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Abstract: Phase-sensitive amplification (PSA), which is produced by
degenerate four-wave mixing (FWM) in a randomly-birefringent fiber,
has the potential to improve the performance of optical communication
systems. Scalar FWM, which is driven by parallel pumps, is impaired by
the generation of pump–pump and pump–signal harmonics, which limit
the level, and modify the phase sensitivity, of the signal gain. In contrast,
vector FWM, which is driven by perpendicular pumps, is not impaired by
the generation of harmonics. Vector FWM produces PSA with the classical
properties of a one-mode squeezing transformation.
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1. Introduction

Long-haul communication systems require optical amplifiers to compensate for fiber loss. Cur-
rent systems use erbium-doped or Raman fiber amplifiers. These amplifiers are examples of
phase-insensitive amplifiers (PIAs), which produce signal gain that is independent of the signal
phase. In principle, phase-sensitive amplifiers (PSAs) could also be used. The potential advan-
tages of PSAs include, but are not limited to, noise reduction [1], the reduction of noise- and
collision-induced phase [2] and frequency [3] fluctuations, and dispersion compensation [4].

Previous papers [5, 6, 7] showed that degenerate four-wave mixing (FWM) in a randomly-
birefringent fiber (RBF) produces phase-sensitive amplification (PSA), provided that the signal
frequency (ω0) is the average of the pump frequencies (ω−1 and ω1). Degenerate scalar and
vector FWM are illustrated in Figs. 1(a) and 1(b), respectively. In the former process (inverse
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Fig. 1. Polarization diagrams for degenerate scalar FWM (left) and degenerate vector FWM
(right).

modulation interaction) γ−1 + γ1 → 2γ0, where γ j represents a photon with frequency ω j. In the
latter process (degenerate phase conjugation) γ−1 + γ1 → γ‖ + γ⊥, where the subscript 0 was
omitted for simplicity.

If one assumes that each interaction involves only the aforementioned pumps and signal, then
each interaction produces PSA with the classical properties of a one-mode squeezing transfor-
mation [8]. FWM processes are driven by pump- and signal-induced nonlinearities and limited
by dispersion-induced wavenumber shifts. If the pump frequencies differ significantly, strong
dispersion prevents other (secondary) FWM processes from occurring and the preceding as-
sumption is valid. However, it is difficult to phase lock pumps with dissimilar frequencies,
which are usually produced by two separate lasers. In contrast, it is easy to phase lock pumps
with similar frequencies, which can be produced by one laser and a phase modulator. How-
ever, if the pump frequencies are similar, dispersion is too weak to counter nonlinearity and
secondary FWM processes occur.

A previous paper on scalar FWM [9] showed that, if the pump frequencies are comparable
to the zero-dispersion frequency (ZDF) of the fiber, a cascade of product waves (harmonics)
is produced. In the low-pump-power regime that is characteristic of photon-generation experi-
ments [10], weak harmonics are produced, which do not affect the primary process significantly.
However, in the high-pump-power regime that is characteristic of signal-amplification experi-
ments, strong harmonics are produced, which limit the level, and modify the phase sensitivity,
of the signal gain. In this paper vector FWM is studied in detail. If the pumps are orthogonal,
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and the input-signal power is split evenly between the pump polarizations, vector FWM does
not produce pump-pump harmonics, but does produce PSA with the aforementioned properties.

This paper is organized as follows: In Section 2 the coupled-mode equations (CMEs), which
model wave propagation in a dispersionless RBF, are stated and solved for arbitrary input con-
ditions. In Sections 3 and 4 these solutions are used to study pump–pump and pump–signal
FWM cascades, respectively. Simulations that quantify the effects of dispersion are described
in Section 5. Finally, in Section 6 the main results of this paper are summarized.

