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Shotgun metagenomics sequencing is a powerful tool for the 22 Jam 2020
characterization of complex biological matrices, enabling analysis of
prokaryotic and eukaryotic organisms and viruses in a single experiment,
with the possibility of reconstructing de novo the whole metagenome or a version 3 ? ?
set of genes of interest. One of the main factors limiting the use of shotgun (revision) report  report
metagenomics on wide scale projects is the high cost associated with the 29 Jul 2018
approach. We set out to determine if it is possible to use shallow shotgun
metagenomics to characterize complex biological matrices while reducing
costs. We measured the variation of several summary statistics simulatinga ~ version 2 X X
decrease in sequencing depth by randomly subsampling a number of (revision) report  report
reads. The main statistics that were compared are alpha diversity 22 Mar 2019

estimates, species abundance, and ability of reconstructing de novo the
metagenome in terms of length and completeness. Our results show that
diversity indices of complex prokaryotic, eukaryotic and viral communities version 1 X X
can be accurately estimated with 500,000 reads or less, although 08Nov2018  report  report
particularly complex samples may require 1,000,000 reads. On the
contrary, any task involving the reconstruction of the metagenome
performed poorly, even with the largest simulated subsample (1,000,000 1 Alejandro Sanchez-Flores , National
reads). The length of the reconstructed assembly was smaller than the
length obtained with the full dataset, and the proportion of conserved genes
that were identified in the meta-genome was drastically reduced compared
to the full sample. Shallow shotgun metagenomics can be a useful tool to
describe the structure of complex matrices, but it is not adequate to
reconstruct—even partially—the metagenome.
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m Amendments from Version 2

Reviewers José F. Cobo Diaz and Francesco Dal Grande

Following the suggestions of both reviewers we now adopted
more stringent criteria for determining the presence of a species.
We leverage the mock community to define a threshold. We use
Bracken to refine the species abundance estimation (already
providing a very permissive threshold, i.e. ignoring OTUs with
less than 10 reads). We then performed a performance analysis
to compare Bracken results with the known composition of the
mock community, and chose the threshold maximizing the F1
score (harmonic average of precision and recall). The threshold
resulting in the best tradeoff was 0.1%.

Reviewer José F. Cobo Diaz

We removed the last paragraph of the introduction.

We added a sentence and a reference stating some
disadvantages of the use of metabarcoding.

We clarified the meaning of SRA and provided a link.

Figure 3 has now been removed, since data at species level is
already reported in Figure 4 (which is now Figure 3), and results
at genus level are not so different from those at species level.
Reviewer Francesco Dal Grande

We used bracken to improve estimation of species-level
abundance. We noticed substantial improvements over the use of
kraken alone.

We present BUSCO results obtained in the mock community by
assigning individual contigs to species using kraken2, and then
provide separate results for each species (in Figure 6).

See referee reports

Introduction

Shotgun metagenomics offers the possibility to assess the
complete taxonomic composition of biological matrices and to
estimate the relative abundances of each species in an unbiased
way . It allows to agnostically characterize complex communities
containing eukaryotes, fungi, bacteria and also viruses.

Metagenome shotgun high-throughput sequencing has pro-
gressively gained popularity in parallel with the advancing
of next-generation sequencing (NGS) technologies®™, which
provide more data in less time at a lower cost than previous
sequencing techniques. This allows the extensive application
to study the most various biological mixtures such as envi-
ronmental samples™, gut samples’”, skin samples'’, clinical
samples for diagnostics and surveillance purposes''~* and food
ecosystems'™'°. Another, more traditional approach currently
used to assign taxonomy to DNA sequences is based on the
sequencing of target conserved regions. Metabarcoding method
relies on conserved sequences to characterize communities of
complex matrices. These include the highly variable region of
16S rRNA gene in bacteria'/, the nuclear ribosomal internal
transcribed spacer (ITS) region for fungi'® , 18S rRNA gene in
eukaryotes'”, cytochrome ¢ oxidase sub-unit I ( COI or coxI) for
taxonomical identification of animals®, rbcL, matK and ITS2 as
the plant barcode’’. Metabarcoding has the advantage of reduc-
ing sequencing needs, since it does not require sequencing of
the full genome, but just a marker region. On the other hand,
given the commonly used approaches, characterization of
microbial and eukaryotic communities requires different
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primers and library preparations””. In addition, bias in the
amplification of the targeted sequence is a major issue in targeted
metagenomics studies and constitutes an important limitation of
metabarcoding™. Several studies suggested that whole shot-
gun metagenome sequencing is more effective in the charac-
terization of metagenomics samples compared to target amplicon
approaches, with the additional capability of providing functional
information regarding the studied approaches”*.

Current whole shotgun metagenome experiments are performed
obtaining several million reads®’. However, obtaining a broad
characterization of the relative abundance of different species
might be achieved with lower number of reads.

To test this hypothesis, we analyzed ten samples (eight sequenced
in the framework of this study and two retrieved from the lit-
erature) derived from different complex matrices using whole
metagenomics approach and tested accuracy of several summary
statistics as a function of the reduction of the number of reads
used for analysis. The selection of samples belonging to differ-
ent matrices with distinct characteristics enabled to understand
if the results are generally applicable and, if this is not the case,
which are the features with the greatest impact on results.

In summary, the aim of the present work is to test the effect of
the reduction of sequencing depth on 1) estimates of diver-
sity and species richness in complex matrices; 2) estimates of
abundance of the species present in the complex matrix, and
3) completeness of de novo reconstruction of the genome of
the species present in the samples. To assess the consistency
of our approach, we selected samples characterized by differ-
ent levels of species richness and by different relative abundance
of prokaryotic and eukaryotic organisms and viruses.

Methods

Samples description and DNA extraction

The following samples were used in the present work: the mock
community DNA sample “20 Strain Staggered Mix Genomic
Material” ATCC® MSA-1003™ (short name: Al), two biological
medicines (B1 and B2), two horse fecal samples (F1 and F2),
three food samples (M1, M2, and M3), and two human fecal
samples (V1 and V2).

Biological medicines were two different lots of live attenuated
MPRV vaccine, widely used for immunization against mea-
sles, mumps, rubella and chickenpox in infants. Lyophilised
vaccines were resuspended in 500 pl sterile water for
injection and DNA extracted from 250 ul using Maxwell® 16
Instrument and the Maxwell® 16 Tissue DNA Purification Kit
(Promega, Madison, WI, USA) according to the manufacturer’s
instructions. The vaccine composition declared by the pro-
ducer is the following: live attenuated viruses: 1) Measles
(ssRNA) Swartz strain, cultured in embryo chicken cell cultures;
Mumps (ssRNA) strain RIT 4385, derived from the Jeryl Linn
strain, cultured in embryo chicken cell cultures; Rubella (ssSRNA)
Wistar RA 27/3 strain, grown in human diploid cells (MRC-
5); Varicella (dsDNA) OKA strain grown in human diploid
cells (MRC-5).
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Horse feces from two individuals were processed as follows:
100 mg of starting material stored in 70% ethanol were used
for DNA extraction using the QIAamp PowerFecal DNA Kit
(QIAGEN GmbH, Hilden, Germany), according to the manufactur-
er’s instructions.

