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Abstract: Mode-dependent loss (MDL) is a major factor limiting the
achievable information rate in multiple-input multiple-output space-division
multiplexed systems. In this paper we show that its impact on system per-
formance, which we quantify in terms of the capacity reduction relative
to a reference MDL-free system, may depend strongly on the operation
of the inline optical amplifiers. This dependency is particularly strong
in low mode-count systems. In addition, we discuss ways in which the
signal-to-noise ratio of the MDL-free reference system can be defined
and quantify the differences in the predicted capacity loss. Finally, we
stress the importance of correctly accounting for the effect of MDL on the
accumulation of amplification noise.
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1. Introduction

One of the most relevant concerns in the context of space-division multiplexed (SDM) trans-
mission in optical fibers is related to the possible consequences of mode-dependent loss (MDL).
This topic has been considered in a number of studies [1–9] and it extends earlier work which
was done on MDL in single mode fibers (where the phenomenon is generally referred to as
polarization dependent loss – PDL) [10, 11]. Similarly to the case of PDL, the main expected
sources of MDL are inline optical amplifiers, mode multiplexers and demultiplexers, imperfect
splices between fiber sections [3], and microscopic fiber bends [6]. Yet, in addition to early PDL
studies, where the preferred metric for quantifying the system impact of PDL was the deterio-
ration of the worst channel’s signal-to noise-ratio, or of the average bit-error-ratio (BER) [11],
in modern coherent systems it has also become customary to quantify the impact of MDL in
terms of its effect on the system information capacity [1–5]. This metric turns out to be very
sensitive to the assumptions that are made on how the system is modeled and operated.

In this paper we argue that the capacity reduction caused by MDL varies significantly with
system aspects that have received little attention in previous MDL studies. We show that without
explicitly relating to the operation mode of the inline optical amplifiers, the effect of MDL on
system capacity cannot be determined with acceptable reliability, most critically in the case of
low mode-count systems. Therefore, in a meaningful analysis of the capacity impact of MDL,
it is important to specify how the mode averaged signal power is manipulated at the amplifica-
tion sites. Up to now, different authors have made different assumptions regarding amplifica-
tion [1–5]. The most common amplification scheme is that in which an inline amplifier resets
the total signal power (over the entire WDM band) to its value at the link input. Ideally, in this
regime all frequency components of the propagating signal undergo the same amplification.
Another possible scenario is one where the inline amplifier resets the mode-averaged signal
power to a nominal value on a per-frequency basis. This requires the amplifier to be equipped
with an adaptive frequency equalization mechanism [10], similar to a dynamic gain equalizing
filter (DGEF) in conventional single-mode systems [12]. In spite of the seemingly minor dif-
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ference between the two approaches, it turns out that they produce different distributions for
the MDL-induced capacity loss, which is particularly important in the case of low mode-count
transmission. We note that we only consider the effects of frequency equalization, whereas
modal equalization, where the gain of each mode can be controlled individually [13] is not
addressed in this paper.

Subsequently, we discuss the importance of clearly specifying the MDL-free system relative
to which the capacity loss is evaluated. One possibility is to set the SNR of the MDL-free
reference system to the ratio between the time averages of the total signal and noise powers (in
all modes) measured in the MDL-impaired system. In some cases, when the MDL dynamics is
too slow or when the accessible frequency range is not sufficient to allow effective averaging,
the reference system SNR ends up depending on the specific MDL realization. While both
definitions can be legitimate, they yield different results in terms of the MDL-induced capacity
reduction, as we discuss in this paper.

Finally, we quantify the error that is incurred when the effects of MDL on the accumulated
amplification noise are ignored by assuming that spatially isotropic noise is added to the trans-
mitted signal at the receiver [2, 3].

The paper is organized as follows. In Sec. 2 we illustrate the importance of the amplification
strategy when considering the MDL-induced capacity reduction. In Sec. 3 we discuss the use of
the capacity loss per mode relative to a more commonly used capacity ratio when considering
the impact of MDL. In Sec. 4 we discuss the importance of precisely defining the MDL-free ref-
erence system, relative to which the penalties due to MDL are evaluated, and introduce possible
definitions for such reference systems. Section 5 is devoted to demonstrating the importance of
accounting for the effect of MDL on the accumulated amplification noise. Finally, in Sec. 6 we
provide a description of the numerical procedure that was used to obtain the simulation results
that are displayed throughout this paper. The derivation of all the reported analytical results is
provided in the appendix.

2. Optical amplifier types for SDM and their impact on performance

We consider an SDM link consisting of multiple amplified spans where modes propagate in
the strong coupling regime [15, 16]. Each span is modeled as consisting of a large number of
statistically independent and identically distributed MDL elements, which, in the absence of
any other knowledge, are assumed to be isotropic in the generalized multidimensional Stokes
space [15]. The physical meaning of such isotropy is that the propagation modes are equivalent
from the standpoint of MDL statistics. The gain and the amplification noise introduced by the
amplifiers are assumed to be mode-independent. We note that this is not a limiting assumption,
as an amplifier suffering from mode-dependent gain and noise is equivalent to an amplifier
having perfectly isotropic gain and noise preceded or followed by an MDL element. For a
consistent analysis of capacity, we need to account for the fact that MDL is frequency depen-
dent, with the correlation bandwidth being inversely proportional to the link’s modal dispersion
(MD) [15,17]. While the specific MD value may vary from link to link and is still lacking suffi-
cient experimental characterization, the correlation bandwidth is certainly much narrower than
the overall WDM band. In what follows we divide the WDM band into narrow sub-bands with
frequency independent MDL. In other words, each sub-band represents an independent realiza-
tion of a frequency-flat MIMO-SDM channel. For each sub-band the information capacity can
be readily determined [1,5], and the overall capacity follows from summing the capacities over
the individual sub-bands. Note that the division into sub-bands is a standard way of evaluating
the capacity on a frequency-varying channel.