2. Wave propagation in a fiber

Wave propagation in a RBF is modeled by the coupled Schroedinger equations (CSEs)

−i∂zX = β (i∂τ)X + γ(|X |2 + |Y |2)X , (1)

−i∂zY = β (i∂τ)Y + γ(|X |2 + |Y |2)Y, (2)

where z is distance, ∂z = ∂/∂ z, X and Y are the amplitude (polarization) components of
the wave and β is the dispersion function of the fiber. In the frequency domain β (ω) =
∑n≥2 βn(ωc)ωn/n!, where ωc is the carrier frequency of the wave and ω is the difference be-
tween the actual and carrier frequencies. To convert from the frequency domain to the time
domain one replaces ω by i∂τ , where τ = t −β1z is the retarded time and β1(ωc) is the group
slowness. The nonlinearity coefficient γ = 8γK/9, where γK is the Kerr coefficient. Equations
(1) and (2) are valid in a frame that rotates randomly with the polarization axes of a refer-
ence wave. They omit the effects of polarization-mode dispersion [11], which are weak for the
narrow spectral bandwidths and short fiber lengths of current experiments.

As stated in the Introduction, and discussed quantitatively in [9], if the frequencies of the
interacting waves are comparable to the ZDF of fiber, the effects of dispersion are much weaker
than those of nonlinearity and can be neglected. In this limit (β = 0), the CSEs reduce to the
coupled-mode equations (CMEs)

∂zX = iγ(|X |2 + |Y |2)X , (3)

∂zY = iγ(|X |2 + |Y |2)Y, (4)

which model the effects of self-phase modulation (SPM) and cross-phase modulation (CPM).
The notation and language of this paper are based on the assumption that the basis vectors for
the wave amplitude are linearly polarized. However, Eqs. (3) and (4) are valid for any pair of
orthogonal vectors, including counter-rotating circularly-polarized vectors. Each polarization
component depends implicitly on the retarded time.

The CMEs have the simple solutions

X(τ,z) = X(τ,0)exp
(
iγ[|X(τ,0)|2 + |Y(τ,0)|2]z), (5)

Y (τ,z) = Y (τ,0)exp
(
iγ[|X(τ,0)|2 + |Y(τ,0)|2]z). (6)

Because solutions (5) and (6) contain only the effects of nonlinearity, it is convenient to let P
be a reference power, X/P1/2 → X , Y/P1/2 →Y and γPz → z, in which case the amplitude and
distance variables are dimensionless, and γ is absent from the solutions.

3. Pump-pump cascade

Consider the two-frequency boundary (initial) conditions

X(τ,0) = ρ− cosθ− exp(iφ−)+ ρ+ cosθ+ exp(iφ+), (7)

Y (τ,0) = ρ− sinθ− exp(iφ−)+ ρ+ sinθ+ exp(iφ+), (8)
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where φ+ = −ωτ + φ1(0) and φ− = ωτ + φ−1(0). These conditions correspond to two pumps
(±1) with frequencies ±ω , which are inclined at the angles θ± relative to the x-axis. (The
average of the pump frequencies equals the carrier frequency.) The input power has the time
average ρ 2

+ + ρ2− and the contribution 2ρ+ρ− cos(θ+ − θ−)cos(φ+ − φ−), which oscillates at
the difference frequency 2ω . The input power depends on the phase difference φ d = [φ1(0)−
φ−1(0)]/2, but does not depend on the phase average φ a = [φ1(0)+ φ−1(0)]/2. By measuring
phase relative to the reference phase φa, and time relative to the reference time φd/ω , one can
rewrite conditions (7) and (8) in the simpler forms

X(τ,0) = ρ− cosθ− exp(iφ)+ ρ+ cosθ+ exp(−iφ), (9)

Y (τ,0) = ρ− sinθ− exp(iφ)+ ρ+ sinθ+ exp(−iφ), (10)

where φ = ωτ .
By using the identity exp(iζ cosψ) = ∑m imJm(ζ )exp(−imψ) [12], where m is an integer,

Jm is the Bessel function of order m, ζ is the distance parameter 2ρ+ρ− cos(θ+ − θ−)z and
ψ is the phase parameter 2φ , one can write solutions (5) and (6) as the series X(τ,z) =
∑n Xn(z)exp(−inφ) andY (τ,z) = ∑nYn(z)exp(−inφ), respectively. The frequency components
(harmonics)

Xn(ζ ) = ρ− cosθ−i(n+1)/2J(n+1)/2(ζ )+ ρ+ cosθ+i(n−1)/2J(n−1)/2(ζ ), (11)