Food samples were raw materials of animal and plant origin,
used to industrially prepare bouillon cubes. DNA extrac-
tions from those three samples were performed starting from
2 grams of material each, using the DNeasy mericon Food Kit
(QIAGEN GmbH, Hilden, Germany), according to the manu-
facturer’s instructions. The declared sample composition was
Agaricus bisporus for M1, spice (Piper nigrum) for M2 and mix
of animal extracts for M3.

The mock community declared components are: 0.18% Acineto-
bacter baumannii (ATCC 17978), 0.02% Actinomyces odonto-
Iyticus (ATCC 17982), 1.80% Bacillus cereus (ATCC 10987),
0.02% Bacteroides vulgatus (ATCC 8482), 0.02% Bifidobacte-
rium adolescentis (ATCC 15703), 1.80% Clostridium beijerinckii
(ATCC 35702), 0.18% Cutibacterium acnes (ATCC 11828),
0.02% Deinococcus radiodurans (ATCC BAA-816), 0.02%
Enterococcus faecalis (ATCC 47077), 18.0% Escherichia coli
(ATCC 700926), 0.18% Helicobacter pylori (ATCC 700392),
0.18% Lactobacillus gasseri (ATCC 33323), 0.18% Neisseria
meningitidis (ATCC BAA-335), 18.0% Porphyromonas gingivalis
(ATCC 33277), 1.80% Pseudomonas aeruginosa (ATCC
9027), 18.0% Rhodobacter sphaeroides (ATCC 17029), 1.80%
Staphylococcus aureus (ATCC BAA-1556), 18.0% Staphylococ-
cus epidermidis (ATCC 12228), 1.80% Streptococcus agalactiae
(ATCC BAA-611), 18.0% Streptococcus mutans (ATCC 700610).

DNA purity and concentration were estimated using a NanoDrop
Spectrophotometer (NanoDrop Technologies Inc., Wilmington,
DE, USA) and Qubit 2.0 fluorimeter (Invitrogen, Carlsbad,
CA, USA).

Human fecal samples V1 and V2 derive from a study inves-
tigating the virome composition of feces of uncontacted
Amerindians®®. Data are publicly available on Sequence Read
Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/). The two sam-
ples with the highest sequencing depth were chosen; accession
numbers are SRR6287060 and SRR6287079, respectively.

Whole metagenome DNA library construction and
sequencing

DNA library preparations were performed according to man-
ufacturer’s protocol, using the kit Ovation® Ultralow Sys-
tem V4 1-96 (Nugen, San Carlos, CA). Library prep moni-
toring and validation were performed both by Qubit 2.0
fluorimeter (Invitrogen, Carlsbad, CA, USA) and Agilent 2100
Bioanalyzer DNA High Sensitivity Analysis kit (Agilent Tech-
nologies, Santa Clara, CA). Obtained DNA concentrations were
as follows: A1 8 ng/ul (total amount = 640 ng), B1 10.7 ng/ul
(total amount = 535 ng), B2 9.41 ng/ul (total amount = 470.5 ng),
F1 42.3 ng/ul (total amount = 4,230 ng), F2 22.6 ng/ul (total
amount = 2,260 ng), M1 16.6 ng/ul (total amount = 1,494
ng), M2 1.87 ng/ul (total amount = 168.3 ng), M3 16 ng/ul
(total amount = 640 ng).
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Cluster generation was then performed on Illumina cBot and flow-
cell HiSeq SBS V4 (250 cycle), and sequenced on HiSeq2500
[1lumina sequencer producing 125bp paired-end reads.

Samples F1 and F2 were loaded on flowcell HiSeq Rapid SBS
Kit v2 (500 cycles) producing 250bp paired-end reads. The
estimated library insert sizes were: 539 bp (Al), 531 bp (B1),
536 bp (B2), 620 bp (F1), 620 bp (F2), 342 bp (M1), 178 bp
(M2), 496 bp (M3). Samples were sequenced in different runs
and pooled with other libraries of similar insert sizes.

The CASAVA Illumina Pipeline version 1.8.2 was used for
base-calling and de-multiplexing. Adapters were masked using
cutadapt’’. Masked and low quality bases were filtered using
erne-filter version 1.4.6.%.

Bioinformatics analysis.

The bioinformatics analysis performed in the present work
are summarized in Figure 1; a standard pipeline for repro-
ducing the main steps of analysis is available on GitHub
(http://www.doi.org/10.5281/zenodo.2593798).

Since different read lengths among samples may constitute an
additional confounder in analysis, 250 bp long reads belong-
ing to F1, F2, VI and V2 were trimmed to a length of 125bp
using fastx-toolkit version 0.0.13 ( http://hannonlab.cshl.edu/fastx_
toolkit/) before analysis.

Reduction in coverage was simulated by randomly sampling a
fixed number of reads from the full set of reads. Subsamples of
10,000, 25,000, 50,000, 100,000, 250,000, 500,000 and 1,000,000
reads were extracted from the raw reads using seqtk version
1.3. To estimate the variability due to random effects, subsam-
pling was replicated five times for each simulated depth and
99% confidence limits were estimated and plotted.

To classify the largest possible number of prokaryotes, eukaryo-
tes and viruses, reads were classified against the complete NCBI
nt database using kraken2, version 2.0.6”. The nt database was
converted to kraken2 format using the built-in kraken2-build
script with default parameters. Among the most significant
parameters, kmer size for the database is by default set
to 35 and the minimizer length to 31. A simplified representation
of species composition was obtained using Krona®. To obtain
accurate species abundances Bracken, version 2.2°' was used on
species supported by at least 10 reads.

The threshold for declaring a species as present was set
according to results of a performance analysis on the mock
community (A1) for which species presence and abundance was
known. Performance was assessed using Fl-score, calculated
as 2*TP/(2*TP+FP+FN), as previously reported”. Fl-score is a
measure used in performance analysis when the number of true
negatives is extremely high or unknown.

Observed number of taxa, Shannon’s diversity index™ and
Pielou’s index* were estimated using the R package vegan
version 2.4.2% or base R, version 3.3.3 functions. The number of
observed taxa was computed as the number of species passing the
detection threshold.
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Base-calling, demultiplexing
(Casava 1.8.2)

Masking (Cutadapt)
Trimming (Erne-filter)

(Optional)
Subsample reads (seqtk)

Classify reads (kraken2)

Estimate diversity and
species richness (R scripts)

De-novo metagenome
assembly (megahit)

Assess de-novo assembly
(BUSCO, R scripts)

Figure 1. Workflow of the main bioinformatics analysis performed in the present work.

Assembly of the metagenome was performed using megahit ver-
sion 1.1.2" with default parameters, with kmer sizes varying
as follows: 21, 29, 39, 59, 79, 99, 119, 141. Reconstructed
contigs were binned at the species level using kraken2, and only
contigs assigned to species above the detection threshold were
used for further analysis. Completeness of the assemblies of
each species was assessed using BUSCO™*. For each species, the
proportion of the reconstructed genes was measured as the
proportion of genes that were fully reconstructed, plus the
proportion of genes that were partially reconstructed. For each
sample, results were then averaged over detected species to pro-
vide the average proportion of reconstructed genes. BUSCO
analysis was performed on prokaryotic database for all the
samples with the exception of M1 (predominantly composed by
fungi) for which the fungal database was used.