We consider two possible schemes in which the inline amplifiers can operate, as illustrated
in Fig. 1. In Scheme 1 the amplifiers restore the mode-averaged signal power over the entire
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1 - Constant overall output power 2 - Constant output power per subcarrier

3 - Constant gain 4 - Constant average gain

Fig. 1. Amplification schemes considered in the analysis. In Scheme 1 each amplifier re-
stores the mode-averaged signal power over the entire band of frequencies. In Scheme 2
the mode-averaged signal power is restored separately for each sub-band. In Scheme 3 each
amplifier restores the mode-averaged power of a sub-band to the value that it had at the in-
put of the span. Scheme 4 operates in the same way as Scheme 3, except that it restores the
mode-averaged signal power across the entire band of frequencies.

band of frequencies. In scheme 2 the mode-averaged signal power is restored separately for
each sub-band, which makes Scheme 2 a frequency-resolved power equalization scheme. In
order to reconcile the present study with that of [1], we also consider a third scheme which
assumes equalization on a per sub-band basis, but applied separately on each span. Namely,
each amplifier restores the mode-averaged power of each sub-band to the value that it had at
the input of the span. For the sake of completeness, we also consider a fourth scheme, which
operates similarly to Scheme 3, except that it restores the signal power across the entire band
of frequencies to its value at the beginning of the span. If we denote by Mk the transfer matrix
of the k-th span (including the k-th amplifier), and by Tk = MkMk−1 . . .M1 the transfer matrix
of the link between the transmitter and the end of the k-th span, the described schemes can
be summarized as shown in Table 1, where 2N is the total number of transmitted modes, with
the factor of 2 accounting for polarization. The angled brackets denote ensemble averaging,
which, under the assumption of frequency ergodicity, is equivalent to frequency averaging over
all sub-bands making up the full WDM band. This equivalence requires that the WDM band
is sufficiently large relative to the spectral correlation of MDL. Although the accuracy of this
assumption might be questionable in the very beginning of the link (where MD may still be
small, and hence the correlation bandwidth may be large), it becomes more and more justified
when the accumulated MD exceeds the inverse WDM bandwidth. In the limit of strong mode
coupling within the individual spans, as we show in the appendix, Scheme 4 is rigorously
equivalent to Scheme 1, in spite of the fact that the implementations of the two schemes are
very different. For this reason we do not refer to Scheme 4 explicitly in what follows.

Table 1. Analytic description of the amplification schemes of Fig. 1.

Scheme 1:
〈

Tr
[
T†

kTk

]〉
= 2N Scheme 2: Tr

[
T†

kTk

]
= 2N

Scheme 3: Tr
[
M†

kMk

]
= 2N Scheme 4:

〈
Tr

[
M†

kMk

]〉
= 2N

Throughout the paper we use the formalism introduced in [5] where all the system conse-
quences of MDL are captured by four quantities; the MDL vector�Γ, the noise coherency vector
�Γ′, the mode averaged signal loss γ0, and the mode averaged noise power γ ′0. However, unlike
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in [5], we define γ ′0 as a unitless coefficient which similarly to γ0 is unity in the absence of
MDL. Thus the overall mode-averaged noise power (which was denoted by γ ′0 in [5]) is now
given by Pnγ ′0, where Pn is the sum of the noise powers generated per mode by the amplifiers.
While the analytical results that we present here and derive in Sec. 7 are obtained for the case
of distributed amplification, we show in what follows that they also hold in realistic system
scenarios assuming lumped optical amplifiers. In the present analysis we quantify the impact
of MDL on system capacity by means of the capacity loss per mode �, which is defined as

�=
Cref −C

2N
, (1)

where C is the actual system capacity and where Cref is the capacity of the MDL-free system that
is assumed as a reference. The difference between this metric and the frequently encountered
capacity ratio C/Cref will be discussed in Sec. 3. Note that the choice of the reference system
is important in assessing the impact of MDL. We assume that the reference system operates
at an SNR of Sref = S0

〈γ0〉
〈γ ′0〉

, which is the value that one would obtain by measuring the ratio

between the aggregate signal and noise powers averaged over time or frequency. Also, we
assume that no channel state information is available at the transmitter, which hence excites the
2N modes with the same average power. The capacity of the reference system is in this case
Cref = 2N log2 (1+Sref). First, we argue that the average capacity loss due to MDL is the same
for all the considered amplification schemes and it is given by

〈�〉= 〈Γ2〉
3log(2)

, (2)

where Γ is the length of the MDL vector �Γ. The difference between the schemes is in the
fluctuations of the capacity loss, which is characterized by the variance of �, and consequently
determines the system’s outage behavior. As shown in the appendix, in the case of Scheme 1,
where the amplifiers are set to reproduce the total mode-averaged output power in the WDM
band, the variance of the MDL-induced capacity reduction is given by

σ2
1 =

〈�〉2

20(4N2 −1)
. (3)

For Scheme 2, where the amplifiers equalize the mode-averaged signal power separately for the
individual sub-bands, the variance is given by

σ2
2 =

[
22− 15(5α0L−6)

α2
0 L2

]
σ2

1 , (4)

where L is the overall fiber length and α0 is the mode-averaged fiber loss coefficient. For long
fiber links, Eq. (4) reduces to σ2

2 � 22σ2
1 . An equivalent expression for Scheme 3 could not be

derived, and hence its performance will only be analyzed numerically in what follows.
An important consequence of Eqs. (3) and (4) is that in the regime of large mode counts the

fluctuations of the capacity loss per mode become negligible, as can be seen from the fact that
their standard deviation is proportional to ∼ 〈�〉/2N. This observation suggests that in such a
regime only a small margin needs to be allocated to prevent MDL-induced outages. Of course,
as will be discussed later, the situation is significantly different in systems with low mode
counts.