Yn(ζ ) = ρ− sinθ−i(n+1)/2J(n+1)/2(ζ )+ ρ+ sinθ+i(n−1)/2J(n−1)/2(ζ ), (12)

where n is an odd integer and the (common) phase factor exp[i(ρ 2
+ + ρ2−)z] was omitted for

simplicity. For continuous-wave inputs ρ± are constant (as are φa and φd), whereas for pulsed
inputs they vary slowly with time (as do φa and φd). As distance increases, so also does the
number of harmonics (modes) with significant power: Eqs. (11) and (12) describe a vector
FWM cascade. Notice that the mode powers |Xn|2 and |Yn|2 do not depend on the input phases:
This pump–pump cascade is phase insensitive (PI). Two other properties follow from Eqs. (11)
and (12), and the identity ∑m J2

m(ζ ) = 1 [12]. First,

∑
n
|X(ζ )|2 = ρ2

− cos2 θ− + ρ2
+ cos2 θ+, (13)

which shows that the time-averaged power in the x-component is constant, consistent with
solution (5). Second,

∑
n

[|Xn(ζ )|2 −|X−n(ζ )|2] = (ρ2
+ cos2 θ+ −ρ2

− cos2 θ−)J2
0 (ζ ), (14)

which shows that the asymmetry in the x-component of the power spectrum decreases non-
monotonically with distance (as 1/ζ ). Similar results apply to the y-component.

The evolution of the pump–pump cascade is illustrated in Fig. 2, for the initial conditions
ρ± = 1 and θ− = 0. In each row the polarization components of the pump spectrum (pump
spectra) are displayed for two distances, z = 0 and z = 2. The first row corresponds to pumps
that are parallel initially (θ+ = 0), the second row corresponds to oblique pumps (θ + = π/4)
and the third row corresponds to perpendicular pumps (θ + = π/2). Figures 2(a) and 2(b) show
that, if the pumps are x-polarized initially, they remain x-polarized: The CMEs do not allow a
transfer of power from one component to the other. If the pumps are oblique a FWM cascade
also occurs. However, the cascade in Fig. 2(d) is less developed than the cascade in Fig. 2(b),
because the oscillations in total power are weaker (ζ is smaller). If the pumps are perpendicular
the total power is constant, so no cascade occurs, as shown in Fig. 2( f ). It was shown in [13, 14]
that perpendicular pumps in RBFs do not produce the lowest harmonics (modes −3 and 3). The
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preceding analysis shows that they produce no harmonics whatsoever. We validated the spectra
displayed in Fig. 2 (and Figs. 3, 6 and 7) by calculating the Fourier transforms of solutions (5)
and (6) numerically.
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Fig. 2. Mode powers plotted as functions of mode number for cases in which the input
amplitudes ρ± = 1 and the input polarization-angle θ− = 0. The other angle θ+ = 0 (top
row), θ+ = π/4 (middle row) and θ+ = π/2 (bottom row), and the distance z = 0 (left
column) and z = 2 (right column). Red (light-gray) bars represent x-components, whereas
blue (dark-gray) bars represent y-components.

4. Pump-signal cascades

Now consider the three-frequency initial conditions

X(τ,0) = ρ exp(iφ)+ ρ0 cosθ0 exp(iφ0), (15)

Y (τ,0) = ρ0 sinθ0 exp(iφ0)+ ρ exp(−iφ), (16)

where ρ , ρ0, θ0 and φ0 are constants (or slowly-varying functions of time). These conditions
correspond to two pumps of equal power and a signal whose frequency is the average of the
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pump frequencies (0). The pumps are perpendicular and the signal is polarized at the angle
θ0 to pump −1. For these conditions, the input power has the time average 2ρ 2 + ρ2

0 and the
contribution 2ρρe cos(φ − φe), which oscillates at the difference frequency ω . The (effective)
amplitude and phase parameters

ρe = ρ0[1+ sin(2θ0)cos(2φ0)]1/2, (17)

φe = tan−1[tanφ0(1− tanθ0)/(1+ tanθ0)]. (18)

Notice that ρe, which determines the strength of the power oscillations, depends on φ 0, unless
θ0 = 0 or π/2. By using the aforementioned identity, one can write solutions (5) and (6) as
the series X(τ,z) = ∑n Xn(z)exp[−in(φ −φe)] and Y (τ,z) = ∑nYn(z)exp[−in(φ −φe)], respec-
tively. The harmonics

Xn(ζ ) = in+1Jn+1(ζ )ρ exp(iφe)+ inJn(ζ )ρ0 cosθ0 exp(iφ0), (19)

Yn(ζ ) = in−1Jn−1(ζ )ρ exp(−iφe)+ inJn(ζ )ρ0 sinθ0 exp(iφ0), (20)

where n is an integer, ζ = 2ρρez and the (common) phase factor exp[i(2ρ 2 +ρ2
0 )] was omitted.