Unless otherwise specified, all the analysis were performed
using R 3.3.3%.

Results

Determination of detection threshold

The mock community sample “20 Strain Staggered Mix Genomic
Material” (ATCC® MSA-1003™) was used as a reference
to control performance of sequencing and classification pro-
cedures at various depth. The community includes a total of
20 bacterial species, of which 5 have a frequency of 0.02%, 5
a frequency of 0.18%, 5 a frequency of 1.8% and 5 a frequency
of 18%.

Results of the performance analysis on the mock dataset are
shown in Table 1. The highest F1 score (0.8) was obtained when
applying a 0.1% threshold. Using this threshold, 14 species
were correctly identified while 6 of them were not detected.
Five out of the 6 undetected species had a nominal frequency of

Table 1. Results of performance
analysis. Threshold (%): detection
threshold, expressed as percentage
of assigned reads. TP: true positives.
FP: false positive. FN: false
negatives. F1: F1 score.

Threshold (%) TP FP FN F1

0.001 19 188 1 0.17
0.005 19 49 1 043
0.01 19 32 1 054
0.05 HSREGEES RN 0873
0.1 14 1 6 08

0.5 10 O 10 0.67

0.02%; the sixth undetected species was Helicobacter pylori,
with a nominal frequency of 0.18%, for which we recorded
a frequency of 0.096%, below the 0.1% threshold. The only
false positive was Shigella flexneri, a species highly related to
Escherichia coli®, that was observed at a frequency of 0.128%.
Based on these results we used a threshold of 0.1% for
declaring a species as present in a sample.

Sample composition
Summary statistics for the samples included in the study are
shown in Table 2.

The number of reads obtained in the samples selected for the
present study ranged from slightly more than 1 million (sample
V1) to more than 12 million (sample F1). The number of spe-
cies identified in each sample ranged from 4 in sample Bl to
138 in sample M2. Figure 2 summarizes the composition of each
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Table 2. Summary statistics for
the full samples included in the

study.

Sample
Al
B1
B2
F1
F2
M1
M2
M3
V1
V2

Sample: Short name of the sample.
N reads: Number of reads obtained
for the sample in the full sequencing
experiment. N species: number of
species identified in the sample

100

Abundance [%)]
(4]
o

N reads
4,969,245
11,031,061
3,830,083
12,472,553
10,780,450
1,898,011
1,558,975
1,867,879
1,300,221
2,001,984

N species

15
4

9
127
126

138
21
84
12

F2

—

Sample
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sample at the Phylum level. Viruses are aggregated at the divi-
sion level. Only phyla more abundant than 1% were plotted.
Reads that were either unclassified or assigned to rare phyla
were aggregated under the name “Unknown/Other”. Samples
B1, B2 and M3 where mainly composed of Chordata, sample
M1 was mostly composed by Basidiomycota, and sample V2
was mainly composed of Viruses. Samples F1, F2 and, to a lesser
extent, M2 were characterized by a large proportion of reads
unclassified or assigned to rare phyla. For a more detailed view
of raw taxonomy composition, interactive html Chrona
are available for download on Open Science Framework
(https://ost.io/y7¢39/), under the project “Do you cov me”,
DOI: 10.17605/0SE.I0/Y7C39.

Species abundance

The effect of reducing sequencing depth on the accuracy of
taxonomical classification was assessed by using the mock
community, given its known composition. Expected and
observed abundancies of the 20 mock species maintained a
high correlation (r=0.94) even when decreasing sequencing to
10,000 reads (Figure 3). However, decreasing sequencing depth
caused an increase in uncertainty, as shown by the broader

B Actinobacteria

Apicomplexa

B Arthropoda

B Ascomycota

B Bacteroidetes

¥ Basidiomycota

Il Chiorophyta
Chordata

Il Cnidaria
Cyanobacteria

B Firmicutes

™ Mollusca

B Mucoromycota
Nematoda
Platyhelminthes
Proteobacteria

[l Streptophyta

B Unknown/Other
Viruses

Figure 2. Phylum composition of the samples. Only phyla represented by at least 1% of the reads are shown. Viruses are presented at
division level. Unclassified reads and reads assigned to rare phyla are aggregated under the name “Unknown/Other”.
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Figure 3. Observed and expected abundance of bacterial species present in the mock community “20 Strain Staggered Mix Genomic
Material” (ATCC® MSA-1003™) at varying sequencing depths. In red, species identified at frequency lower than the selected threshold of
0.1% and arbitrarily plotted at 0.002%. Error bars represent 95% confidence intervals obtained from five resampling experiments. Both axes
are plotted in log scale to facilitate visualization of rare species.
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confidence intervals for lower depths, particularly for rare
species.

We also measured the correlation in species abundance between
the full and reduced datasets in all the samples (Figure 4). The
correlation between the two quantities was in general very
good and improved at increasing sequencing depths. Pearson’s
correlation coefficient between the two datasets was >0.95 in
all subsampling replicates at all sequencing depths, with the
exception of samples F1 and F2, for which the correlation reached
0.95 only for subsamples of 500,000 or more reads.

Diversity analysis

We further evaluated the impact of reducing sequencing depth
on several diversity measures, such as the observed number of
taxa, Shannon’s diversity index and Pielou’s diversity index
(Figure 5).

Samples F1, F2, M2 and V1 had more than 50 taxa, and all the
remaining samples had less than 25 (Table 2 and Figure 5A).
Downsampling only produced significant differences in the
four samples with high number of observed taxa (panel A).
In samples F1 and F2, intermediate levels of downsampling
(e.g. 100,000 reads) caused an increase in the number of observed
species, due to the increased number of species exceeding the
0.1% abundance threshold.

Shannon’s diversity index (panel B) is a widely used method
to assess biological diversity of ecological and microbiologi-
cal communities. The effect of sequencing depth on Shannon’s
diversity index is negligible for most samples, with the excep-
tion of the samples with the richest species composition (F1, F2,
and M2) for which downsampling led to a significant variation
in the estimate.

Pielou’s index (panel C) is a measure of the species’ distribu-
tion evenness. Values close to 1 denote equifrequent species,
and lower values denote uneven distribution of species relative
abundance. The effect of the number of reads on Pielou’s
index is moderate.

Completeness of de novo assembly

We investigated the effect of coverage reduction on the
completeness of de novo assembly. We reconstructed the metage-
nome of the full and reduced datasets and compared the com-
pleteness of the reconstructed genomes. Results are summarized
in Figure 5 (panel F). As expected, the size of the assembly was
strongly influenced by the sequencing depth. Assembly size
for the full dataset ranged from less than 1 Mb (V2) to nearly
100 Mb (F1 and F2). A decrease in the sequencing depth led to
a steady decrease in assembly size in all samples. At
1,000,000 reads the size ranged from slightly more than 100 kb
(V2) to slightly more than 10Mb (A1 and M1).

BUSCO analysis™ was used as an additional measure to assess
the completeness of the reconstructed metagenome.

