),
it is possible to prove that the manifold of initial points in [0, 1] × R+ which are
asymptotic at −∞ to (0, 0) is unique and thus it coincides with the set C− defined in
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Connected branches of initial points 107

(2.12). Therefore, for this particular example, there is no hope to find a continuum
of initial points of solutions of (P−), for v0 = 0, which ends at v = 1 with u′(0) > 0.
¤

Figure 1. Graph of the parametric surface (t, s) 7→ us(t) with us(t) defined as

in (2.13), for ν(s) := s. The set C− in (2.12) corresponds to the thicker line

at the level t = 0.

We can also give examples in which Γ− is not necessarily the graph of a continu-
ous function in the u(t0)–variable. With this respect, we refer to Example 3.1 of the
next section where the case of unbounded sets of initial points is also considered.

Theorem 2.1 guarantees the existence of a continuum Γ− made by initial points
of solutions of (P−) with u(t) ≥ v0 and u′(t) ≥ 0. In a completely similar manner,
we can produce a continuum Υ− made by initial points of solutions of (P−) with
u(t) ≤ v0 and u′(t) ≤ 0. For this variant of Theorem 2.1 we assume v < v0 as
well as that f : (−∞, t0]× [v, v0] → R satisfies the Carathéodory assumptions and,
moreover, (2.1) with

∀ s ∈ [v, v0[ , f(t, s) ≤ 0 for a.e. t ∈ (−∞, t0]. (2.14)

Now we are ready to present our result. The precise statement reads as follows:

Theorem 2.2 Assume (2.1) and (2.14) and suppose that the following conditions
hold:
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108 A. Margheri, C. Rebelo, F. Zanolin

(H1∗) for each a ∈ ]v, v0[ , there are ε > 0, tε ≤ t0 and a locally integrable
function γε = γa,ε : (−∞, tε] → R− such that

∫ tε

−∞
γε(θ) dθ = −∞

and
f(t, s) ≤ γε(t), ∀ s ∈ [a− ε, a], for a.e. t ≤ tε ,

(H2∗) either f(t, v) < 0 in a subset of positive measure of (−∞, t0], or
f(t, v) = 0 for a.e. t ∈ (−∞, t0] and there exist δ > 0 and a locally inte-
grable function η = ηδ : (−∞, t0] → R− such that

∫ t0

−∞
η(θ) dθ = −∞

and
f(t, s) ≤ η(t)(s− v), ∀ s ∈ [v, v + δ], for a.e. t ∈ (−∞, t0].

Then, there exists a continuum Υ− ⊆ [v, v0]×R− satisfying the following properties:

(i∗1) ∀α ∈ [v, v0] ,∃β ≤ 0 such that (α, β) ∈ Υ− .

(i∗2) Υ− ∩ (
[v, v0]× {0}

)
= Υ− ∩ ( {v0} × R−

)
= {(v0, 0)}.

(i∗3) For each (α, β) ∈ Υ− , there exists a solution u(·) of (P−) such that
u(t0) = α, u′(t0) = β. Moreover, if α ∈ [v, v0[ , then there is a maximal
interval ]τu, t0] such that u(t) ∈ [v, v0[ and u′(t) < 0, for all t ∈ ]τu, t0]. If
τu > −∞, then u(t) = v0 and u′(t) = 0, ∀ t ≤ τu .

The proof of Theorem 2.2 follows, line by line, as that of Theorem 2.1 (with
obvious changes in some inequalities) and therefore it is omitted.

As a next step, we now study the problem of the search of solutions tending
to an equilibrium point in the forward time. Therefore, we consider the following
symmetric version of problem (P−) :

(P+)





u′′ − f(t, u) = 0
u(+∞) = v1

u′(+∞) = 0,

where f : [t1, +∞)× [v, v1] → R satisfies the Carathéodory assumptions and, more-
over,

f(·, v1) ≡ 0, (2.15)

∀ s ∈ [v, v1[ , f(t, s) ≤ 0 for a.e. t ∈ [t1, +∞). (2.16)

Consequently, we have also a symmetric version of Theorem 2.1, namely, the next
result.
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Connected branches of initial points 109

Theorem 2.3 Assume (2.15) and (2.16) and suppose that the following conditions
hold:

(K1) for each a ∈ ]v, v1[ , there are ε > 0, tε ≥ t1 and a locally integrable
function γε = γa,ε : [tε, +∞) → R− such that

∫ +∞

tε

γε(θ) dθ = −∞

and
f(t, s) ≤ γε(t), ∀ s ∈ [a− ε, a], for a.e. t ≥ tε ,

(K2) either f(t, v) < 0 in a subset of positive measure of [t1, +∞), or f(t, v) =
0 for a.e. t ∈ [t1, +∞) and there exist δ > 0 and a locally integrable function
η = ηδ : [t1, +∞) → R− such that

∫ +∞

t1

η(θ) dθ = −∞

and
f(t, s) ≤ η(t)(s− v), ∀ s ∈ [v, v + δ], for a.e. t ∈ [t1, +∞).

Then, there exists a continuum Γ+ ⊆ [v, v1]×R+ satisfying the following properties:

(j1) ∀α ∈ [v, v1] , ∃β ≥ 0 such that (α, β) ∈ Γ+ .

(j2) Γ+ ∩ (
[v, v1]× {0}

)
= Γ+ ∩ ( {v1} × R+

)
= {(v1, 0)}.

(j3) For each (α, β) ∈ Γ+ , there exists a solution u(·) of (P+) such that
u(t1) = α, u′(t1) = β. Moreover, if α ∈ [v, v1[ , then there is a maximal
interval [t1, τu[ such that u(t) ∈ [v, v1[ and u′(t) > 0, for all t ∈ [t1, τu[ . If
τu < +∞, then u(t) = v1 and u′(t) = 0, ∀ t ≥ τu .

This result guarantees the existence of a continuum Γ+ made by initial points
of solutions of (P+) with u(t) < v1 . Similarly, we can also produce a continuum
Υ+ to the right of (v1, 0). For this variant of Theorem 2.3 we assume v > v1 as
well as that f : [t1, +∞)× [v1, v] → R satisfies the Carathéodory assumptions and,
moreover, (2.15) with

∀ s ∈ ]v1, v] , f(t, s) ≥ 0 for a.e. t ∈ [t1,+∞). (2.17)

Now we can present our result which is a symmetric version of Theorem 2.2.

Theorem 2.4 Assume (2.15) and (2.17) and suppose that the following conditions
hold:
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110 A. Margheri, C. Rebelo, F. Zanolin

(K1∗) for each a ∈ ]v1, v[ , there are ε > 0, tε ≥ t1 and a locally integrable
function γε = γa,ε : [tε,+∞) → R+ such that

∫ +∞

tε

γε(θ) dθ = +∞

and
f(t, s) ≥ γε(t), ∀ s ∈ [a, a + ε], for a.e. t ≥ tε ,

(K2∗) either f(t, v) > 0 in a subset of positive measure of [t1, +∞), or
f(t, v) = 0 for a.e. t ∈ [t1, +∞) and there exist δ > 0 and a locally inte-
grable function η = ηδ : [t1,+∞) → R+ such that

∫ +∞

t1

η(θ) dθ = +∞

and
f(t, s) ≥ η(t)(v − s), ∀ s ∈ [v − δ, v], for a.e. t ∈ [t1, +∞).

Then, there exists a continuum Υ+ ⊆ [v1, v]×R− satisfying the following properties:

(j∗1 ) ∀α ∈ [v1, v] ,∃β ≤ 0 such that (α, β) ∈ Υ+ .