Equations (19) and (20) describe a pump–signal cascade, and are valid for arbitrary signal
polarizations and signal phases. In this paper the polarization dependence of the cascade is
studied for the case in which φ0 = 0, and the phase dependence of the cascade is studied for the
case in which θ0 = π/4.

First, suppose that φ0 = 0. Then ρe = ρ0[1+ sin(2θ0)]1/2 and φe = 0 or π . These parameter
specifications are equivalent to ρe = ρ0(cosθ0 + sinθ0) and φe = 0. Equations (19) and (20)
reduce to the simpler equations

Xn(ζ ) = in+1Jn+1(ζ )ρ + inJn(ζ )ρ0 cosθ0, (21)

Yn(ζ ) = in−1Jn−1(ζ )ρ + inJn(ζ )ρ0 sinθ0, (22)

where ζ was defined after Eq. (20). Notice that the harmonics have x and y components for
arbitrary θ0: This pump–signal cascade is polarization diverse.

The evolution of the pump–signal cascade is illustrated in Fig. 3, for the initial conditions
ρ = 1, ρ0 = 0.1 and φ0 = 0. In each row power spectra are displayed for two distances, z = 0
and 4. The first row corresponds to a signal that is parallel to pump −1 initially (θ 0 = 0), the
second row corresponds to a signal that is polarized at 45 ◦ to the pumps (θ0 = π/4) and the
third row corresponds to a signal that is parallel to pump 1 (θ 0 = π/2). Power is normalized
to 10−4, so the input pump powers P±1 = 1 correspond to 40 dB and the input signal power
P0 = 0.01 corresponds to 20 dB. Figures 3(a) and 3(b) show that an x-polarized signal produces
an x-polarized pump–signal cascade. This cascade is similar to the cascade illustrated in Figs.
2(a) and 2(b), but is less developed, because the signal in the latter cascade is weaker than pump
1 in the former. Notice that a y-polarized cascade develops sympathetically, even though the y-
component of the input power was not modulated. For z = 4, only a slight asymmetry between
the x- and y-components of this vector cascade exists (which is clearly visible in modes ±2).
Similar remarks apply to Figs. 3(e) and 3( f ), which illustrate the vector cascade produced by a
y-polarized signal. The strongest vector cascade occurs when θ 0 = π/4, in which case the input
signal power is split evenly between the pump polarizations, and the cascade that develops is
symmetric. This case corresponds to the strongest modulation of the input power (ρ e = 21/2ρ0).

Second, suppose that θ0 = π/4. Then ρe = 2ρ̂0|cosφ0|, where ρ̂0 = ρ0/21/2, and φe = 0 or
π . These parameter specifications are equivalent to ρe = 2ρ̂0 cosφ0 and φe = 0. Equations (19)
and (20) reduce to the simpler equations

Xn(ζ ) = in+1Jn+1(ζ )ρ + inJn(ζ )ρ̂0 exp(iφ0), (23)

Yn(ζ ) = in−1Jn−1(ζ )ρ + inJn(ζ )ρ̂0 exp(iφ0), (24)
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Fig. 3. Normalized mode powers plotted as functions of mode number for cases in which
the input amplitudes ρ = 1 and ρ0 = 0.1, and the input phase φ0 = 0. The input polarization-
angle θ0 = 0 (top row), θ0 = π/4 (middle row) and θ0 = π/2 (bottom row), and the distance
z = 0 (left column) and z = 4 (right column). Red bars represent x-components, whereas
blue bars represent y-components.

where ζ was defined after Eq. (20). Notice that the harmonics depend on φ 0: This pump-signal
cascade is phase sensitive (PS). It follows from Eq. (23) that