The different behaviors of the three schemes are compared in Fig. 2, where we plot the
probability density function (PDF) and the complementary cumulative distribution function
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Fig. 2. The left panel shows the PDF of the MDL-induced capacity loss per mode � for a
system consisting of 20 amplified spans where N = 10 spatial modes are transmitted and
for a link MDL of 24.6 dB (corresponding to about 5.5 dB per span). The right panel shows
the corresponding complementary cumulative distribution function (CCDF), namely the
probability of the capacity loss per mode � exceeding the value on the abscissa.
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Fig. 3. The left panel shows the average capacity loss per mode as a function of the average
link MDL in the limit of large SNR for amplification schemes 1, 2, and 3 of Fig. 1. The right
panel shows the corresponding values of the outage capacity loss per mode. The results are
shown for the cases of N = 3 and N = 10 spatial modes.

(CCDF) of �, in the left and right panels, respectively, in the limit of large SNR [18]. These
plots were produced for a system consisting of 20×100 km amplified spans of fiber supporting
N = 10 spatial modes (this mode count is consistent with the situation of a weakly guiding
fiber with normalized frequency V � 6, where LP01, LP11, LP21, LP02, LP31, and LP12 modes
are guided). The mean MDL of the link was 24.6 dB (corresponding to 24.6/

√
20 � 5.5 dB

per span), and the details on how the simulations were conducted are provided in Section 6. As
predicted by the theory, the average capacity loss per mode 〈�〉 is the same for the three schemes,
but the widths of the distributions are notably different, with σ2/σ1 � 5.3 and σ3/σ1 � 1.9.
The theoretically predicted ratio given by Eq. (4) is σ2/σ1 = 4.7. Given the large MDL value
used in the simulation, the accuracy of the analytical result (derived in the limit of small to
moderate MDL values) is quite impressive. The right panel of Fig. 2 can be used to extract the
outage capacity loss per mode in the case where the MDL is approximately constant within the
bandwidth of a WDM channel. For example, when setting the outage probability to the value
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Fig. 4. The top left panel shows the average capacity loss per mode as a function of the
average link MDL for SNR values of S0 = 10,20,30, and 40 dB. The top right panel shows
the corresponding values of the average capacity ratio. The bottom left and right panels
show the outage capacity loss per mode and the outage capacity ratio, respectively, versus
the average link MDL for the same SNR values as in the top panels.

of 10−4, the outage capacity loss per mode �out for scheme 2 is 0.2 bits larger than in the case
of scheme 1.

These points are further addressed in Fig. 3, where we plot the average and the outage values
of the capacity loss per mode as a function of the mean MDL of the link, for the two cases of
N = 3 and N = 10. The difference in the outage capacities between the amplification schemes
is more evident in the case N = 3, and in general it decreases when the number of modes
increases. In fact, the difference between the outage capacity values of any two schemes a
and b, denoted by �out,a and �out,b, is proportional to the difference between the corresponding
standard deviations of the capacity loss per mode, σa and σb. In the case of Schemes 1 and 2
one can use Eqs. (3) and (4) to show that σ2 −σ1 ∝ 〈�〉/2N, which is inversely proportional to
the number of modes, consistent with Fig. 3.

3. Capacity loss per mode vs. capacity ratio

In this section we discuss the role of quantifying the impact of MDL in terms of the capacity
loss per mode �= (Cref −C)/2N, as opposed to the more frequently used capacity ratio C/Cref

[1–4, 6]. While both quantities are reliable figures of merit, the capacity loss per mode, in the
relevant limit of high SNR, becomes independent of S0 and reflects only the MDL parameters
of the system, which makes this metric attractive. This point is illustrated in Fig. 4, where we
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Fig. 5. The left panel shows the ratio between the second and the third terms of Eq. (5)
in the form of a scatter plot versus the average link MDL. See text for details. The right
panel shows the ratio between Sref and S0. Amplification scheme 1 has been assumed in
both plots, but the same behavior has been observed for all amplification schemes.

plot the average capacity loss per mode in the top left panel and the average relative capacity
in top right panel, versus the average link MDL. It is evident from the figure that the curves in
the left panel become practically indistinguishable when S0 exceeds 20 dB, whereas in the right
panel the curves remain distinctively different. The curves are identical for all the considered
amplification schemes. As shown in bottom panels of the same figure, when plotting the outage
capacity loss per mode versus the average link MDL, a similar behavior is observed, namely the
outage capacity loss per mode becomes independent of the SNR for large SNR values. However
the outage capacity loss curves are different for the three amplification schemes.

4. Impact of specifying the SNR in MDL-impaired systems

The dependence of the MDL-induced penalty on the amplification scheme shown in Fig. 3
exemplifies the sensitivity of the MDL-induced capacity reduction to certain details of system
operation. We show in what follows that this sensitivity also extends to two system modeling
aspects. These are the definition of the MDL-free reference system, which is discussed in this
section, and the modeling of the amplification noise, which is the subject of the next section.