(j∗2 ) Υ+ ∩ (
[v1, v]× {0} )

= Υ+ ∩ ( {v1} × R−
)

= {(v1, 0)}.

(j∗3 ) For each (α, β) ∈ Υ+ , there exists a solution u(·) of (P+) such that
u(t1) = α, u′(t1) = β. Moreover, if α ∈ ]v1, v] , then there is a maximal interval
[t1, τu[ such that u(t) ∈ ]v1, v] and u′(t) < 0, for all t ∈ [t1, τu[ . If τu < +∞,
then u(t) = v1 and u′(t) = 0, ∀ t ≥ τu .

Note that Theorem 2.1 and Theorem 2.4 (as well as Theorem 2.2 and Theorem
2.3, respectively) correspond to each other through the change of variable t 7→ −t.

The next result shows how the continuum Γ− moves along the flow of the differ-
ential equation from t = t0 to t = t1 . A similar theorem holds for Γ+ in backward
time. We give our result in Theorem 2.5 below for a continuum Γ which is not
necessarily the Γ− of Theorem 2.1.

Theorem 2.5 Let f : R × R → R satisfy the Carathéodory assumptions. Suppose
v0 < v1 are such that, for i = 0, 1, the following conditions hold:

(E) f(·, vi) ≡ 0;

(L) there are δ > 0 and η ∈ L1([t0, t1],R+) such that, |f(t, s)| ≤ η(t)|s − vi|,
∀ s : |s− vi| < δ with s ∈ [v0, v1] and for a.e. t ∈ [t0, t1].

Assume that Γ ⊆ [v0, v1]× R is a continuum such that

Γ ∩ ( {v0} × R
)

= {(v0, 0)}
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Connected branches of initial points 111

and
Γ ∩ ( {v1} × R

)
= Γ ∩ ( {v1} × R+

0

) 6= ∅.
Then, there is a continuum Γ̂ ⊆ [v0, v1]× R with

Γ̂ ∩ ( {v0} × R
)

= Γ̂ ∩ ( {v0} × R−
) 6= ∅,

Γ̂ ∩ ( {v1} × R
)

= Γ̂ ∩ ( {v1} × R+
0

) 6= ∅
and, moreover, for every ξ̂ ∈ Γ̂ there is a solution u(·) of

u′′ − f(t, u) = 0

defined on [t0, t1] such that

(u(t0), u′(t0)) ∈ Γ, (u(t1), u′(t1)) = ξ̂ and u(t) ∈ [v0, v1], ∀ t ∈ [t0, t1].

Proof. First of all, we consider the truncation f̃ of the field f, following the same
procedure like in (2.3) and take the differential equation (2.7) with initial point in
Γ, that is, we have {

u′′ − f̃(t, u) = 0
(u(t0), u′(t0)) = ξ ∈ Γ.

(2.18)

Notice that for the truncated equation we have the global existence (backward and
forward) of the solutions. Also, uniqueness in forward time (respectively in back-
ward time) for solutions with initial condition u(t0) > v1 and u′(t0) > 0 (u(t0) < v0

and u′(t0) > 0) holds.
By Lemma 6.3 in the Appendix there is a continuum S ⊆ Γ, with S ∩ ( {v0} ×

R
)

= {(v0, 0)} and S ∩ ( {v1} × R
) 6= ∅ and there exists a continuum C ⊆ S ×

C1([t0, t1]) such that Pr1(C) = S and, for every (ξ, u) ∈ C, u(·) is a solution of
u′′ − f̃(t, u) = 0, defined on [t0, t1] with (u(t0), u′(t0)) = ξ ∈ S. We define now the
continuous map

Π : C → R2 , Π : (ξ, u(·)) 7→ (u(t1), u′(t1)).

Observe that Π(C) is a continuum of the plane.
We claim that

(v0, 0) ∈ Π(C)
and, moreover, there exists (v, w) ∈ Π(C) with v > v1 and w > 0. To prove the
first part of the claim, it is sufficient to note that if u(·) is a solution to (2.18) with
ξ = (v0, 0), then, necessarily u(t) = v0 and u′(t) = 0, for all t ∈ [t0, t1]. This, in
turn, follows from (E) and (L) with i = 0. In fact, assume, by contradiction, that
there exists a solution z(·) = (x(·), y(·)) = (u(·), u′(·)) to system

{
x′ = y

y′ = f̃(t, x)
(2.19)

Brought to you by | Universitaetsbibliothek Erlangen-Nuernberg
Authenticated

Download Date | 4/5/16 11:08 PM
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with z(t0) = (v0, 0) and such that z(t) 6= (v0, 0) for some t ∈ ]t0, t1]. We denote
by τ ∈ [t0, t1[ the maximal time such that z(t) = (v0, 0) for all t ∈ [t0, τ ]. Let
ε ∈ ]0, t1 − τ ] be such that |x(t)− v0| < δ for every t ∈ [τ, τ + ε]. Integrating (2.19)
on [τ, τ + ε], and using (L), we obtain

||z(t)− z(τ)|| = ||z(t)− (v0, 0)|| ≤
∫ t

τ

(1 + η(θ))||z(θ)− (v0, 0)|| dθ.

The Gronwall inequality [12] implies that

||z(t)− (v0, 0)|| ≤ 0× exp
( ∫ t

τ

(1 + η(θ)) dθ
)

= 0, ∀ t ∈ [τ, τ + ε],

which contradicts the maximality of τ.
To prove the second part of the claim, let us consider any solution z(·) =

(x(·), y(·)) = (u(·), u′(·)) to system (2.19) with z(t0) = (v1, y1) ∈ S ∩ ( {v1} × R
)

(we recall that the uniqueness of the solutions is not assumed). From x′(t0) =
y(t0) = y1 > 0 and x(t0) = v1 we know that there is ε ∈ ]0, t1 − t0] such that
x(t) > v1 and y(t) > 0, for every t ∈ ]t0, t0 + ε]. Hence, by the definition of the
truncated function, we have that y′(t) = f̃(t, x(t)) = f̃(t, v1) = f(t, v1) = 0, for
every t ∈ [t0, t0 + ε], which implies that (x(t), y(t)) = (v1 + (t − t0)y1, y1) for each
t ∈ [t0, t0 + ε]. By the uniqueness in forward time mentioned above we obtain
(x(t1), y(t1)) = (v1 + (t1 − t0)y1, y1) and the second part of the claim is proved.

Now, as a consequence of the Whyburn lemma (see Lemma 6.1 in the Appendix)
we can get a sub-continuum Γ̂ of Π(C) such that

Γ̂ ∩ ( {v0} × R
) 6= ∅, Γ̂ ∩ ( {v1} × R

) 6= ∅
and

x̂ ∈ [v0, v1], ∀ (x̂, ŷ) = ξ̂ ∈ Γ̂.

By definition, for each ξ̂ ∈ Γ̂, there is a ξ ∈ Γ and a solution u(·) to (2.18) such that
(u(t1), u′(t1)) = ξ̂. Clearly, for such a solution u(·), we have v0 ≤ u(t0) ≤ v1 .

Suppose (v0, ŷ) = ξ̂ ∈ Γ̂∩( {v0}×R
)
. If we assume that ŷ > 0, arguing as above

but now using the uniqueness in backward time for solutions with initial condition
u(t1 − ε) < v0 and u′(t1 − ε) > 0, we arrive at a contradiction with the fact that
u(t0) ≥ v0 . In this way we conclude that ŷ ≤ 0.

Suppose that (v1, ŷ) = ξ̂ ∈ Γ̂∩ ( {v1}×R
)
. We claim that ŷ > 0. The case ŷ < 0

is excluded by arguing as above. The case ŷ = 0 is excluded by assumptions (E)
and (L) for i = 1, using the Gronwall inequality.