X0(ζ ) = iJ1(ζ )ρ + J0(ζ )ρ̂0 exp(iφ0). (25)

The formula for Y0 is identical. In the linear regime (ζ � 1), the output signal is proportional
to the input signal. (Because ρ0/ρ � 1, it is possible that ζ � 1 and ρ 2z ∼ 1 simultaneously.)
In this regime,

X0(z) ≈ (1+ iρ2z)ρ̂0 exp(iφ0)+ iρ2zρ̂0 exp(−iφ0). (26)

Although Eq. (26) is only part of an approximate solution of the CMEs, it is the exact solution
of the FWM equations for the standard PS process [5, 6, 7], which involves only modes −1, 0
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and 1 [Fig. 1(b)]. It follows from Eq. (26), and its counterpart for Y 0, that the signal power

P0(z) ≈ ρ2
0 [1+2(ρ2z)2 +2(ρ2z)sin(2φ0)+2(ρ2z)2 cos(2φ0)]. (27)

It follows from Eq. (27) that the signal gain P0(z)/ρ2
0 attains its extremal values when 2φ0 =

tan−1(1/ρ2z). Let μ = 1+ iρ2z and ν = iρ2z. Then the first-quadrant value of 2φ0 corresponds
to the maximal gain (|μ |+ |ν|)2, whereas the third-quadrant value corresponds to the minimal
gain (|μ |− |ν|)2. It also follows from Eq. (23) that, in the linear regime,

X−2(z) ≈ i2ρ2zρ̂0 cosφ0. (28)

For long distances (ρ 2z > 1), X−2 ≈ X0, unless φ0 ≈ π/2 or 3π/2. Similar results apply to Y2.
The dependence of the signal power (gain) on phase and distance is illustrated in Fig. 4,

for the initial conditions ρ = 1 and ρ0 = 0.01 (which correspond to pump powers of 1 W and
a signal power of 0.1 mW). The contour spacing is 2.5 dB, so the white regions correspond
to positive gains higher than 18.75 dB, whereas the black region corresponds to negative gain
lower than −18.75 dB. For short distances the gain is maximal when the input phase φ 0 ≈
π/4, whereas it is minimal when φ0 ≈ 3π/4. In contrast, for long distances the maximal- and
minimal-gain conditions are φ0 ≈ 0 and φ0 ≈ π/2, respectively. This behavior distinguishes
FWM in a fiber from difference-frequency generation in a crystal, for which the maximal- and
minimal-gain conditions are φ0 = 0 and φ0 = π/2, respectively, for all distances [8].

0 0.5 1 1.5 2 2.5 3
Phase

0

1

2

3

4

5

D
is

ta
nc

e

Fig. 4. Signal gain plotted as a function of input phase and distance. Light and dark regions
correspond to positive and negative gains, respectively. The solid curves show the loci of
maximal and minimal gain.

The dependence of the signal gain on phase and distance is also illustrated in Fig. 5, for the
initial conditions ρ = 1 and ρ0 = 0.01. In Fig. 5(a) the gain is plotted as a function of input
phase, for the case in which z = 5. When φ0 = 0, the gain is 1 + 4(ρ 2z)2: The signal power
increases quadratically with distance. In contrast, when φ0 = π/2 the gain is 1: The signal is
not amplified and no idlers are produced. The maximal gain {[1+(ρ 2z)2]1/2 +ρ2z}2 ≈ 4(ρ2z)2

corresponds to φ0 = 0.099, whereas the minimal gain {[1 + (ρ 2z)2]1/2 − ρ2z}2 ≈ 1/4(ρ2z)2

corresponds to φ0 = 1.67. In Fig. 5(b) the gain is plotted as a function of distance, for the
extremal cases in which φ0 = 0.099 and 1.67. The power of the amplified signal (normalized to
10−4) increases from 1 to 102 (20.1 dB), whereas the power of the attenuated signal decreases
from 1 to 9.8× 10−3 (−20.1 dB). These results show that vector FWM provides (at least) 20
dB of PS amplification or attenuation. Neither process is impeded by the generation of idlers.