First, we assessed the performance on the Al mock commu-
nity for the full set of reads (4,969,245 reads) and for the largest
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subset, (1,000,000 reads). Genomes of species present at 0.02%
and 0.18% were not reconstructed, while genomes of spe-
cies present at 1.8% or 18% were reconstructed. The proportion
of BUSCO genes reconstructed using the whole set of reads
ranged 59%-99% for species present at 1.8% and 93%-99% in
the most abundant species (Figure 6). At 1,000,000 reads the
proportion of reconstructed BUSCO genes dropped to 0.7%—-3%
for species present at 1.8% while it ranged 93%-99% for the
species present at 18%.

In addition, we plot in Figure 7 the proportion of reconstructed
genes in full (X axis) and reduced (Y axis) datasets obtained by
randomly sampling 1,000,000 reads. The proportion of recon-
structed BUSCO genes is very low even in the full samples,
indicating that in general the sequencing depth is still too low to
obtain an accurate reconstruction of the metagenome. Only in
samples Al and M1, the average proportion of BUSCO genes
reconstructed in the full sample was greater than 10%. Reduc-
ing sequencing depth to 1,000,000 reads significantly lowered
the proportion of reconstructed genes in all the samples, as
testified by the fact that all the points and their confidence
limits lie below the diagonal.

Discussion

We set out to test the effect of the reduction of sequencing depth
in metagenome shotgun sequencing experiments on 1) estimates
of diversity and species richness; 2) estimates of species abun-
dance, and 3) completeness of de novo reconstruction of the
genome of the species present in complex matrices. We selected
ten heterogeneous samples that underwent whole genome
DNA-sequencing. This was also true for vaccine samples Bl
and B2, several components of which are ssSRNA viruses, and
could not be detected using this approach. Indeed, the determi-
nation of the ssSRNA components in vaccines was not the aim
of the present study.

We used the mock community to determine the optimal detec-
tion threshold and then performed all the analysis enforcing
the selected threshold. Five of the species composing the mock
community had a declared abundance of 0.02% and could not
by definition be detected using the threshold. However, the
threshold caused the appearance of only one false positive, and
resulted in a F1 score of 0.8. The false positive species is Shigella
flexneri a sister species of Escherichia coli, and is likely a result
of misclassification of a proportion of reads.

To the best of our knowledge, this is the first published work
reporting the observed frequencies of a mock community using
shotgun high-throughput sequencing. However, previous works
performed very extensive studies on target 16s sequencing of
mock communities, and reported large deviations from expecta-
tion, depending on sequencing primers, extraction method and
sequencing platform™. We tested the effect of decrease in sequenc-
ing depth on deviations from expected frequency (Figure 3)
and observed that even when sampling 10,000 reads the aver-
age correlation between expected and observed abundances
remained high (r=0.94), although the variance among resampling
experiments was high.
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To assess the requirements in sequencing depth for character-
izing complex matrices, we measured the variation of several
diversity indexes while reducing the sequencing depths. We
measured the number of observed taxa, Shannon’s diversity index
and Pielou’s evenness index.

Shannon diversity index is estimated as

N
H=-pxIn(p)

i=1
Where N is the total number of species and p, is the frequency
of the species i. Thus Shannon diversity index is affected

more by variation in the frequencies of highly abundant
species than by the loss of rare species.

Pielou’s evenness index is estimated as

_H

" InS
Where H is Shannon’s diversity index and S is the total
number of observed species. The value /n S corresponds to the
maximum possible value of H, observed when all species have
the same frequency, thus Pielou’s index approaches 1 when
all the species are evenly distributed.

Page 10 of 34



F1000Research 2019, 7:1767 Last updated: 05 FEB 2020

1.00

0.05 0.10 0.20 0.50

Reduced set (1 M reads)

0.02

&
& I§ ®

0.01

0.01 0.02

0.05 0.10 0.20 0.50 1.00

Full set

Figure 7. Completeness of the BUSCO genes in the full dataset (X axis) and in the largest of the reduced datasets (consisting of
1,000,000 reads, Y axis); error bars are based on the five replicate experiments performed for each sample. The plot is in log-log

scale.

Horse fecal samples F1 and F2 and the food sample M2 are
characterized by a large number of observed species (127, 126
and 138, respectively), while all the other samples have lower
number of species, ranging from 4 in B1 to 84 in V1. The greater
diversity of F1, F2 and M2 compared to others is confirmed by
Shannon’s and Pielou’s indices, although Pielou’s index also
assigns high variability to the mock community Al. The effect
of sequencing depth on nearly all indices is moderate, although
researchers should be aware that very complex samples (such
as F1, F2 and M2 in our study) require high sequencing depth
(1 million reads) to ensure that all indices are correctly
estimated.

We then set out to assess the changes in the estimated rela-
tive frequency of each individual species when reducing the
number of sequenced reads. Accurate estimate of the relative
abundance of each species is an important task when the aim is
a) to detect species with a relative abundance above any given
threshold, b) to differentiate two samples based on different
abundance of any given species composition, or c) to cluster
samples based on their species composition.

Our results show that species abundances can be reliably esti-
mated for most samples even in case of substantial reduction of
sequencing depth. However, researchers should be aware that for
complex samples (horse fecal samples F1 and F2, in our study),
extreme reduction in coverage might result in biases in the
estimation of species abundances (Figure 4).

Finally, we assessed the effect of a reduction in the sequencing
coverage on the ability of reconstructing de novo the metagen-
ome. Our results suggest that 1 million reads are clearly subop-
timal for de novo assembly for all the tested samples. Assembly
size obtained subsampling 1 million reads are significantly
smaller than those obtained with the full depth in all samples,
included M1, M2 and M3, for which the full sequencing depth
was less than 2 million reads (Figure 5D).

Additional analysis were performed to assess the effect of down-
sampling on the completeness of the de novo assembly. First, we
used BUSCO to assess the completeness of assemblies of the
species used in the mock community Al sample, and to compare
the performance in the full set and tin the larger reduced
set (1 million reads). No BUSCO genes were reconstructed
for species with frequencies of 0.02% and 0.18%, and we
show results only for the 10 species with frequency of 1.8%
or greater. The full sequencing depth (~5 million reads)
enabled the reconstruction of the majority of BUSCO genes in
all the species, ranging 59% (Staphylococcus aureus) to 99%
(Bacillus cereus and most of the species with 18% frequency).
The ability of reconstructing BUSCO genes in assemblies
obtained with 1 million reads was unchanged for the species with
18% abundance, while it dramatically decreased for species at
frequency 1.8% (Figure 0).

We then performed a similar analysis on all the remaining
samples. Our results show that downsampling had a strongly
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negative effect on the proportion of reconstructed genes in all the
study samples (Figure 7).

Our results clearly indicate that the proportion of genes recon-
structed with BUSCO in the full dataset is very low for all
samples, with the exception of the two samples M1, predomi-
nantly composed by one fungal species, and Al, composed
by a limited number of small genomes, some of which with
uniform and high abundance. In addition, detailed analysis
of BUSCO performance in sample Al revealed that only the
genomes of the most frequent species could be reconstructed
(Figure 6), even at full sequencing depth, amounting to nearly
5 million reads. Reduction of sequencing depth resulted in
significant reduction of performance in all samples, as shown
by the fact that the point estimates of the proportion of recon-
structed genes and their confidence limits are below the
diagonal in Figure 7. These results indicate that a complete
reconstruction of the metagenome of a complex matrix requires
at least several million reads. Our conclusions are also impor-
tant for research aimed at the reconstruction of an interesting
part of the meta-genome, such as genes involved in antibiotic
resistance’’. The decrease in performance observed in the
genes’ reconstruction will be likely observed for any gene
category. Researchers aiming at a de novo reconstruction of the
metagenome (although partial) must keep in mind that several
millions of reads are needed to attain reliable results.