A subtle aspect of MDL is that, when looking at the system information capacity, the random-
ness of mode-averaged signal and noise powers is as important as the fact that the individual
eigenmodes are characterized by random and different attenuations. In our formalism, this is
equivalent to claiming that the randomness of γ0 and γ ′0 is as important as the randomness of�Γ
and �Γ′. In order to illustrate this, we recall the expression for the system information capacity
which has been derived in the regime of large SNR in [5]

C = 2N log2 (S0)+2N log2

(
γ0

γ ′0

)

︸ ︷︷ ︸
ΔCMA

+ log2

{
det

[(
I+�Γ ·�Λ

)(
I+�Γ′ ·�Λ

)−1
]}

︸ ︷︷ ︸
ΔCMD

, (5)

where the only previously undefined quantity is �Λ, which is an extension of the Pauli matrix
vector known in the context of PMD studies [19], introduced to MIMO-SDM systems in [15].
The first term on the right hand side of Eq. (5) is the capacity of the system in the absence of
MDL. The second term represents the capacity penalty caused by the fluctuations of the mode-
averaged signal and noise powers and we therefore denote it by ΔCMA, where the subscript
MA stands for “mode-averaged.” The third term is the capacity penalty caused directly by the
existence of differential losses and gains, which are described by the MDL vector�Γ and by the
noise coherency vector �Γ′, and we denote this term by ΔCMD, where the subscript MD stands
for “mode-dependent.” In the left panel of Fig. 5 we show the ratio ΔCMA/ΔCMD in the form
of a scatter plot in a range of average link MDL values. It can be seen from the figure that
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for comparison. The center panel shows the corresponding CCDFs. The right panel shows
the outage capacity loss in the two cases for increasing values of the average link MDL.

the magnitude of ΔCMA is non-negligible as it reaches values as large as one quarter of the
mode-dependent term ΔCMD.

In order to see why this is the case, we recall that the end-to-end MDL of a link is the
result of many local perturbations such as imperfect splices, micro-bends, etc. These make the
attenuation coefficients of the local eigenmodes random quantities, which can be characterized
by a standard deviation σα . In the regime of small MDL, �Γ and �Γ′ have been shown in [5] to
scale with σα , whereas we show in the appendix that γ0 = 1+Δγ0 and γ ′0 = 1+Δγ ′0, where Δγ0

and Δγ ′0 scale with σ2
α . In this regime Eq. (5) reduces to

C = 2N log2 (S0)+
2N

ln(2)

(
Δγ0 −Δγ ′0 −

Γ2 −Γ′2

2

)
, (6)

which depends linearly on Δγ0 and Δγ ′0, and quadratically on Γ and Γ′, so that all of the contri-
butions scale with σ2

α , and they are therefore of similar importance. This situation is in contrast
with MDL studies where the preferred metric is the deterioration in the worst channel’s signal-
to noise-ratio, or in the average bit-error-rate (BER) [9,11]. There the relevant quantities depend
linearly on all four parameters Δγ0, Δγ ′0, �Γ, and �Γ′, and therefore the contribution of Δγ0 and
Δγ ′0 is negligible. Indeed it has been shown in [9] that the dependence of the BER on the fluc-
tuations of the ratio between the mode-averaged signal and noise powers becomes noticeable
only in the regime of very large MDL values.

The above discussion is closely related to the question of which reference system one should
use to quantify the effect of MDL on capacity. In one case, one may opt to choose a reference
system operating at an SNR value of S0 = Ps/Pn, which is the SNR that one would measure
if it were possible to remove all of the local MDL sources [3]. Obviously this approach is not
practical since the only measurable quantities at the system output are γ0Ps and γ ′0Pn. Since
these are random quantities, an acceptable definition would be that the reference SNR is set to
Sref = S0

〈γ0〉
〈γ ′0〉

, ad we assumed in this work. The ensemble averaging involved in the definition of

Sref can be approximated by averaging the aggregate signal and noise powers either in time or in
frequency. On the other hand, if proper averaging cannot be performed (when the timescale of
MDL dynamics is too slow [20], or if one does not have access to a sufficiently broad spectrum
in an operating system), one can only resort to defining the reference SNR as S′ref = S0

γ0
γ ′0

,

which is what was assumed in [5]. It is also customary to set the SNR to S′ref when evaluating
the relation between SNR and BER in simulated systems [9].
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Fig. 7. The left panel shows by thick curve the PDF of the capacity loss per mode � for the
same system as in Fig. 2, which is obtained for amplification scheme 1 by assuming that
spatially isotropic noise is loaded at the receiver, rather than at the inline amplifier sites as
it should be. The thin curve is the corresponding PDF taken from Fig. 2. The right panel
shows the ratio between the average capacity losses per mode obtained for the two noise
models versus the average link MDL.

Interestingly, in a relevant range of MDL values, Sref turns out to be practically identical to
S0, as can be seen in the right panel of Fig. 5, where we plot the ratio 〈γ0〉

〈γ ′0〉
as a function of

the average link MDL. The situation changes drastically when setting the reference SNR to
S′ref, as we illustrate in Fig. 6. In the left and center panels of the figure we compare the PDF
and the CCDF obtained for amplification scheme 1 by setting the reference SNR to S′ref with
the corresponding distributions of Fig. 2, which are shown by thin curves. While the average
capacity loss is the same for the two choices of reference system, as we demonstrate in the
appendix, the variance of the capacity loss per mode in this case is σ ′2

1 = 55σ2
1 , consistent with

the broadening of the distributions seen in the figure, and with the corresponding increase in
outage capacity loss per mode (the computed ratio between σ ′2

1 and σ2
1 is approximately 62). A

direct comparison of the outage capacity loss obtained for the two settings of the reference SNR
(assuming an outage probability of 10−4) is presented in the right panel. Finally, we note that
when setting the reference SNR to S′ref the MDL impact on system performance is practically
unaffected by the assumed amplification scheme.