To conclude our proof, we need to show that if u(·) is a solution to (2.18) such
that (u(t0), u′(t0)) = ξ ∈ Γ and (u(t1), u′(t1)) = ξ̂ ∈ Γ̂, then

v0 ≤ u(t) ≤ v1 , ∀ t ∈ [t0, t1],

so that u(·) is actually a solution of u′′ − f(t, u) = 0. The proof of this last claim
follows, mutatis mutandis, the same arguments given above and it is omitted. ¤

Clearly, one can obtain an analogous result by moving the continuum Υ− in
forward time, or the continuum Υ+ in backward time.
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Connected branches of initial points 113

3 Unbounded connected branches of initial points

In this section we just outline a further variant of Theorem 2.1 in which we find a
closed connected and unbounded set of initial points for problem

(P−)





u′′ − f(t, u) = 0
u(−∞) = v0

u′(−∞) = 0.

We suppose that f : (−∞, t0] × [v0,+∞) → R satisfies the Carathéodory assump-
tions and, moreover,

f(·, v0) ≡ 0, (3.1)

∀ s ∈ ]v0,+∞) , f(t, s) ≥ 0 for a.e. t ∈ (−∞, t0]. (3.2)

Then we have:

Theorem 3.1 Assume (3.1) and (3.2) and suppose that the following condition
holds:

(J1) for each a > v0 , there are ε > 0, tε ≤ t0 and a locally integrable function
γε = γa,ε : (−∞, tε] → R+ such that

∫ tε

−∞
γε(θ) dθ = +∞

and
f(t, s) ≥ γε(t), ∀ s ∈ [a, a + ε], for a.e. t ≤ tε .

Then, there exists a closed connected set Γ− ⊆ [v0,+∞)×R+ satisfying the following
properties:

(l1) ∀α ≥ v0 , ∃β ≥ 0 such that (α, β) ∈ Γ− .

(l2) Γ− ∩ (
[v0, +∞)× {0} )

= Γ− ∩ ( {v0} × R+
)

= {(v0, 0)}.

(l3) For each (α, β) ∈ Γ− , there exists a solution u(·) of (P−) such that
u(t0) = α, u′(t0) = β. Moreover, if α > v0 , then there is a maximal interval
]τu, t0] such that u(t) > v0 and u′(t) > 0, for all t ∈ ]τu, t0]. If τu > −∞, then
u(t) = v0 and u′(t) = 0, ∀ t ≤ τu .

Proof. For each positive integer m, we apply Theorem 2.1 choosing

v = vm := v0 + m,

and find a continuum Γ−(m) of initial points satisfying (i1), (i2), (i3). From the proof
of Theorem 2.1 (see (2.6)) we also know that there exists a constant K = K(m)
such that

Γ−(m) ⊆ [v0, vm]× [0,K(m)]
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114 A. Margheri, C. Rebelo, F. Zanolin

and, furthermore, from the definition of K in (2.5), it follows that

Γ−(m + 1) ∩ [v0, vm]× R+ ⊆ [v0, vm]× [0,K(m)], ∀m.

Hence we can consider a continuous function µ : [v0, +∞) → R+
0 with µ(v) >

µ(v0) = 0, ∀ v > v0 , such that

Γ−(m) ⊆ [v0, vm]× [0, µ(vm)], ∀m.

Let A∞ := A ∪ {p∞} be the one-point compactification of the locally compact set

A := {(x, y) ∈ [v0,+∞)× R+ : y ≤ µ(x)}.

The result in [18, §47,II;p.171] about limits of continua guarantees the existence of
a set

Γ−∞ := lim sup
m→∞

Γ(m) ⊆ A∞

which is compact and connected with respect to the topology of A∞ . By a result
on irreducible continua (see [2, 18]) it follows that Γ−∞ \ {p∞} contains a connected
set Γ− with (v0, 0) ∈ Γ− and such that Γ− is closed relatively to A and the closure
of Γ− in A∞ is given by Γ− ∪ {p∞}. Thus

Γ− ⊆ [v0,+∞)× R+

is a closed connected set satisfying (l1). Since every (α, β) ∈ Γ− is a limit of a
sequence of points from which depart solutions satisfying (2.8), it is immediate to
verify that the property (P1) obtained in the proof of Theorem 2.1 also holds for
the unbounded branch Γ− that we have obtained above. From condition (P1) the
properties (l2) and (l3) easily follow (just repeating an analogous argument as that
in the proof of Theorem 2.1). ¤
In the same manner, one could obtain analogous versions of theorems 2.2, 2.3, or
2.4, getting unbounded branches of initial points Υ− , Γ+ , or Υ+ , respectively. For
the sake of conciseness, we leave to the interested reader the task of formulating the
precise statements of the corresponding theorems, having Theorem 3.1, as a model.

A possible question related to the above results is whether the connected sets
of initial points that we have found have some special structure. In particular,
one could be interested to know whether such sets are the graphs of a continuous
function in the u(t0) = α–variable. For this reason, we present now an example
(see Example 3.1 below) which shows that the answer is negative, in general. To
this aim, we give first two propositions which may have some independent interest
as they show how to construct examples of ODEs possessing connected branches of
initial points satisfying some desired properties.
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Connected branches of initial points 115

Proposition 3.1 Let ν : R+ → R+ be a C1–function with ν′(s) > 0 for every s ≥ 0
and such that

ν(0) = 0, ν(+∞) = +∞.

Let also χ : R+ → R+ be a non-increasing C1–function satisfying

χ(s) > 0, ∀ s > 0.

Then, for every τ ∈ R, there exists a locally Lipschitz continuous function
f : (−∞, τ ]× R+ → R+ , with

f(t, 0) = 0, ∀ t ≤ τ,

such that, for every s ∈ R+, there exists a (unique) solution us(·) to
{

u′′ − f(t, u) = 0
u(τ) = ν(s), u′(τ) = ν(s)χ(s)

and (us(t), u′s(t)) → (0, 0) for t → −∞.

Proof. Following a modification of the argument employed in the construction of
Example 2.1, we define the continuously differentiable map

Ψ = (Ψ1, Ψ2) : R2 → R2, Ψ : (t, s) 7→ (t, x), with x = ν(s) exp
(
χ(s)(t− τ)

)
,

where ν and χ have been extended to the whole real line as C1–functions. It is
easy to check that Ψ is a bijection of (−∞, τ ] × R+ onto itself and also a C1–
diffeomorphism on a neighborhood of (−∞, τ ] × R+. Let Φ = (Φ1, Φ2) : R2 → R2

be a C1–map such that

Φ(t, x) = Ψ−1(t, x), ∀ (t, x) ∈ (−∞, τ ]× R+.

Now we define
f(t, x) := x

(
χ
(
Φ2(t, x)

) )2
.

By construction,
f(t, 0) = 0, ∀ t ∈ (−∞, τ ]

and the unbounded closed connected set

Γ−τ := {( ν(s), ν(s)χ(s)
)

: s ∈ R+ }

is such that for each (α, β) ∈ Γ−τ , there exists a solution u(·) of (P−), for v0 = 0,
satisfying u(τ) = α, u′(τ) = β. By direct investigation, one easily sees that the
solution us(·) corresponding to the initial point (ν(s), ν(s)χ(s)) ∈ Γ−τ is

us(t) = ν(s) exp
(
χ(s)(t− τ)

)
.

This ends the proof of our result. ¤
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Proposition 3.2 Let ν : R+ → R+ be a C1–function which is strictly increasing
and satisfies

ν(0) = 0, ν(+∞) = +∞.