In the present work we tested the feasibility of using metage-
nome shotgun shallow high-throughput sequencing to analyze
complex samples for the presence of eukaryotes, prokaryo-
tes and virus nucleic acids for monitoring, surveillance,
quality control and traceability purposes. We show that, if the aim
of the experiment is a taxonomical characterization of the sample
or the identification and quantification of species, a low-
coverage shotgun high-throughput sequencing is a good choice,
provided that at least 500,000 reads are sequenced. On the
other hand, if one of the aims of the study relies on de novo
assembly, substantial sequencing efforts are required. The
number of reads required for the reconstruction of the meta-
genome, depends on several factors such as number of species in
the sample, their genome size and abundance and length of the
sequencing reads. An estimation needs to be performed for each
experiment based on specific goals and sample characteristics.

Data availability
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? Marcus Claesson
APC Microbiome Ireland, University College Cork, Cork, Ireland
Shriram Patel
APC Microbiome Ireland, University College Cork, Cork, Ireland

This is an interesting piece of work looking to evaluate influence of varying sequencing coverage (depth)
on the ability to harness information about taxonomic composition and species diversity and possible use
of shallow whole metagenome shotgun sequencing as a potential cost-effective alternative to targeted
16S rRNA gene sequencing in large scale studies.

In general, the manuscript is very well written and make use of staggered mock community along with the
actual samples sequenced from diverse environmental origin to optimize required metagenomic
sequencing depth to address potential research question.

The authors have used statistics such as alpha diversity, species abundance and completeness of
reconstructed genomes to evaluate performance of reduce sequencing efforts. It would be interesting,
although not required, to see how overall between sample beta diversity (bray-curtis) changes with
varying sequencing depth and in full datasets (considering only actual samples). This could offer insights
into whether samples coming from diverse environment clusters together even at varying sequencing
depth (as low as 10K)? or does reduce sequencing depth influences overall metagenome composition.
Particularly, it would be interesting to see Procrustes analysis between full datasets and reduced datasets
(may be at 100K/ 500K reads because estimated alpha diversity reached plateau and most of the species
gets covered).

| am confused with statement on page 8. “Intermediate level of down sampling (here 100K reads) caused
an increase in observed species, due to increased number of species exceeding the 0.1% abundance
cut-off (selected based on mock community)”. Does this indicate that with increased sequencing effort
(particularly in horse fecal samples) those species exceeding the cut-off at reduced sequencing depth did
not detected?

It would be good if authors can add important limitation of shallow shotgun metagenomic sequencing in
discussion. Particularly note on “poorly characterized samples” for which no representative genomes are
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available in database or “samples coming from biopsy or blood” where host DNA accounts for most of the
extracted DNA.

Some General comments:
1. All samples were trimmed to the read length of 125bp. Did authors build bracken database with
default read length of 100 or 1257 If so, please mention that in the manuscript.

2. Please move formula of alpha diversity indexes in method’s section.

3. In the abstract, ‘diversity’ should be prepended with ‘alpha’ as it might otherwise include
beta-diversity which wasn’t analysed.

4. The title is quite long (just a matter of taste)

5. 5! sentence in Intro: technically, fungi are also eukaryotic, so this needs to be reflected.

6. The colour scheme in Figure 2 could be improved. Currently the phyla are ordered alphabetically
which is a wasted opportunity for more information. At the least, they should be ordered by
kingdom. Unknown could be black/grey/white

7. Correlations for Fig 4 are Pearson, which only should be used if the data follows a normal
distribution, otherwise Spearman.

8. Insert “,” for each 1,000 in N. of reads to improve readability
9. All fonts in Figure 5 are too small and unreadable

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbiome in human disease; bioinformatics
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We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however we have significant
reservations, as outlined above.

Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

Reviewer 4
Marcus Claesson, APC Microbiome Ireland, University College Cork, Cork, Ireland
Shriram Patel, APC Microbiome Ireland, University College Cork, Cork, Ireland

This is an interesting piece of work looking to evaluate influence of varying sequencing coverage
(depth) on the ability to harness information about taxonomic composition and species diversity
and possible use of shallow whole metagenome shotgun sequencing as a potential cost-effective
alternative to targeted 16S rRNA gene sequencing in large scale studies.

In general, the manuscript is very well written and make use of staggered mock community along
with the actual samples sequenced from diverse environmental origin to optimize required
metagenomic sequencing depth to address potential research question.

The authors have used statistics such as alpha diversity, species abundance and completeness of
reconstructed genomes to evaluate performance of reduce sequencing efforts. It would be
interesting, although not required, to see how overall between sample beta diversity (bray-curtis)
changes with varying sequencing depth and in full datasets (considering only actual samples). This
could offer insights into whether samples coming from diverse environment clusters together even
at varying sequencing depth (as low as 10K)? or does reduce sequencing depth influences overall
metagenome composition. Particularly, it would be interesting to see Procrustes analysis between
full datasets and reduced datasets (may be at 100K/ 500K reads because estimated alpha
diversity reached plateau and most of the species gets covered).

We now performed Procrustes analysis between the full dataset and all the reduced sets
(we then removed the 10K dataset, because diagnostic measures showed that the MDS on
that matrix was not reliable). The analysis is now shown as Figure 6, described, and
discussed.

I am confused with statement on page 8. “Intermediate level of down sampling (here 100K reads)
caused an increase in observed species, due to increased number of species exceeding the 0.1%
abundance cut-off (selected based on mock community)”. Does this indicate that with increased
sequencing effort (particularly in horse fecal samples) those species exceeding the cut-off at
reduced sequencing depth did not detected?

Yes.

The species exceeding the cut-off at reduced sequencing depth were still “detected” at
full sequencing depth, but they didn’t exceed the threshold. For example, in the fecal
sample 1 (F1), In the full-depth sample, we assigned reads to 6273 species (with an
average frequency of 0.02%), but only 124 of them exceeded the threshold; in the 100000
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sample we assigned reads to 350 species (with an average frequency of 0.6%), 215 of
which exceeded the threshold.

This phenomenon was observed only for the fecal samples, which are the ones with
greater complexity and higher number of reads in the full sample. We rewrote part of the
results to try to clearly convey our take-home message, i.e.: although reduction in
coverage depth usually does not affect estimation of sample diversity, it can in some
cases result in an under- or over-estimation of such quantities.

It would be good if authors can add important limitation of shallow shotgun metagenomic
sequencing in discussion. Particularly note on “poorly characterized samples” for which no
representative genomes are available in database or “samples coming from biopsy or blood”
where host DNA accounts for most of the extracted DNA.

We added the following sentence in the discussion: Researchers should be cautious when
the fraction of reads that can be used to classify the microbial community is low. This
might happen if the sample includes a substantial proportion of poorly characterized
organismes, i.e. organisms not present in current databases, or if the samples come from
biopsy or blood, thus containing a large proportion of the host tissue. In both cases, the
amount of reads that can be used for the classification is already much lower than the
number of produced reads, and further reduction is discouraged.