5. Noise loading

Another important and often overlooked aspect of modeling MDL has to do with whether or not
the effect of MDL on the amplification noise is accounted for – an issue that has been addressed
to some extent in [1, 5, 21]. In all of the above results, noise was assumed to be added to the
propagating signal distributed at each amplification site. If instead spatially isotropic noise is
assumed to be added at the receiver, as in [2, 3], the average capacity loss per mode � increases
by a factor of up to 3/2 relative to the actual value.

In Fig. 7 we illustrate the importance of correctly accounting for the effect of MDL on the
noise spatial coherency, where the amplifiers are operated according to scheme 1. Here, the
average capacity loss when the noise is added at the end is significantly larger than the actual
average capacity loss. This can clearly be seen in the left panel, which shows the PDF of ca-
pacity loss �, with noise properly distributed (thin curve, identical to the corresponding curve in
Fig. 2) and when spatially isotropic noise is added at the receiver (thick curve). Note that when
the noise is added at the receiver, the PDF of the capacity loss approaches a delta function (we
show in the appendix that the variance of � reduces to zero to first order in σ2

α ). The right panel

#225568 - $15.00 USD Received 24 Oct 2014; revised 2 Dec 2014; accepted 5 Dec 2014; published 28 Jan 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.002203 | OPTICS EXPRESS 2212 



of Fig. 7 shows the ratio between the average capacity loss calculated when assuming noise
loading at the receiver and the actual capacity versus the average link MDL. The plot shows
that the ratio of 1.5 derived in the regime of small MDL remains approximately valid for large
MDL values.

6. Numerical simulations

In this section we provide the details concerning the simulations that have been performed in
the context of this paper and whose results are displayed in Figs. 2-7. In all our simulations we
assumed the regime of strong mode coupling.

The simulated system contained Ns = 20 amplified spans, with every span constructed of
M = 100 MDL elements, each characterized by a local MDL vector �αk, j. This choice ensures
that each MDL element contributes incrementally to the overall MDL, consistently with the
theory. Cases in which few MDL elements are responsible for dominant contributions to the
overall MDL are not treated in this paper. We verified that varying the number of spans within
a relevant range of values does not affect the results. Each vector �αk, j is independently drawn
at random from an isotropic Gaussian distribution with the value of 〈α2〉 ≡ 〈|�αk, j|2〉 being a
parameter. The transfer matrix Ak, j of the j-th MDL element in the k-th span is first set to the
matrix exp( 1

2�αk, j ·�Λ) and then normalized such that the average trace of Ak, jA
†
k, j is equal to

2N. In the limit where the magnitude of the local MDL vector �αk, j is small, it can be shown
that this normalization is equivalent to setting Ak, j = exp(− 1

4 〈α2〉)exp( 1
2�αk, j ·�Λ). The transfer

matrix of the k-th span is Mk =
√

Gk exp
(
− 1

2
α0L
Ns

)
Ak,MAk,M−1 . . .Ak,1, where Gk is the gain of

the k-th amplifier. The transfer matrix describing propagation from the link input to the end of
the h-th span is Th = MhMh−1 . . .M1.

When simulating amplification scheme 2, Gk is set so that the trace of ThT†
h = 2N for all

values of h. Similarly, in the case of scheme 3, Gk is set so that the trace of MkM
†
k = 2N

for all values of k. The case of scheme 1 is somewhat less straightforward to simulate, as it
requires the computation of ensemble averages prior to setting the individual gain values. We
show in the appendix that in the limit where every span contains a large number of small MDL

contributions, this is equivalent to setting Gk = exp
(

α0L
Ns

)
.

The noise coherency matrix is computed as Q = (GNs − 1)I+∑Ns
k=2(Gk−1 − 1)FkF

†
k , where

Fk =MNs . . .Mk is the transfer function of the last (Ns−k+1) spans, and where we used the fact
that the power of the amplification noise generated by an amplifier with gain G is proportional
to G− 1. In all numerical examples we assumed that the mode-averaged loss coefficient is
α0 = 0.0461 Np/km, corresponding to 0.2 dB/km.

We verified that simulations of the same system based on the numerical method presented
in [1] yield results which are in full agreement with those presented here.

7. Conclusions

Mode-dependent loss is expected to be a major issue in MIMO-SDM systems. In this paper we
have shown that the accurate assessment of its impact on system performance requires carefully
addressing a number of aspects that have received little attention in previous studies.

To quantify the impact of MDL we assumed as a metric the capacity loss per mode, which
is defined as �= (Cref −C0)/2N, where C is the capacity of the MDL-impaired system, Cref is
the capacity of an MDL-free system which is assumed as a reference, and 2N is the number of
modes, including polarizations. We showed that the average value of � is independent of how the
inline optical amplifiers are operated. In contrast, its fluctuations - and hence the corresponding
outage values - are proportional to 〈�〉/2N, with the proportionality coefficient ranging between
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1/
√

20 and
√

55/
√

20, depending on the amplification scheme and on the assumptions that are
made on the MDL-free reference system. Since the size of these fluctuations reduces with the
number of modes, the impact of the amplification scheme is more significant in systems with
low mode counts. In the regime of large mode counts the capacity loss fluctuations become very
small and, as a result, no significant margin is to be allocated in this case for MDL-induced
outages.