Let also χ : R+ → R+ be a C1–function such that

χ(s) > 0, ∀ s > 0.

Suppose that f : [τ1, τ2]× R+ → R+ is a locally Lipschitz continuous function with

f(t, 0) = 0, ∀ t ∈ [τ1, τ2]

and there exists a constant M > 0 such that

f(t, x) ≤ M, ∀ (t, x) ∈ [τ1, τ2]× R+ .

Let us(·) be the unique solution of
{

u′′ − f(t, u) = 0
u(τ1) = ν(s), u′(τ1) = ν(s)χ(s) .

Then the map R+ 3 s 7→ γ(s) := (us(τ2), u′s(τ2)) ∈ R+ × R+ is continuous, with
γ(0) = (0, 0), us(τ2) ≥ ν(s) > 0 and u′s(τ2) ≥ ν(s)χ(s) > 0, for every s > 0.

Proof. The locally Lipschitz condition and the boundedness of f, together with the
fact that f ≥ 0, imply that, for every (α, β) ∈ R+ × R+, there exists a unique
solution u(·) = u(α,β) of x′′ − f(t, x) = 0 satisfying (u(τ1), u′(τ1)) = (α, β) and,
moreover, such a solution is defined on [τ1, τ2] and such that

u′(t) ≥ u′(τ1), u(t) ≥ u(τ1) + u′(τ1)(t− τ1), ∀ t ∈ [τ1, τ2].

Suppose now that α = ν(s), β = ν(s)χ(s) and set

us(·) := u(ν(s),ν(s)χ(s))(·).
From the above inequalities, evaluated at t = τ2 , we get that u′s(τ2) ≥ ν(s)χ(s) and
us(τ2) ≥ ν(s). The theorem of continuous dependence of the solutions from initial
data also imply that the map s 7→ γ(s) is continuous. Finally, as a consequence of
f(t, 0) = 0 for every t ∈ [τ1, τ2], we get γ(0) = (0, 0). This completes the proof. ¤

Example 3.1 Let ν, χ : R+ → R+ be two continuously differentiable maps satis-
fying the following conditions:

ν(0) = 0, ν(+∞) = +∞, ν′(s) > 0, χ(s) > 0, χ′(s) < 0, ∀ s ≥ 0. (3.3)

Let ε ∈ ]0, 1[ and define, for 0 < δ ≤ 1, the function

g(t, x) :=





x

δ
+

(x/δ)− x χ(ν−1(x))2

ε
(t− ε), for 0 ≤ x ≤ δ, t ∈ [0, ε]

1 +
1− xχ(ν−1(x))2

ε
(t− ε), for x ≥ δ, t ∈ [0, ε]
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Connected branches of initial points 117

g(t, x) :=
{

x/δ, for 0 ≤ x ≤ δ, t ∈ [ε, 1]
1, for x ≥ δ, t ∈ [ε, 1]

where we assume also that
sup
s≥0

ν(s)χ(s)2 < ∞. (3.4)

By Proposition 3.1 (applied with τ = 0) and Proposition 3.2 (applied with τ1 = 0
and τ2 = 1), we can define a locally Lipschitz continuous function f : (−∞, 1] ×
R+ → R+ with f(t, x) = g(t, x) for (t, x) ∈ [0, 1]× R+ such that, for every s ∈ R+

there exists a (unique) solution us(·) for problem
{

u′′ − f(t, u) = 0
u(0) = ν(s), u′(0) = ν(s)χ(s)

with us(·) defined on (−∞, 1] and such that (us(t), u′s(t)) → (0, 0) as t → −∞.
Moreover, the map

γ = (γ1, γ2) : R+ 3 s 7→ (us(1), u′s(1))

is continuous and satisfies the properties described at the end of Proposition 3.2.
In particular, note also that γi(s) > 0 for s > 0 and i = 1, 2.

Let us consider now the set

Γ−1 := {γ(s) : s ∈ R+} ⊆ R+ × R+

which is closed, connected unbounded (at least in its first component) and is also a
set of initial points for problem (P−) for t0 = 1 and v0 = 0.

The definition of f = g for t ∈ [0, 1] allows us to estimate us(1) = γ1(s) for
s ≥ 1. Indeed, we have:

γ1(s) = ν(s) + ν(s)χ(s) +
1
2

+ O(ε).

Now, if there exist s1 , s2 , with

ν(s1) + ν(s1)χ(s1) > ν(s2) + ν(s2)χ(s2), for 1 ≤ s1 < s2 , (3.5)

and we have that (for ε > 0 small enough) the map γ1 takes all the values from
0 to γ1(s1) for s ∈ [0, s1], then it takes all the values from γ1(s2) to γ1(s1) (with
0 < γ1(s2) < γ1(s1)) and, finally, it takes again all the values in [γ1(s2), +∞)
(including again the value γ1(s1)) for s ∈ [s2, +∞). This shows that Γ−1 is a S–
shaped curve and it is not the graph of a continuous function in the u(1)–variable.

To conclude the example, we have to show that it is possible to find functions ν
and χ satisfying assumptions (3.3), (3.4) and (3.5). A possible example is given by
the choice:

ν(s) := s, χ(s) :=
2ck

1 + k2s2
, (c, k > 0),

which satisfies (3.3) and (3.4) and is such that ν(s)χ(s) =
2cks

1 + k2s2
has c as maxi-

mum value for s = 1
k . Choosing c and k suitably, we can find intervals included in

[1,+∞) where the function ν(s)(1 + χ(s)) is strictly decreasing and thus have (3.5)
satisfied for an appropriate choice of s1 < s2 . ¤
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118 A. Margheri, C. Rebelo, F. Zanolin

Figure 2. Graph of the function ν(s)(1 + χ(s)) = s +
2cks

1 + k2s2
with k = 2 and

c = 10.

Figure 3. Image of the path γ(s) = (us(1), u′s(1)) with s ∈ [δ, 20] for ε > 0 suffi-

ciently small and δ = 0.2 (thick line), compared to the path s 7→ (ν(s), ν(s)χ(s))

with s ∈ [0, 20] (dashed line). The functions ν(s) and χ(s) are those chosen for

Figure 2.

We end this section with a result (Lemma 3.1, below) which provides a useful
tool in order to join two unbounded connected sets in the phase–plane by means
of large and oscillating solutions of a first order differential system. Lemma 3.1 is
taken from [27] and [28] and is adapted from previous works by Butler [7], Hartman
[13] and Struwe [33]. It has been applied in a different context in [24, Theorem
2], looking for solutions of a generalized Sturm - Liouville problem joining two sets
of initial points from which depart solutions which blow up at the boundary of a
certain interval. For the sake of simplicity, we confine the presentation of our result
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Connected branches of initial points 119

to the case
f(t, x) = −w(t)g(x).

We define the half–planes

H+ := {(x, y) ∈ R2 : x > 0} ∪ {(0, y) ∈ R2 : y > 0} and H− := −H+ .

Lemma 3.1 Let w : [t0, t1] → R be a continuous and piecewise monotone function
such that

w ≥ 0 and w 6≡ 0 on [t0, t1].

Assume that g : R→ R is a continuous function such that

lim
s→±∞

g(s)
s

= +∞.

Suppose also that, for some v0 ∈ R such that g(v0) = 0, it holds that
∣∣∣∣

g(s)
s− v0

∣∣∣∣ is bounded in a neighborhood of v0 .