Some General comments:

1. All samples were trimmed to the read length of 125bp. Did authors build bracken database

with default read length of 100 or 1257 If so, please mention that in the manuscript.

We built a bracken database for 125 kmers. On request of Reviewer 3 we also performed
tests on different databases, only for the mock community. One of the additional
databases (minikraken) comes as a prebuilt database without possibility of building the
bracken index, and we used distributed databases built with 100kmers and 150kmers. We
added this information in the methods section.

1. Please move formula of alpha diversity indexes in method’s section.
Done

1. In the abstract, ‘diversity’ should be prepended with ‘alpha’ as it might otherwise include
beta-diversity which wasn’t analysed.
We left this unchanged, since we are now also analyzing beta-diversity, and the generic
statement of the abstract is true for beta diversity as well.

1. The title is quite long (just a matter of taste)
We changed the title to: Do you cov me? Effect of coverage reduction on metagenome
shotgun sequencing studies

1. 5! sentence in Intro: technically, fungi are also eukaryotic, so this needs to be reflected.

We removed the word fungi
1. The colour scheme in Figure 2 could be improved. Currently the phyla are ordered
alphabetically which is a wasted opportunity for more information. At the least, they should
be ordered by kingdom. Unknown could be black/grey/white
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We changed the colour scheme for Figure 2. Protozoan (only apicomplexan detected) are
red-violet, bacteria are in shades of brown, fungi are in shades of olive green, vertebrates
are in shades of blue, plants in shade of green, unknown are grey, and viruses are violet

1. Correlations for Fig 4 are Pearson, which only should be used if the data follows a normal
distribution, otherwise Spearman.
We computed correlations for data of figure 4 as Spearman. We now also present
correlation of Figure 3 as spearman’s rho, for the same reason (none of the two data
followed a normal distribution).

1. Insert “,” for each 1,000 in N. of reads to improve readability
Done

1. All fonts in Figure 5 are too small and unreadable
We increased the font size

Competing Interests: No competing interests were disclosed.

Reviewer Report 08 August 2019

https://doi.org/10.5256/f1000research.22041.r51765

© 2019 Dal Grande F. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

?

Francesco Dal Grande
1 Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft fir Naturforschung,

Frankfurt am Main, Germany
2 LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany

| appreciate the changes made in this revision. Specifically, | am glad to see that the authors used the
results for the mock community to set the parameters for detecting the presence of species in the other
samples. Improved is also the inference of the relative abundances of species using bracken and the
presentation of the BUSCO results.

| have only minor suggestions that | hope will help further improving the manuscript.

My only issue is the detection of the false positive (Shigella flexneri) for the mock community data set. |
agree with the authors that this might likely be the result of misclassification of a small portion of reads.
This, however, may also be the result of incorrect taxonomic profiles that may be present in the chosen
(full NCBI nt) database. The evaluation of the effects of database taxonomic correctness and composition
on species assignment accuracy is clearly not the scope of the present work. However, since the correct
profiling of the mock community is crucial for selecting the best detection threshold for all other data sets, |
suggest to strengthen the analysis of the mock community by comparing kracken/bracken results using
different databases (only for the mock community): full NCBI nt vs. full bacterial RefSeq vs. curated
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genome database (i.e. including only the 20 genomes of the species forming the mock community).

Minor points:
® |nthe abstract, add a line to describe the use of the mock community in your study.

®  Figure 1: | would modify the box 'Classify reads (kraken2)' into 'Classify reads and estimate
species abundances (kraken2 + bracken)'.

® 1. 8:"The effect of the number of reads on Pielou's index is moderate". Please define 'moderate'.

® 1. 10: Please move the formulas of the two indices to the Materials and Methods section.
Other corrections:
® . 6: M1 was mostly composed OF.

® . 11:".the performance in the full set and IN".
® . 12:".., depends on several factors such as THE number of species ..".

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: metagenomics, metatranscriptomics, community ecology, symbiosis, population
genomics, metabarcoding, biotic interactions

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Author Response 15 Jan 2020
Federica Cattonaro, IGA Technology Services Srl, Udine, Italy
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Reviewer 3

Francesco Dal Grande, Senckenberg Biodiversity and Climate Research Centre, Senckenberg
Gesellschaft fir Naturforschung, Frankfurt am Main, Germany; LOEWE Centre for Translational
Biodiversity Genomics (TBG), Frankfurt am Main, Germany

| appreciate the changes made in this revision. Specifically, | am glad to see that the authors used
the results for the mock community to set the parameters for detecting the presence of species in
the other samples. Improved is also the inference of the relative abundances of species using
bracken and the presentation of the BUSCO results.

| have only minor suggestions that | hope will help further improving the manuscript.

My only issue is the detection of the false positive (Shigella flexneri) for the mock community data
set. | agree with the authors that this might likely be the result of misclassification of a small portion
of reads. This, however, may also be the result of incorrect taxonomic profiles that may be present
in the chosen (full NCBI nt) database. The evaluation of the effects of database taxonomic
correctness and composition on species assignment accuracy is clearly not the scope of the
present work. However, since the correct profiling of the mock community is crucial for selecting
the best detection threshold for all other data sets, | suggest to strengthen the analysis of the mock
community by comparing kracken/bracken results using different databases (only for the mock
community): full NCBI nt vs. full bacterial RefSeq vs. curated genome database (i.e. including
only the 20 genomes of the species forming the mock community).

This is a very good point. We were already aware that the choice of the database would
affect the accuracy of the results, and the choice to use nt database was motivated by the
fact that when studying heterogeneous samples potentially including Eukaryotes the nt
would be the database of choice. We avoided by purpose to tackle the aspect of accuracy
of databases taxonomic correctness. However, we agree that a simple comparison based
on the mock community data would benefit the manuscript and the readers. Thus we
tested the following additional databases 1) the “standard” database distributed with
kraken2 which is a full bacterial+viral+fungi RefSeq database with the addition of the
human genome, and 2) Several “minikraken2” databases that are distributed with kraken2
(the details on the composition of the minikraken2 are provided in the manuscript). We
didn’t use the curated database only including the 20 genomes of the species forming the
mock community because in that case by definition we will not identify any false positive;
even in the case of a real contamination of the mock community all the classified reads
would be attributed to one of the 20 genomes, because those are the only genomes
present in the database.

Our results show a general good agreement across databases, but some differences were
observed. This is especially true for the false positives; each database returns different
false positives. It is possible that different databases have — minor - different
classification issues. This however should motivate researchers to cautiously interpret
results, especially before claiming contaminations form unexpected species in a given
sample. This results are now shown in a Table and discussed.

Minor points:
® |nthe abstract, add a line to describe the use of the mock community in your study.
®  Done
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®  Figure 1: | would modify the box 'Classify reads (kraken2)' into 'Classify reads and estimate
species abundances (kraken2 + bracken)'.

® Done

® . 8: "The effect of the number of reads on Pielou's index is moderate". Please define
'moderate’.

® Very good point. We changed moderate to negligible; indeed Pielou’s index is the
most stable across sequencing depths.