We also discussed the choice of metrics to quantify the impact of MDL on system perfor-
mance. We showed that the capacity loss per mode �, compared to the frequently used capacity
ratio C/Cref, has the advantage of depending very weakly on the SNR value in the regime of
large SNR.

The sensitivity of the capacity loss on the amplification scheme arises from the MDL-induced
fluctuations of the mode-averaged signal and noise powers. We showed that the same fluctu-
ations are responsible for the dependence of � on the choice of the MDL-free system that is
assumed as a reference to evaluate the MDL-induced capacity reduction.

Finally, we quantified the error that is incurred when neglecting the effect of MDL on am-
plification noise. The capacity loss per mode is approximately 50% larger if one assumes, as is
sometimes done in MDL studies, that isotropic noise is added to the signal at the receiver, as
compared to the case where ASE noise is properly assumed to be loaded at each inline amplifier.

Appendix: Analysis

The information capacity of an SDM system where 2N modes (including polarizations) are
transmitted, in the absence of channel state information at the transmitter, is given by

C = log2

[
det

(
I+S0Q−1/2TT†Q−1/2

)]
, (7)

where S0 = Ps/Pn is the SNR that would be measured in the absence of MDL, T is the 2N×2N
channel transfer matrix, and I denotes the identity. The matrix Q is the noise space coherency
matrix normalized to the MDL-free noise power Pn, such that its trace in the absence of MDL
is equal to 2N. We recall that the matrices TT† and Q are Hermitian, and hence they can be
expressed as

TT† = γ0

(
I+�Γ ·�Λ

)
, Q = γ ′0

(
I+�Γ′ ·�Λ

)
, (8)

where γ0 is the mode-averaged channel attenuation, �Γ is the MDL vector, γ ′0 is the mode-
averaged noise power, and �Γ′ is the noise coherency vector. For an extensive description of
the formalism used in this Appendix, the reader is referred to [5]. In the limit of large signal-
to-noise ratio and small MDL, Eq. (7) can be approximated by

C
2N

� log2

(
S0

γ0

γ ′0

)
+

Γ′2 −Γ2

2 ln(2)
� log2 (S0)− 1

2
log2

(
γ ′20 − γ ′2

γ2
0 − γ2

)
, (9)

where γ and γ ′ denote the lengths of the vectors�γ = γ0�Γ and�γ ′ = γ ′0�Γ′, respectively, and where
the second equality on the right-hand side of Eq. (9) is correct to first order in Γ2 and Γ′2. After
expanding the logarithm, the above yields

C
2N

= log2 (S0)− 1
2log(2)

(
γ ′20 − γ ′2

γ2
0 − γ2

−1

)
. (10)

This allows us to calculate the MDL capacity loss per mode �, which in the limit of large SNR
reduces to

�= log2 (Sref)− C
2N

= log2

( 〈γ ′0〉
〈γ0〉

)
+

1
2log(2)

(
γ ′20 − γ ′2

γ2
0 − γ2

−1

)
. (11)
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We now derive evolution equations for γ2
0 − γ2 and for γ ′20 − γ ′2, as well as an expression for

〈γ0〉/〈γ ′0〉. The equation for γ2
0 − γ2 follows from the equations for γ0 and�γ in [5], in which we

neglect terms that are of second order in MDL in the equation for�γ and of third order in MDL
in the equation for γ0 (as required for consistency since Eq. (11) involves the first power of γ0,
but only the second power of γ),

dγ0

dz
=−(α0 +α ′ −g)γ0 −�α ·�γ, d�γ

dz
=−(α0 +α ′ −g)�γ − γ0�α. (12)

Compared to the same equations derived in [5], Eqs. (12) contain an extra term characterized
by the mode-averaged loss coefficient α ′. As will become evident in what follows, this term
was introduced to ensure that 〈γ0(z)〉 which represents the ensemble average of the mode av-
eraged gain, is equal to exp[(g−α0)z], as would be the case in an MDL-free system. We now
approximate the local MDL vector �α as a white Gaussian noise process, in which case �αdz is
an increment d�W of a three-dimensional Wiener process and its variance dW 2 = σ2

αdz repre-
sents the magnitude of the local MDL along the system. Rewriting Eqs. (12) in the standard Ito
form [22] yields

dγ0 = −
(

α0 +α ′ − σ2
α
2

−g

)
γ0dz−d�W ·�γ, (13)

d�γ = −
(

α0 +α ′ − σ2
α
2

−g

)
�γdz− γ0d�W , (14)

from which it is evident that in order to achieve its goal α ′ needs to be set to α ′ = σ2
α/2.

Substituting this value in Eqs. (13) and (14), conveniently yields

dγ0 =−(α0 −g)γ0dz−d�W ·�γ, d�γ =−(α0 −g)�γdz− γ0d�W . (15)

The above equations can be used to obtain

d(γ2
0 − γ2)

dz
=−2(α0 −g)(γ2

0 − γ2)−σ2
α γ2

0 , . (16)

Since σ2
α γ2 � 0 to first order in σ2

α , the term σ2
α γ2

0 can be replaced with σ2
α
(
γ2

0 − γ2
)
, and the

solution of the resulting equation is

γ2
0 − γ2 = exp

{−2I(0,z)−σ2
αz
}
, (17)

where we defined I(z1,z2) =
∫ z2

z1
(α0 −g)dz, and where we used the initial conditions γ(0) = 0

and γ0(0) = 1. Using the same procedure, the equations for noise parameters γ ′0 and�γ ′ that were
introduced in [5] assume the form

dγ ′0 =−(α0 −g)γ ′0dz−d�W ·�γ ′+ g
α0L

dz, d�γ ′ =−(α0 −g)�γ ′dz− γ ′0d�W , (18)

and their solution with initial condition γ ′(0) = γ ′0(0) = 0 is given by

γ ′20 − γ ′2 =
2

α0L

∫ L

0
dz′g(z′)γ ′0(z′)exp

{−2I(z′,z)−σ2(z− z′)
}
. (19)