Let Γ0 ⊆ Ā and Γ1 ⊆ B̄ be two unbounded closed and connected sets, where Ā and
B̄ are two (not necessarily distinct) closed quadrants of the plane with origin in
P0 := (v0, 0); let also R > 0 be such that

Γi ∩B[R] 6= ∅, for i = 0, 1.

Then there is n∗ = n∗R such that the following hold:

• if Γ0 and Γ1 are both in P0 + H+ or both in P0 + H− then, for every n ≥ n∗

and n even, there is at least one solution z(·) = (x(·), y(·)) of

x′ = y, y′ = −w(t)g(x) (3.6)

such that
z(t0) ∈ Γ0, z(t1) ∈ Γ1, |z(t)| ≥ R, ∀ t ∈ [t0, t1]

and x(·)− v0 has exactly n zeros on ]t0, t1];

• if Γ0 ⊆ P0 + H+ and Γ1 ⊆ P0 + H− (or vice versa) then, for every n ≥ n∗ and
n odd, there is at least one solution z(·) of (3.6) such that

z(t0) ∈ Γ0, z(t1) ∈ Γ1, |z(t)| ≥ R, ∀ t ∈ [t0, t1]

and x(·)− v0 has exactly n zeros on ]t0, t1].

We refer to [28] for the case in which the weight function w(·) may change sign on
[t0, t1].

Brought to you by | Universitaetsbibliothek Erlangen-Nuernberg
Authenticated

Download Date | 4/5/16 11:08 PM



120 A. Margheri, C. Rebelo, F. Zanolin

4 Heteroclinic orbits

In this section we present a few results which show how Theorem 2.1 (as well
as its variants) and Theorem 2.5 permit us to obtain the existence of heteroclinic
solutions by intersecting the continua of initial points. The applications we consider
are inspired by the work of Conley in [8]. The technique that we have developed
in the previous sections allows us to deal with more general examples which could
be the topic of a future research. We refer to [1, 11, 32, 34] for other interesting
results in this area.

Let v0 < v1 and suppose that f : R × [v0, v1] → R satisfies the Carathéodory
conditions and, moreover,

f(t, v0) ≡ 0, f(t, v1) ≡ 0

and for every s ∈ ]v0, v1[ ,

f(t, s) ≥ 0 for a.e. t ≤ t0 , f(t, s) ≤ 0 for a.e. t ≥ t1 .

Then, the following theorem holds:

Theorem 4.1 Assume (H1)–(H2) with v = v1 and (K1)–(K2) with v = v0 . Sup-
pose also that (L) is satisfied. Then, there exists a solution ũ to equation

u′′ − f(t, u) = 0 (4.1)

such that

ũ(−∞) = v0 , ũ(+∞) = v1 , v0 < ũ(t) < v1 , ∀ t ∈ R

and
ũ′(t) > 0, ∀ t ∈ (−∞, t0] ∪ [t1, +∞).

Proof. We apply Theorem 2.1 and Theorem 2.3 to get two compact connected sets
Γ− and Γ+ satisfying (i1), (i2), (i3) and (j1), (j2), (j3), respectively. We observe
that in (i3) we always have τu = −∞ (respectively τu = +∞ in (j3)), due to
the local Lipschitz type condition (L). Next we apply Theorem 2.5 and obtain a
continuum Γ̂ from Γ−.

Both the continua Γ+ and Γ̂ are contained in a rectangle [v0, v1] × [−M, M ],
where M > 0 is a sufficiently large constant. We set

A0 := Γ̂ ∩ ( {v0} × R
) 6= ∅, B0 := Γ̂ ∩ ( {v1} × R

) 6= ∅,

A1 := Γ+ ∩ ( {v0} × R
) 6= ∅, B1 := Γ+ ∩ ( {v1} × R

) 6= ∅
and, observe that, as a consequence of Theorem 2.5 and Theorem 2.3, we have

y ≤ 0, ∀ (x, y) ∈ A0 and y > 0, ∀ (x, y) ∈ B0 ,

y > 0, ∀ (x, y) ∈ A1 and y ≤ 0, ∀ (x, y) ∈ B1 .
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Connected branches of initial points 121

By Lemma 6.2 in the Appendix it follows that there exists (α, β) ∈ Γ̂ ∩ Γ+. By
definition of Γ̂ there exists a point (α−, β−) ∈ Γ− and a solution ũ(·) to (4.1)
defined on [t0, t1], such that

ũ(t0) = α−, ũ′(t0) = β−, ũ(t1) = α, ũ′(t1) = β

and v0 < ũ(t) < v1 for every t ∈ [t0, t1]. Moreover, from (α−, β−) ∈ Γ− departs a
solution (that we still denote by ũ) defined on (−∞, t0] for problem (P−). Similarly,
from (α, β) ∈ Γ+ departs a solution (that we still denote by ũ) defined on [t1, +∞)
for problem (P+). Patching together these three solutions to a solution ũ of (4.1)
defined on the whole R and recalling the qualitative properties of such a solution
coming from (i3) and (j3) we achieve the thesis. ¤

As we have just seen, in order to prove Theorem 4.1 we have performed a link
between Γ− and Γ+ through the intermediate continuum Γ̂. We can achieve the
same conclusion in a more direct way when some additional symmetry conditions
are imposed on f. A result in this direction is the following:

Let v0 < v1 and set
p :=

v0 + v1

2
.

Suppose that f : R× [v0, v1] → R satisfies the Carathéodory conditions and, more-
over,

f(t, v0) ≡ 0, f(t, v1) ≡ 0,

as well as there exists t0 ∈ R such that, for every s ∈ ]v0, p[ ,

f(t, s) ≥ 0 for a.e. t ≤ t0 .

We also define
f̂(t, s) := f(t + t0, p + s).

The following result holds:

Theorem 4.2 Assume (H1)–(H2) with v = p. Suppose also that (L) is satisfied
and that f̂(t, s) is even with respect to t and odd with respect to s. Then, there exists
a solution ũ to equation (4.1) such that

ũ(−∞) = v0 , ũ(+∞) = v1 , v0 < ũ(t) < v1 , ∀ t ∈ R
and

ũ′(t) > 0, ∀ t ∈ R.

Proof. We apply Theorem 2.1 to equation (4.1) in order to have a continuum

Γ− ⊆ [v0, p]× R+.

If we take a point (p, ŷ) ∈ Γ−∗ ∩
( {p} × R+

0

)
, we have that there exists a solution

û(·) to equation (4.1) such that

û(−∞) = v0 , û(t0) = p, û′(t0) = ŷ , v0 < û(t) < p , ∀ t < t0
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and
û′(t) > 0, ∀ t ∈ (−∞, t0].

By the symmetry of f̂ we can easily see that the function

ũ(t) :=
{

û(t), t ≤ t0,
v1 + v0 − û(2t0 − t), t ≥ t0

is a solution of (4.1) with the desired properties. ¤

We now show some applications of the above results to the simplified equation

u′′ + w(t)g(u) = 0,

where g : R→ R is a continuous function and w : R→ R is a measurable function
with w ∈ L1

loc(R). We start by assuming the existence of at least a zero for the
function g, that is

g(v0) = 0.

A consequence of Theorem 2.1 for

f(t, u) := −w(t)g(u) (4.2)

is the following:

Corollary 4.1 Let v > v0 and suppose that

g(s) > 0, ∀ s ∈ ]v0, v[

and, either g(v) > 0, or g(v) = 0 and g(s) is differentiable at s = v with g′(v) < 0.
Assume also that there exists t0 ∈ R such that

w(t) ≤ 0, for a.e. t ≤ t0 and
∫ t0

−∞
w(t) dt = −∞.

Then, there exists a continuum Γ− ⊆ [v0, v]×R+ satisfying (i1), (i2), (i3) of Theorem
2.1.