® . 10: Please move the formulas of the two indices to the Materials and Methods section.

®  Done

Other corrections:

® p.6: M1 was mostly composed OF.

®  Done

® . 11:"..the performance in the full set and IN".

®  Done

® . 12:".., depends on several factors such as THE number of species ..".

)

Done

Competing Interests: No competing interests were disclosed.

Reviewer Report 30 May 2019

https://doi.org/10.5256/f1000research.20298.r48341

© 2019 Dal Grande F. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

X

Francesco Dal Grande

1 Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft fir Naturforschung,
Frankfurt am Main, Germany

2 LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany

In this manuscript the authors aimed at evaluating the use of shallow shotgun metagenomic sequencing
for the characterisation of species diversity and the reconstruction of genomes in complex lllumina read
sets. Overall, the manuscript is well written and contains interesting information that may be useful to
others in figuring out a required metagenomic sequencing depth for a given goal.

Page 21 of 34


https://doi.org/10.5256/f1000research.20298.r48341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1865-6281

FIOOOResearch F1000Research 2019, 7:1767 Last updated: 05 FEB 2020

The manuscript has been vastly improved in the current version, however | feel that it still needs a
thorough revision to address a few major issues in order to ensure the general validity of the findings.

The three major issues to address are, in my opinion, the following:

1. Overestimation of diversity: Authors decided to base their analyses of diversity on the raw
output from kraken2. However, as mentioned by the authors themselves, "species represented by
only one read are unlikely to be real". This is quite evident in the report from the 20-species mock
community comprising instead >2000 species. | strongly recommend the use of a threshold (e.g.,
0.005% of the total amount of reads) to filter out likely false positives. For this purpose, the authors
could take advantage of the mock community to evaluate results based on different thresholds and
thereby optimise threshold selection.

2. Inaccuracy of species-level abundances: in their analysis the authors assumed that read
abundances reflect species abundance. However, this is often not the case, especially when
closely related taxa are present in the sample; the accuracy of abundance estimation further
depends on the database used (Lu et al 2017). The authors themselves hint at this when
discussing the misclassification of Staphylococcus lugdunensis, likely due to the presence of other
confounding Staphylococcus reads. To address this issue, the authors could use Bracken (from
the same developers of kraken, Lu et al. 2017). Bracken uses the classification results of kraken to
reestimate relative species abundances taking into account how much sequence from each
species is identical to other genomes in the database.

3. Inaccurate assessment of genome reconstruction ability: considering the classification
biases mentioned above and the complexity of the investigated metagenomic data sets, it might be
better to base the assessment of the effects of coverage reduction on metagenome reconstruction
solely on the mock community data. First, authors would need to bin the metagenomic contigs into
individual species (using kraken2 and/or other binning approaches). The individual bins (i.e.,
species) should then be evaluated for completeness using BUSCO and compared.

In summary, this work (and, by extension, future studies using a similar approach) could greatly benefit
from the inclusion of a baseline estimate for species diversity and metagenome reconstruction, even if it is
derived from a single mock community. The additional data sets could then be used to validate these
estimates against real data.

References
1. Lu J, Breitwieser F, Thielen P, Salzberg S: Bracken: estimating species abundance in metagenomics
data. Peerd Computer Science. 2017; 3. Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly
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If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: metagenomics, metatranscriptomics, community ecology, symbiosis, population
genomics, metabarcoding, biotic interactions

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

In this manuscript the authors aimed at evaluating the use of shallow shotgun
metagenomic sequencing for the characterisation of species diversity and the
reconstruction of genomes in complex lllumina read sets. Overall, the manuscript is well
written and contains interesting information that may be useful to others in figuring out a
required metagenomic sequencing depth for a given goal.

The manuscript has been vastly improved in the current version, however I feel that it still
needs a thorough revision to address a few major issues in order to ensure the general
validity of the findings.

We thank the reviewer for the suggestions. We implemented them and updated the manuscript
accordingly.

The three major issues to address are, in my opinion, the following:

1. Overestimation of diversity: Authors decided to base their analyses of diversity on
the raw output from kraken2. However, as mentioned by the authors themselves,
"species represented by only one read are unlikely to be real". This is quite evident
in the report from the 20-species mock community comprising instead >2000
species. | strongly recommend the use of a threshold (e.g., 0.005% of the total
amount of reads) to filter out likely false positives. For this purpose, the authors
could take advantage of the mock community to evaluate results based on different
thresholds and thereby optimise threshold selection.

See answer to point 2.

2. Inaccuracy of species-level abundances: in their analysis the authors assumed that
read abundances reflect species abundance. However, this is often not the case,
especially when closely related taxa are present in the sample; the accuracy of
abundance estimation further depends on the database used (Lu et al 2017). The
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authors themselves hint at this when discussing the misclassification of
Staphylococcus lugdunensis, likely due to the presence of other confounding
Staphylococcus reads. To address this issue, the authors could use Bracken (from
the same developers of kraken, Lu et al. 2017). Bracken uses the classification
results of kraken to reestimate relative species abundances taking into account
how much sequence from each species is identical to other genomes in the
database.

We took advantage of suggestions 1 and 2 (and from suggestions from reviewer 1) to
improve the species abundances estimation. After classifying reads with kraken2, we used
bracken to re-estimate species abundance only for species represented by at least 10
reads. Then, using the only gold standard we had (the mock community) we measured
performance at difference detection threshold. Our results suggested that a detection
threshold of 0.1% was the one resulting in the higher F1 score, minimizing false negatives
and false positives while maximizing true positives.

3. Inaccurate assessment of genome reconstruction ability: considering the
classification biases mentioned above and the complexity of the investigated
metagenomic data sets, it might be better to base the assessment of the effects of
coverage reduction on metagenome reconstruction solely on the mock community
data. First, authors would need to bin the metagenomic contigs into individual
species (using kraken2 and/or other binning approaches). The individual bins (i.e.,
species) should then be evaluated for completeness using BUSCO and compared.
Results presented in version 2 of our paper are already based on binning approaches, in
which we classified contigs using kraken, performed BUSCO for each species and then
averaged the proportion of BUSCO genes across species. However, in version 2 we made
(in our opinion) a mistake, since we averaged the proportion of BUSCO genes across all
species for which at least one BUSCO gene was reconstructed. This led to a slight
overestimation of the number of reconstructed BUSCO genes. We thus repeated the
analysis by averaging the proportion of BUSCO genes over all the species that were above
the detection threshold, including those for which no BUSCO gene was reconstructed. The
new approach is now explained in the methods section, and the new plot is now Figure 7. In
addition, we liked the idea of using the mock community, and we performed a new analysis,
now shown in Figure 6. The result are very interesting and are briefly discussed. Basically,
with the full set of reads (around 5M), the majority of BUSCO genes could be reconstructed
for species with a nominal abundance of 18% and 1.8%, but not for the rarer species (for
which basically no gene could be reconstructed). When only 1M reads are used for the
assembly, the proportion of reconstructed BUSCO genes is nearly unchanged in abundant
species and drops to less than 10% in species with a nominal frequency of 1.8%. The
results and the implications for study designs are briefly discussed in the paper.