The evolution of the pump–signal cascade is illustrated in Fig. 6, for the initial conditions
ρ = 1, ρ0 = 0.01 and φ0 = 0.099 (maximal gain). Spectra are displayed for z = 0 and z = 5.
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Fig. 5. Signal gain plotted as a function of input phase and distance for cases in which
ρ = 1 and ρ0 = 0.01: z = 5 (left), and φ0 = 0.099 and φ0 = 1.67 (right). In the phase plot
the exact and approximate results are denoted by solid and dashed curves, respectively.
In the distance plot they are represented by solid and dashed curves (amplification), and
dot-dashed and dotted curves (attenuation). The exact and approximate curves are nearly
indistinguishable.

Power is normalized to 10−6, so the input pump powers P±1 = 1 correspond to 60 dB and the
input signal power P0 = 10−4 corresponds to 20 dB. (Each component of the signal has a power
of 17 dB.) The output signal power is about 40 dB (37 dB in each component). In addition to a
strong output signal, FWM produces two strong idler modes. Mode −2, which is x-polarized,
is generated by the FWM processes in which 2γ−1 → γ−2 + γ0 and γ−1 + γ0 → γ−2 + γ1, and
enhanced by the process in which γ−1 + γ1 → γ−2 + γ2. Similar processes produce mode 2,
which is y-polarized. The scalar pump–signal cascade produces many idlers, whose powers are
comparable to the signal power, and whose presence limits the signal gain [9]. In contrast, the
vector pump–signal cascade produces only two idlers, whose presence does not affect the signal
gain significantly.
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Fig. 6. Normalized mode powers plotted as functions of mode number for the case in which
ρ = 1, ρ0 = 0.01 and φ0 = 0.099: z = 0 (left) and z = 5 (right). Red bars represent x-
components, whereas blue bars represent y-components.

Two other spectra are displayed in Fig. 7, for the initial conditions ρ = 1 and ρ 0 = 0.01, which
were illustrated in Fig. 6(a), and the distance z = 5. Figure 7(a) corresponds to φ 0 = 1.57, for
which no cascade occurs: The mode powers are constants. Similar behavior is exhibited by the
standard PS process [5, 6, 7] and the scalar cascade [9]. Figure 7(b) corresponds to φ 0 = 1.67
(minimal gain). The signal is attenuated, consistent with Fig. 5(b). In the standard PS process
the signal power is transferred to the pumps (±1). However, in the vector cascade the signal
power is transferred to the neighboring idlers (±2). This behavior is consistent with Eqs. (26)
and (28): For long distances, the condition 2φ0 = tan−1(1/ρ2z) is equivalent to the conditions
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sinφ0 ≈ 1 and cosφ0 ≈−1/2ρ2z, which imply that X0 ≈−ρ̂0/2ρ2z and X−2 ≈−iρ̂0.
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Fig. 7. Normalized mode powers plotted as functions of mode number for cases in which
ρ = 1, ρ0 = 0.01 and z = 5: φ0 = 1.57 (left) and φ0 = 1.67 (right). Red bars represent
x-components, whereas blue bars represent y-components.

5. Numerical simulations of vector four-wave mixing

Current experiments involve highly-nonlinear fibers with dispersion coefficients β 3 ≈ 0.03
ps3/Km and β4 ≈ −3× 10−4 ps4/Km, nonlinearity coefficients γ ≈ 10/Km-W (all evaluated
at the ZDFs), and pumps with powers P ≈ 0.3 W. The mode frequencies depend on the in-
tended application. We chose (real) frequency spacings of 50 and 200 GHz (0.4 and 1.6 nm),
which are the channel spacings for 10- and 40-Gb/s systems, respectively.

To check the analysis of Sections 3 and 4, we solved the CSEs numerically, using the standard
split-step method, for the initial conditions of Figs. 2, 3, 6 and 7. In the absence of dispersion
(β3 = 0 and β4 = 0), the numerical results agree with the analytical predictions (to the limit of
numerical accuracy). In the presence of dispersion (with the aforementioned characteristics),
there are some quantitative differences, but no qualitative differences, between the numerical
results and the analytical predictions.