Using Eqs. (17) and (19) the capacity loss per mode can be expressed as

�= log2

( 〈γ ′0〉
〈γ0〉

)
+

1
2ln(2)

[
2

α0L

∫ L

0
dz′g(z′)γ ′0(z′)exp

{
2I(0,z′)+σ2z′

}−1

]
, (20)
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where γ ′0 is the solution of the first of Eqs. (18),

γ ′0 =
∫ L

0
exp

{−I(z′,z)
}
[
−d�Wz′ ·�γ ′(z′)+

g(z′)
α0L

dz′
]
. (21)

The expression for�γ ′(z′) is obtained by solving the second of Eqs. (18),

�γ ′ =−
∫ L

0
exp

{−I(z′,z)
}

γ ′0(z′)d�Wz′ , (22)

where, to first order in σ2
α we approximate γ ′0 with its zeroth order expression γ ′0 = z/L, obtained

from the first of Eqs. (18) by setting g = α0 in the absence of MDL.
In what follows we assume that the quantity α0 − g, and hence I, is first order in σ2

α . We
will verify that for amplification schemes 1 and 2 this is indeed the case. Note that this is also
consistent with the fact that the link net gain is to be close to one (in the absence of MDL we
assume that this is exactly one). Under this assumption Eqs. (22) and (21) reduce to

�γ ′ =− 1
L

∫ z

0
z′d�Wz′ , γ ′0 =

z
L
+

1
L

∫ z

0
d�Wz′ ·

∫ z′

0
z′′d�Wz′′ −

1
L

∫ z

0
I(z′,z)dz′ − 1

α0L
I(0,z), (23)

and, after some algebra involving integration by parts, as well as the equations α0 − g =
−dI(z′,z)/dz′ and I(0,z′)+ I(z′,z) = I(0,z), the expression for � becomes

ln(2)�= ln

( 〈γ ′0〉
〈γ0〉

)
+

σ2
α L
3

+
1
L2

∫ L

0
(L− z′)

∫ z′

0
z′′d�Wz′′ ·d�Wz′ +

1
L

∫ L

0
I(0,z′)dz′ − I(0,L)

α0L
, (24)

where the last term accounts for the noise power dependence on z caused by gain non-
uniformity along the link.

We are left with the calculation of 〈γ ′0〉 and 〈γ0〉. For a given amplification scheme, the value
of 〈γ ′0〉 can be evaluated by averaging the second of Eqs. (23), which involves evaluating the
ensemble average of I(z′,z). This task can only be accomplished by assuming some amplifica-
tion strategy. Finally, we can evaluate 〈γ0〉 using for γ0 the following expression, which, along
with that of �γ , is obtained through a procedure similar to the one followed in the derivation of
Eqs. (23),

�γ =−
∫ z

0
d�Wz′ γ0 = 1− I(0,z)+

∫ z

0

∫ z′

0
d�Wz′ ·d�Wz′′ . (25)

In what follows we specialize the analysis to the cases of Scheme 1 and Scheme 2.

Amplification scheme 1

In our formalism the operation of Scheme 1 corresponds to enforcing the condition 〈dγ0(z)〉= 0
in the first of Eqs. (16), which is obtained by setting g = α0. In this case I = 0 and 〈γ ′0〉= z/L,
〈γ0〉= 1, and the capacity loss per mode reduces to

ln(2)�=
σ2

α L
3

+
1
L2

∫ L

0
(L− z′)

∫ z′

0
z′′d�Wz′′ ·d�Wz′ . (26)

The second term on the right-hand side of Eq. (26) averages to zero because in Ito’s interpreta-
tion, the increments d�Wz′ and d�Wz′′ never overlap [22], and hence the average capacity loss per
mode is

〈�〉= σ2
α L

3ln(2)
. (27)
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The fluctuations of the capacity loss per mode are given by

σ2
1 =

〈[
1

L2 ln(2)

∫ L

0
(L− z′)

∫ z′

0
z′′d�Wz′′ ·d�Wz′

]2
〉

. (28)

After some algebra, one can find the following equality,
〈[∫ L

0
(L− z′)

∫ z′

0
[z′′+ f (z′)]d�Wz′′ ·d�Wz′

]2
〉

=
σ4

α
4N2 −1

∫ L

0
(L− z′)2 [z

′+ f (z′)]3 − f 3(z′)
3

dz′

(29)
which, for f (z′) = 0 can be used to obtain the desired result,

σ2
1 =

σ4
α L2

ln2(2)180(4N2 −1)
. (30)

In the derivation of (29) we used the properties

〈dWz1,idWz2, j〉 = D−1σ2
α δi, jδ (z1 − z2)dz1dz2 (31)

〈d�Wz1 ·d�Wz2d�Wz3 ·d�Wz4〉 = ∑
i, j
〈dWz1,idWz2,idWz3, jdWz4, j〉

= σ4
α δ (z1 − z2)δ (z3 − z4)dz1dz2dz3dz4

+D−1σ4
α δ (z1 − z3)δ (z2 − z4)dz1dz2dz3dz4

+D−1σ4
α δ (z1 − z4)δ (z2 − z3)dz1dz2dz3dz4. (32)

Note that in the case of lumped amplification (g = 0) the first of Eqs. (15) yields 〈γ0(z+Ls)〉=
γ0(z)exp(−α0Ls). For this reason, in the simulations of Scheme 1 the gain of each amplifier
was set to Gk = exp(α0Ls), so that 〈γ0〉= 1 at the end of each amplified span of length Ls.