Proof. The proof follows straightforwardly from Theorem 2.1 by (4.2). We just ob-
serve that (H2) is trivially satisfied when g(v) > 0, while, if g(v) = 0, it holds by
taking η(t) = −w(t)g′(v)/2. On the other hand, if a ∈ ]v0, v[ we can take any ε > 0
with a + ε < v and (H1) holds with γε(t) := −w(t) min

[a,a+ε]
g . ¤

Similar corollaries may be easily obtained from Theorem 2.2, Theorem 2.3 and
Theorem 2.4.

Now we are in position to obtain a result on the existence of an heteroclinic
connection for equation (4.2) which follows immediately from Theorem 4.1.
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Corollary 4.2 Let v0 < v1 be such that

g(v0) = g(v1) = 0 and g(s) > 0, ∀ s ∈]v0, v1[ .

Suppose also that g(s) is differentiable at s = v0 and s = v1 with

g′(v0) > 0 > g′(v1).

Assume there are t0 , t1 with t0 ≤ t1 such that

w(t) ≤ 0, for a.e. t ≤ t0 , w(t) ≥ 0, for a.e. t ≥ t1

and ∫ t0

−∞
w(t) dt = −∞,

∫ +∞

t1

w(t) dt = +∞.

Then, there exists a solution ũ to equation (4.2) such that

ũ(−∞) = v0 , ũ(+∞) = v1 , v0 < ũ(t) < v1 , ∀ t ∈ R

and
ũ′(t) > 0, ∀ t ∈ (−∞, t0] ∪ [t1,+∞).

5 Homoclinic orbits

In this section we obtain homoclinic orbits for equation (4.1) by suitably connecting
the unbounded branches of initial points Γ− and Υ+ produced in Section 3. We
also present various examples of piecewise autonomous equations where an accurate
computation of the time map allows a thorough discussion of the existence of a
connection between these continua leading to a positive homoclinic orbit.

5.1 Multibump solutions

We give an application of the results obtained in the previous section, by proving
the existence of homoclinic solutions which possess a large number of zeros. For
simplicity, we restrict ourselves to the case of equation

u′′ + w(t)g(u) = 0, (5.1)

where, as in Section 4, g : R → R is a continuous function and w : R → R is a
measurable function with w ∈ L1

loc(R). We also assume that there exists v0 ∈ R
such that

g(v0) = 0.

Our first result extends Corollary 4.1 by producing unbounded connected branches
in the phase–plane emanating from (v0, 0).
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Corollary 5.1 Let
g(s) > 0, ∀s > v0 .

Suppose there exists t0 ∈ R such that

w(t) ≤ 0, for a.e. t ≤ t0 and
∫ t0

−∞
w(t) dt = −∞. (5.2)

Then, there exists an unbounded closed connected set Γ− ⊆ [v0,+∞)× R+ , with

Γ− ∩ (
[v0, +∞)× {0} )

= Γ− ∩ ( {v0} × R+
)

= {(v0, 0)},
such that for each (α, β) ∈ Γ− , there exists a solution u(·) of (5.1) such that u(t0) =
α, u′(t0) = β and (u(t), u′(t)) → (v0, 0) for t → −∞, with u(·) ≥ v0 convex and
non-decreasing on (−∞, t0].

Suppose there exists t1 ∈ R such that

w(t) ≤ 0, for a.e. t ≥ t1 and
∫ +∞

t1

w(t) dt = −∞. (5.3)

Then, there exists an unbounded closed connected set Υ+ ⊆ [v0,+∞)× R− , with

Υ+ ∩ (
[v0, +∞)× {0} )

= Υ+ ∩ ( {v0} × R−
)

= {(v0, 0)},
such that for each (α, β) ∈ Υ+ , there exists a solution u(·) of (5.1) such that u(t0) =
α, u′(t0) = β and (u(t), u′(t)) → (v0, 0) for t → +∞, with u(·) ≥ v0 convex and
non-increasing on [t1, +∞).

The proof is a straightforward application of Theorem 3.1 and its variants indicated
in Section 3.

Putting together Corollary 5.1 with Lemma 3.1, we obtain:

Theorem 5.1 Let g be differentiable in v0 with g(v0) = 0. Suppose also that g(s) >
0, ∀s > v0 and

lim
s→±∞

g(s)
s

= +∞.

Assume there are t0 < t1 such that w(·) is continuous and piecewise monotone on
[t0, t1],

w(·) ≥ 0, and w 6≡ 0 on [t0, t1]

and with w(·) satisfying also (5.2) and (5.3). Then, there is n∗ such that, for each
even integer n ≥ n∗, there exists at least one solution u(·) of (5.1), with u(·) − v0

having exactly n zeros on ]t0, t1] and such that (u(t), u′(t)) → (v0, 0) for t → ±∞,
with u(·) ≥ v0 convex and non-decreasing on (−∞, t0] and convex non-increasing
on [t1,+∞).

For some special nonlinearities and weights it is possible to provide some esti-
mates of n∗. In particular, if n∗ = 0, Theorem 5.1 would allow to prove the existence
of solutions with u(·)− v0 positive, as well as with u(·)− v0 having any even num-
ber of zeros. Some specific examples for positive homoclinics are given in the next
subsection.
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Connected branches of initial points 125

5.2 Examples

We consider the equation

u′′ + h(t, u) = 0 (5.4)

with

h(t, u) = a+(t)h(u)− a−(t)g(u)

and
a+(t) = a+ φ[t0,t1](t), a−(t) = a− φ]−∞,t0]∪[t1,+∞[(t),

where a+, a− > 0 and φI is the characteristic function of the interval I. With this
choice, equation (5.4) splits into two autonomous equations:

u′′ + a+h(u) = 0, on [t0, t1] (5.5)

u′′ − a−g(u) = 0, on ]−∞, t0] ∪ [t1,+∞). (5.6)

In what follows, we let for simplicity a+ = a− = 1 and assume that g and h are
continuous functions on R satisfying

sg(s) > 0 and sh(s) > 0, s 6= 0.

In this case (0, 0) is the unique equilibrium point in the phase–plane (x, y) = (u, u′)
of the first order system associated to (5.4). We look for positive homoclinic orbits
in (0, 0). For this aim, we will make use of phase–plane analysis to investigate when
it is possible to glue the trajectories corresponding to the autonomous equations
(5.5) and (5.6) in order to get these homoclinic orbits.

We start by defining

G(s) :=
∫ s

0

g(ξ) dξ.

Setting (v0, 0) = (v1, 0) = (0, 0), by the energy conservation law applied to equation
(5.6) we have that

Γ− = {(x, y) : y =
√

2G(x), x ≥ 0} and Υ+ = {(x, y) : y = −
√

2G(x), x ≥ 0}.
That is, Γ− and Υ+ coincide, respectively, with the branches of the unstable and
of the stable manifolds of (0, 0) which lie in the first and in the fourth quadrants.