The evolution of the pump–pump cascade is illustrated in Fig. 8, for the initial conditions
ρ± = 1 and θ− = 0, and the distance z = 2. The total mode power is plotted as a function of
mode number. Figure 8(a) corresponds to θ+ = 0, which was illustrated in Fig. 2(a). For a
frequency spacing of 50 GHz, the difference between the numerical results and the analytical
predictions does not exceed 0.8%. For a spacing of 200 GHz, moderate differences are visible.
Dispersion breaks the symmetry between the positive- and negative-mode powers. However, it
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Fig. 8. Normalized mode powers plotted as functions of mode number for cases in which
ρ± = 1, θ− = 0 and z = 2: θ+ = 0 (left) and θ+ = π/2 (right). Light- and dark-gray bars
correspond to frequency spacings of 50 and 200 GHz, respectively.
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is not strong enough to suppress the cascade driven by parallel pumps. Figure 8(b) corresponds
to the initial condition θ+ = π/2, which was illustrated in Fig. 2(e). For both spacings, the
numerical results agree with the analytical predictions: Perpendicular pumps do not produce a
cascade.

The evolution of the pump–signal cascade is illustrated in Fig. 9, for the initial conditions
ρ = 1 and ρ0 = 0.01, which were illustrated in Fig. 6(a), and the distance z = 5. The total mode
power is plotted as a function of mode number. Figure 9(a) corresponds to φ 0 = 0.099 (maximal
gain in the zero-dispersion limit). For a frequency spacing of 50 GHz, the difference between
the numerical results and the analytical predictions does not exceed 0.5%. For a spacing of
200 GHz, small differences in the powers of modes −3 and 3 are visible. However, for both
spacings the signal is amplified by 20 dB. Figure 9(b) corresponds to φ 0 = 1.67 (minimal gain
in the zero-dispersion limit). For both spacings, the numerical results agree with the analytical
predictions: The signal is attenuated by 20 dB.
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Fig. 9. Normalized mode powers plotted as functions of mode number for cases in which
ρ = 1, ρ0 = 0.01 and z = 5: φ0 = 0.099 (left) and φ0 = 1.67 (right). Light- and dark-gray
bars correspond to frequency spacings of 50 and 200 GHz, respectively.

As the frequency spacing increases, so also do the differences between the numerical re-
sults and the analytical predictions. However, it remains true that perpendicular pumps do not
produce a cascade, and a signal polarized at 45◦ to such pumps experiences significant PS
amplification or attenuation. The extremal-gain conditions depend on the frequency spacing.

6. Summary

In this paper studies were made of the frequency cascades initiated by two strong pump waves
(−1 and 1), and two strong pump waves and a weak signal wave (0), whose frequency is the
average of the pump frequencies. These cascades are produced by vector four-wave mixing
(FWM) in a randomly-birefringent fiber (RBF).

Wave propagation in a RBF is governed by coupled Schroedinger equations (CSEs). How-
ever, if the frequencies of the interacting waves are comparable to the zero-dispersion frequency
(ZDF) of the fiber, the effects of dispersion are much weaker than those of nonlinearity and can
be neglected. In this limit, the CSEs reduce to the coupled-mode equations (3) and (4), which
were solved exactly.

The pump–pump cascade [Eqs. (11) and (12)] is phase insensitive. Parallel pumps produce
a strong cascade with many harmonics. However, as the pump misalignment increases, the
number and strength of the harmonics decrease. Perpendicular pumps do not produce a cascade.

The absence of a pump–pump cascade modifies the properties of the associated pump–signal
cascade [Eqs. (17) and (18)], which is phase sensitive. If the signal is polarized at 45 ◦ to the
pumps, only two strong harmonics (idlers) are produced (−2 and 2). These idlers are produced
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by the pumps and signal, but do not affect the signal adversely: For parameters that are typical
of current experiments, the signal can be amplified or attenuated by more than 20 dB, depending
on its input phase.

The analytical predictions of this paper were validated by numerical simulations based on
the CSEs, which included the effects of dispersion.

In conclusion, vector FWM near the ZDF of a RBF produces phase-sensitive amplification
with the classical properties of a one-mode squeezing transformation. This result is important,
because it is easier to phase-lock pumps with similar frequencies (produced by one laser and a
phase modulator) than pumps with dissimilar frequencies (produced by two separate lasers).
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