7.0.1. Equivalence between Scheme 1 and Scheme 4

We express the matrix T†
kTk of Table 1 as T†

kTk = tkI+�Γk ·�Λ, where tk = Tr
[
T†

k−1Tk−1

]
/2N

and �Γk are the mode-averaged loss and the MDL vector of the k-th span, respectively.
This gives M†

kMk = M†
k−1T†

kTkMk−1 = tkM
†
k−1Mk−1 + M†

k−1(
�Γk · �Λ)Mk−1. By averag-

ing the two sides of this equation and taking their traces, we obtain 〈Tr
[
M†

kMk

]
〉 =

〈Tr
[
T†

k−1Tk−1

]
〉

2N 〈Tr
[
M†

k−1Mk−1

]
〉, where we used the fact that different spans are statistically

independent in terms of MDL, and in the strong coupling regime within each span 〈�Γn〉= 0 [5].

The derived equality implies that 〈Tr
[
M†

kMk

]
〉 = 2N if and only if 〈Tr

[
T†

kTk

]
〉 = 2N, which

proves the equivalence between the two schemes.

Amplification scheme 2

In our formalism the operation of Scheme 2 corresponds to enforcing the condition dγ0 = 0 in
the first of Eqs. (16). This gives

I(0,z) =
∫ z

0
d�Wz′ ·

∫ z′

0
d�Wz′′ . (33)

In this case 〈I〉= 0, and hence 〈γ ′0〉= z/L, 〈γ0〉= 1, and the capacity loss per mode becomes

ln(2)�=
σ2L

3
+

1
L2

∫ L

0
(L− z′)

∫ z′

0

[
z′′+L− L

α0(L− z′)

]
d�Wz′′ ·d�Wz′ (34)
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Since the Ito integrals have zero mean, the average is the same as in the case of fixed gain. To
calculate the fluctuations of � we use Eq. (29) with f (z′) = L− L

α0(L−z′) , and obtain

σ2
2 =

22σ4
α L2

ln2(2)180(4N2 −1)
− 5α0L−6

ln2(2)12(4N2 −1)

σ4
α

α2
0

(35)

MDL-free reference system operating at S′ref

In this case, the capacity of the MDL-free reference system for large SNR values is

C′
ref = 2N log2

(
S0

γ0

γ ′0

)
(36)

and, as shown in [5], the capacity loss per mode reduces to the simple expression

�=
Γ2 −Γ′2

2 ln(2)
� 1

2ln(2)

(
γ2 − γ ′2

)
. (37)

where the second equality follows from the two equalities γ2 = γ2
0 Γ2 and γ ′2 = γ ′20 Γ′2 which, to

first order in σ2
α , simplify to γ2 � Γ2 and γ ′2 � Γ′2. Using the firsts of Eqs. (23) and (25), the

above can be expressed as

�=
1

2ln(2)

(∫ L

0

∫ L

0
d�Wz′ ·d�Wz′′ −

1
L2

∫ L

0

∫ L

0
z′z′′d�Wz′ ·d�Wz′′

)
, (38)

which, due to the absence of I and g, shows that the capacity loss is in this case independent of
the amplification scheme that is assumed. Using the relation 〈d�Wz′ ·d�Wz′′ 〉= σ2

α δ (z′ −z′′)dz′dz′′,
one can see that the average of the first integral is σ2

α L, while that of the second integral is
σ2

α L3/3, which confirms that the average capacity loss is also in this case 〈�〉 = σ2
α L/3ln(2),

as already found in [5]. The evaluation of the mean square value of � involves solving the
following averages,

〈[∫ L

0

∫ L

0
d�Wz′ ·d�Wz′′

][∫ L

0

∫ L

0
z′z′′d�Wz′ ·d�Wz′′

]〉
,

〈[∫ L

0

∫ L

0
d�Wz′ ·d�Wz′′

]2
〉

,

〈[∫ L

0

∫ L

0
z′z′′d�Wz′ ·d�Wz′′

]2
〉

(39)

which can be done by going through some cumbersome yet conceptually straightforward alge-
braic procedure which requires using Eqs. (31) and (32). As a result, the variance of �, which
in this case we denote by σ ′2

1 , is found to be

σ ′2
1 =

55σ4
α L2

180ln2(2)(4N2 −1)
= 55σ2

1 . (40)

Noise at the receiver

Under the assumption of isotropic noise loading at the receiver the noise coherency matrix
reduces to the identity, Q = I, with the result that γ ′0 = 1 and �γ ′ = 0. The expression for the
capacity loss per mode reduces in this case to

�RX = log2

(
1

〈γ0〉
)
+

1
2ln(2)

(
1

γ2
0 − γ2

−1

)
� 1

2ln(2)

[
2I(0,L)+σ2

α L
]
, (41)
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where the second equality is obtained by expanding Eq. (17), and where we used the result
〈γ0〉 = 1, which holds for both amplification schemes 1 and 2. Equation (41) shows that for
amplification schemes 1 and 2, owing to the relation 〈I(0,L)〉 = 0, the average capacity loss

per mode is 〈�RX〉 = σ2
α L

2ln(2) =
3
2 〈�〉. Moreover, for Scheme 1 I(0,L) = 0, with the result that

�RX = 1
2ln(2)σ2

α L, which shows that to first order in σ2
α the capacity loss per is deterministic,

consistent with the delta-like PDF in plotted in Fig. 7.
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