As a consequence, we note that positive homoclinic orbits in (0, 0) correspond
to positive solutions u(t) of equation (5.5) such that (u(t0), u′(t0)) ∈ Γ− and
(u(t1), u′(t1)) ∈ Υ+. Equivalently, positive homoclinics correspond to trajectories
of (5.5) which start at time t0 from (u0, v0) ∈ Γ− and that meet the x-axis after a
travel of duration τ(u0, v0) = t1−t0

2 . Therefore, under our assumptions, a positive
homoclinic exists for equation (5.4) if and only if t1−t0

2 belongs to the image of the
time map τ restricted to Γ− . Our aim in what follows is to describe such an image
when the functions g(u) and h(u) are powers of u.
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Let
H(s) :=

∫ s

0

h(ξ) dξ

and consider a point of the form (c, 0), c > 0. The trajectory associated to u′′ +

h(u) = 0 which passes through (c, 0) is defined by
y2

2
+ H(x) = H(c). Considering

the initial point (c, 0), this trajectory will intersect Γ− in backward time at a point
that we denote by (s(c),

√
2G(s(c))), after a travel of duration τ(c). Then, s = s(c)

satisfies
K(s) := G(s) + H(s) = H(c), (5.7)

where K is a continuous increasing function. It follows that

0 < s = s(c) := K−1(H(c)) < c

is a continuous increasing function, too. Moreover, by the energy conservation law
for equation (5.5), we get

τ(c) =
∫ c

s(c)

du√
2(H(c)−H(u))

(5.8)

and τ :]0, +∞[→]0,+∞[, c → τ(c), is a continuous function of c.
In what follows, in order to study the behavior of the function τ when c → 0+

and c → +∞ we specialize the functions g and h. More precisely, we start with a
first class of examples where we set for u ≥ 0

g(u) = auα, h(u) = buβ , with a, b, α, β > 0, α 6= β.

Then, of course, G(u) =
auα+1

α + 1
, H(u) =

buβ+1

β + 1
and equations (5.8) and (5.7) take

the form
τ(c) =

∫ c

s(c)

du√
2b

β + 1
(cβ+1 − uβ+1)

,

and
asα+1

α + 1
+

bsβ+1

β + 1
=

bcβ+1

β + 1
. (5.9)

In order to draw our conclusions about the behavior of the function τ , we assume
that α > β > 1. If we consider the change of variables u = tc and s = θc, then the
equation (5.8) will be transformed in

τ(c) =

√
β + 1

2b
c

1−β
2

∫ 1

θ

dt√
1− tβ+1

, (5.10)

and from equation (5.9) we can explicit c as a function of θ obtaining:

c = c(θ) =
[

b(α + 1)
a(β + 1)

1− θβ+1

θα+1

] 1
α−β

. (5.11)
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Connected branches of initial points 127

From this last equation we see that 0 < θ < 1 and that c → 0+ ⇔ θ → 1− and
c → +∞⇔ θ → 0+. Finally, substituting (5.11) into (5.10), we obtain

τ(θ) = M

[
θα+1

1− θβ+1

] β−1
2(α−β)

∫ 1

θ

dt√
1− tβ+1

, (5.12)

where the constant M is given by

M =

√
β + 1

2b

[
b(α + 1)
a(β + 1)

] 1−β
2(α−β)

.

Then, from equation (5.12) it follows immediately that limθ→0+ τ(θ) = 0. More-
over, it is not hard to show that limθ→1− τ(θ) ∈ R ⇐⇒ α ≥ 2β − 1. Taking
into account the continuity of the function τ, we can conclude that if β > 1 and
α ≥ 2β−1, then equation (5.4) does not admit any positive homoclinic orbit when-
ever t1 − t0 > supR+

0
τ(c), whereas it admits positive homoclinic solutions for any

(t0, t1) if α > β > 1 and α < 2β − 1.

A second class of examples may be obtained if we consider

h(u) = σg(u), σ > 0.

In this case equation (5.4) (in which we still set a+ = a− = 1) takes the form

u′′ + w(t)g(u) = 0, (5.13)

with

w(t) :=





σ, t ∈ [t0, t1],

−1, t ∈ (−∞, t0[∪ ]t1,+∞).
(5.14)

Here we also have H(u) = σG(u), and, from equations (5.7) and (5.8), we get,
respectively,

G(s) =
σ

1 + σ
G(c) (5.15)

and
τ(c) =

1√
σ

∫ c

s

du√
2(G(c)−G(u))

. (5.16)

The change of variable z =
√

G(u)/G(c) transforms (5.16) into

τ(c) =

√
2
σ

∫ 1

√
σ

1+σ

√
G(u)

g(u)
dz√

1− z2
, (5.17)

where u = u(c, z) = G−1(z2G(c)). Then, from (5.17) we obtain the following
estimate for the map τ :

kσ min
s≤u≤c

√
G(u)

g(u)
≤ τ(c) ≤ kσ max

s≤u≤c

√
G(u)

g(u)
, (5.18)
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where

kσ =

√
2
σ

(
π

2
− arcsin

√
σ

1 + σ

)
.

From (5.18) we see that the behavior of the function τ depends on the behavior of
the function ψ(u) :=

√
G(u)/g(u). As a consequence, if limu→0+ ψ(u) = +∞ and

limu→+∞ ψ(u) = 0 with ψ decreasing, then for any σ > 0 we get the existence of
a positive homoclinic orbit for our equation. This is the case, for example, when
g(u) = uα, with α > 1. In fact, with such a choice we obtain ψ(u) = u

1−α
2 /

√
α + 1.

On the other hand if we assume that g(u) behaves like uα, α > 1, at u = 0 and
like uβ , 0 < β < 1, for u → +∞ then

min
s=s(c)≤u≤c

√
G(u)

g(u)
→ +∞

both for c → 0+ and c → +∞. This implies that τ(c) has a positive minimum in
R+

0 and therefore if t1−t0
2 is less than this minimum there are no positive homoclinic

orbits for our equation.
With reference to this last remark, we conclude the paper by presenting in detail

the analysis of equation (5.13) with

g(x) := min(xα, xβ) =





xα , for 0 ≤ x < 1

xβ , for x ≥ 1,
(5.19)

for 0 < β < 1 < α. The weight function w(t) is defined as in (5.14). In this situation,
we have

G(x) :=
∫ x

0

g(s) ds =





xα+1

α + 1
, for 0 ≤ x < 1

xβ+1

β + 1
+

β − α

(α + 1)(β + 1)
, for x ≥ 1.

For any c > 0, we can now consider the value s(c) ∈ ]0, c[ corresponding to the
abscissa of the points at which the trajectory through (c, 0) of the system

x′ = y, y′ = −σg(x),

intersects the unstable and the stable manifolds of the origin for system

x′ = y, y′ = g(x).

As previously observed, to find s(c) we have to solve the equation (5.15) for s > 0.
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This yields

s(c) =





(
σ

σ + 1

) 1
α+1

c, for 0 < c ≤ 1

(
σ

σ + 1

) 1
α+1

(
α + 1
β + 1

cβ+1 − α− β

β + 1

) 1
α+1

, for 1 < c ≤ c∗

(
σ

σ + 1

) 1
β+1

(
cβ+1 +

α− β

σ(α + 1)

) 1
β+1

, for c > c∗ ,

where

c∗ :=
(

1 +
β + 1

σ(α + 1)

) 1
β+1

is the special value of c > 0 such that s(c) = 1.

Figure 4. Example of unstable and stable manifolds in [0, +∞) × R for u′′ −
g(u) = 0, joined by an arc of trajectory of u′′ + σg(u) = 0 (with σ = 0.6).

This example corresponds to the case of equation (5.13) with w(t) defined as in

(5.14). The unstable manifold Γ− is the line of equation y =
√

2G(x) contained

in the first quadrant, while the stable manifold Υ+ is the line of equation y =

−
√

2G(x) contained in the fourth quadrant. For our example, we have taken

g(x) = min(xα, xβ) for x ≥ 0, with α = 3 and β = 1/20, in order to consider the

case in which g(u) ∼ uα near zero and g(u) ∼ uβ near infinity, with α > 1 >

β > 0. The orbit path of u′′ + σg(u) = 0 goes from P := (s(c),
√

2G(s(c))) ∈ Γ−

to Q := (s(c),−
√

2G(s(c))) ∈ Υ+, moving in the clockwise sense and passing

through (c, 0). In our picture, we have chosen c := 5.8. The thin vertical line

represents the segment joining Q with P.
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As a last task, we can compute τ(c) according to (5.16) and by taking into account
the choice of g in (5.19), as well as the corresponding form of G. In this manner,
we find a critical constant

τ∗ := min{τ(c) : c > 0},
such that there exists a homoclinic solution u(·) of (5.13) with u(t) > 0 for every
t ∈ R, if and only if t1 − t0 ≥ 2τ∗ .

Figure 5. Graph of the time–mapping function τ(c) considered in (5.16). The function

g(x) = min(xα, xβ) for x ≥ 0, and the coefficients α, β and σ are those taken in Figure

4.

6 Appendix

We collect in this Section some technical results that we employ in the proof of
some theorems of this paper. Our first result is a consequence of the Kuratowsky
- Whyburn lemma [18, 35]. It allows us to cut any continuum to a sub-continuum
which lies between two level sets of a given continuous map (see also [25]).

Lemma 6.1 Let S be a continuum in a metric space X. Let  : X → R be a
continuous function and let α, β ∈ R, with α < β, be such that

S ∩ −1
(
(−∞, α]

) 6= ∅, S ∩ −1
(
[β, +∞)

) 6= ∅.
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Connected branches of initial points 131

Then, there is a continuum S∗ ⊆ S such that

(S∗) = [α, β].

Proof. The connectedness of S implies that (S) ⊇ [α, β]. Then we define the com-
pact set

Z := {x ∈ S : (x) ∈ [α, β]}
and the nonempty disjoint compact sets

A := S ∩ −1
({α}) ⊆ Z, B := S ∩ −1

({β})⊆ Z.

Whyburn lemma ensures that, either there exists a continuum S∗ ⊆ Z with S∗∩A 6=
∅ and S∗ ∩ B 6= ∅, or A and B are separated in Z, that is, there exist compact
sets F1 and F2 with F1 ⊇ A, F2 ⊇ B, with F1 ∩ F2 = ∅ and F1 ∪ F2 = Z. If
the first of the two alternatives occurs, we have (S∗) ⊆ [α, β] (as S∗ ⊆ Z) and
α, β ∈ (S∗). Hence, (S∗) = [α, β] and the thesis follows. Thus we have only to
show that the second alternative does not occur. But, this is obvious, because if
F1 and F2 as above do exist, then the sets E1 := F1 ∪

(S ∩ −1
(
(−∞, α]

) )
and

E2 := F2 ∪
(S ∩ −1

(
[β, +∞)

) )
disconnect S. ¤

Next, we recall a useful result of plane topology (see, for instance [26, Lemma
3, p.702]).

Lemma 6.2 Let W0 and W1 be two nonempty continua of a compact metric space
Z which is homeomorphic to a rectangle and let h : Z →R be a homeomorphism of
Z onto the rectangle R := [a, b]× [−M, M ] ⊆ R2. Assume that

A0 := h(W0) ∩
( {a} × R ) 6= ∅, B0 := h(W0) ∩

( {b} × R ) 6= ∅,
as well as

A1 := h(W1) ∩
( {a} × R ) 6= ∅, B1 := h(W1) ∩

( {b} × R ) 6= ∅
and, moreover,

y ≤ 0, ∀ (x, y) ∈ A0 and y > 0, ∀ (x, y) ∈ B0 ,

y > 0, ∀ (x, y) ∈ A1 and y ≤ 0, ∀ (x, y) ∈ B1 .

Then
W0 ∩ W1 6= ∅.

Proof. Let ε > 0 be such that y ≥ 2ε for every (x, y) ∈ A1∪B0 . Let also U0
ε and U1

ε

be, respectively, an ε-neighborhood of h(W0) and an ε-neighborhood of h(W1) in
R. Since R is an arcwise connected and locally arcwise connected space, we can find
two continuous paths γ0

ε , γ1
ε : [0, 1] → R with γi

ε(t) = (xi
ε(t), yi

ε(t)) ∈ U i
ε, for every

t ∈ [0, 1], for i = 0, 1 and such that γi
ε(0) ∈ {a}×R and γi

ε(1) ∈ {b}×R, for i = 0, 1.
By the assumptions, we also have that y0

ε(0) < y1
ε(0) and y0

ε(1) > y1
ε(1). By the

properties of Peano spaces [15] we know that the image sets γi
ε([0, 1]) contain arcs
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(i.e., homeomorphic images of a compact interval) with the same extreme points,
respectively (see, for instance, [15, pp.115–131] or [35]). Hence, we can suppose
that there are arcs ω0

ε ⊆ U0
ε ∩R and ω1

ε ⊆ U1
ε ∩R such that

ω0
ε ∩

( {a} × R )
=: {(a, a0

ε)}, ω0
ε ∩

( {b} × R )
=: {(b, b0

ε)},

ω1
ε ∩

( {a} × R )
=: {(a, a1

ε)}, ω1
ε ∩

( {b} × R )
=: {(b, b1

ε)},
with

a0
ε < a1

ε, and b0
ε > b1

ε.

Without loss of generality (taking M larger if necessary), we can also suppose that

ωi,#
ε := ωi

ε \ {(a, ai
ε), (b, b

i
ε)} ⊆ intR, (6.1)

for i = 0, 1.
We now consider the simple closed curve (Jordan curve) J obtained by gluing

together the following arcs: ω1
ε , the vertical segment joining (b, b1

ε) to (b,−M), the
horizontal segment joining (b,−M) to (a,−M) and the vertical segment joining
(a,−M) to (a, a1

ε). Since the points of ω0
ε belonging to a sufficiently small neigh-

borhood of (a, a0
ε) are in the internal side of the curve J and the point (b, b0

ε) lies
in the external side of J, as a consequence of the Jordan curve theorem we see that
ω0,#

ε must intersect J and, actually, by (6.1) and the definition of J we have that

ω0,#
ε ∩ ω1,#

ε = ω0
ε ∩ ω1

ε 6= ∅.

Letting ε → 0+ and using a standard compactness argument, we find that h(W0)∩
h(W1) 6= ∅ and hence we can conclude that W0 ∩W1 6= ∅. ¤

Our last result is used in the proof of Theorem 2.5.

Lemma 6.3 (cf. [9, Corollary 2.4]). Let g : [τ0, τ1]×R2 → R satisfy the Carathéodory
assumptions and suppose that K ⊆ R2 is a nonempty closed and connected set such
that, for each (x0, y0) ∈ K, all the solutions to the Cauchy problem

{
u′′ + g(t, u, u′) = 0
u(τ0) = x0 , u′(τ0) = y0 ,

are defined on [τ0, τ1]. Then, for each pair of points P,Q ∈ K, with P 6= Q, there
is a continuum S ⊆ K, with P, Q ∈ S and a continuum C ⊆ S × C1([τ0, τ1]) such
that Pr1(C) = S and, for every (ξ, u) ∈ C, u(·) is a solution of u′′ + g(t, u, u′) = 0,
defined on [τ0, τ1] with (u(τ0), u′(τ0)) = ξ ∈ S.

Proof. The proof is a simple translation of [9, Corollary 2.4] where the corresponding
result is stated for a first order system in RN. In the space C1[τ0, τ1] we consider the
standard C1-norm ||u||1,∞ := ||u||∞ + ||u′||∞ (like in the proof of Theorem 2.1).
By Pr1 we mean the projection of the product space S × C1([τ0, τ1]) onto its first
factor S. ¤
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