Competing Interests: No competing interests were disclosed.
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X

José F. Cobo Diaz
Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Brest,
Plouzané, France

| appreciate the changes make along the introduction, because the objective of the present study is now
more clear. Although the manuscript was improved considerably, there is still a big problem with the data
analysis, mainly in reads filtering.

Now that you have included a mock community sample, you need to use this sample to adapt the
parameters of reads filtering, clustering step (I asume you have done some kind of clustering since you
talk about singletons) and taxonomic assignation until you have the number of species expected, 20 in
this case. You can also have some less due to problems with species assignation, but it is crazy to use a
20 species mock community and say that you have 2571 species in this sample. For example, singletons
(clustering groups or OTUs (Operational Taxonomical Units) with a unique sequence) are usually
removed on metabarcoding pipelines, and in some cases OTUs with less than 0.1% of abundance are
removed, assuming that these sequences are sequencing errors (and PCR errors in metabarcoding).
Therefore, you have to estimate the minimum percentage of abundance to be considered real (and not
due to errors) with the mock sample and apply this cut off value to the rest of samples.

In the same line, to say that 2,507 and 4,597 species were found in vaccines is not correct, where you can
expect the DNA from varicella (the other viruses are ssRNA) and the DNA from human and chicken cells
used for culture.

Some small changes | suggest:
® Rewrite or suppress last paragraph of introduction, which looks more appropriate to Methodology.
® Add some disadvantages of use metabarcoding approach (being the main one the bias due to
primers, with over/under-estimation of some taxa, depending of the primers used).
® Atthe end of the samples description, you need to put what means SRA (and add the
corresponding web-address).
® |n samples description, grammatical mistake with human faecal (have to be human fecal).
® Remove this sentence from results: To ensure that our conclusions have a general validity, we
selected samples originating from very different sources with different compositions, and
sequenced them at different depths.
®  Figure 3, with species and genus level is enough.
Thus, the read filtering and hence all the statistical analysis have to be re-make. | not expect big changes,
also at taxonomical level (where only a reduction of "rare species" and unclassified sequences is
expected), but it is not convenient to present the results with such great over-estimation of species
richness.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
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Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: microbial ecology, metabarcoding sequencing, NGS data analysis, bacterial
communities, fungal communities

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

I appreciate the changes make along the introduction, because the objective of the
present study is now more clear. Although the manuscript was improved considerably,
there is still a big problem with the data analysis, mainly in reads filtering.

Now that you have included a mock community sample, you need to use this sample to
adapt the parameters of reads filtering, clustering step (I asume you have done some kind
of clustering since you talk about singletons) and taxonomic assignation until you have
the number of species expected, 20 in this case. You can also have some less due to
problems with species assignation, but it is crazy to use a 20 species mock community
and say that you have 2571 species in this sample. For example, singletons (clustering
groups or OTUs (Operational Taxonomical Units) with a unique sequence) are usually
removed on metabarcoding pipelines, and in some cases OTUs with less than 0.1% of
abundance are removed, assuming that these sequences are sequencing errors (and PCR
errors in metabarcoding). Therefore, you have to estimate the minimum percentage of
abundance to be considered real (and not due to errors) with the mock sample and apply
this cut off value to the rest of samples.

In the same line, to say that 2,507 and 4,597 species were found in vaccines is not correct,
where you can expect the DNA from varicella (the other viruses are ssRNA) and the DNA
from human and chicken cells used for culture.

According to your suggestions (and to similar suggestions received from reviewer 3), we now
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adopted more stringent criteria for determining the presence of a species. Following the suggestion
of both reviewers, we leverage the mock community to define a threshold. We use Bracken to
refine the species abundance estimation (already providing a very permissive threshold, i.e.
ignoring OTUs with less than 10 reads). We then performed a performance analysis to compare
Bracken results with the known composition of the mock community, and chose the threshold
maximizing the F1 score (harmonic average of precision and recall). The threshold resulting in the
best tradeoff was 0.1%.

As a side effect of filtering OTUs with less than 0.1% frequency we do not have any narrow-sense
singleton. As a consequence, the number of observed taxa and Chao1 diversity index coincide,
and the Good estimator is always 1. We thus removed these two statistics from our panel plot.

In addition, we removed the paragraph on the “detection threshold” and the corresponding Table 2,
since we are now determining a threshold a-priori based on the mock community and this parts are
not needed any more.

Some small changes | suggest:
® Rewrite or suppress last paragraph of introduction, which looks more appropriate
to Methodology.
We removed the last paragraph.
® Add some disadvantages of use metabarcoding approach (being the main one the
bias due to primers, with over/under-estimation of some taxa, depending of the
primers used).
We added a sentence and a reference regarding limitation of metabarcoding approaches in the
introduction.
® At the end of the samples description, you need to put what means SRA (and add
the corresponding web-address).
Done.
® In samples description, grammatical mistake with human faecal (have to be human
fecal).
Amended.
® Remove this sentence from results: To ensure that our conclusions have a general
validity, we selected samples originating from very different sources with different
compositions, and sequenced them at different depths.
Sentence removed.
®  Figure 3, with species and genus level is enough.
While we were modifying the Figure as per reviewer’s request we realized that indeed the results
presented at the species level in Figure 3 are also presented in the first panel of Figure 4. Since the
results at the genus species did not add much information, we decided to remove Figure 3.

Competing Interests: No competing interests were disclosed.
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José F. Cobo Diaz
Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Brest,
Plouzané, France

The authors proposed and evaluated the influence of reduce sequencing effort (amount of sequences) for
a whole metagenome shotgun analysis, using the lllumina platform, in the species composition and
diversity index of the communities studied. Although the idea and hypothesis are good, some problems
were found in the experimental design and data analysis.

According to the questions proposed in the peer review form, it is not a new method, only the adaptation
of a current methodology to optimize the cost and increase the potential numbers of samples analyzed
per run of lllumina platform. Although the introduction is clearly explained, the reasons for use shotgun
sequencing, mainly to analyze viruses data and functional data for all the organism, no emphasis on such
points was done in the results and discussion. The samples used (vaccines, horse fecal samples and
food samples) and the introduction remark the detection of pathogens as the main objective of the
approach used, including viruses, which can not be screened by amplicons approaches, like
metabarcoding sequencing. | suggest adapting the text and manuscript to focus on pathogens (mainly
viruses) found along the sub-samples taken for each sample. At that point, some contaminated samples
(or not contaminated samples mixed with known amounts DNA from pathogen viruses) have to be used to
determine the lowest pathogen concentration that could be detected for each shotgun sequencing
coverage proposed.

Many problems were found with the methodology employed, mainly the parameters used in each step
and/or software employed for data filtering and analysis, which are critical for the results, which can have
strong variations depending of the parameters used. Hence, the methodology proposed does not allow
any replication of the method used. Moreover, there are some mistakes for species designation in the
study, with at least 2508 species found in vaccine samples indicating big problems along read filtering
and data analysis, because this number of species is often found in more complex systems, such as soils
samples from agricultural fields. Moreover, go to species classification using some taxonomical markers,
such ITS or 16SrRNA, is risky with sequences lower than 400 bp, and sometimes with bigger sequences.
In the current manuscript, the use of non taxonomical marker sequences and 150 bp lengths increase
enormously the number of sequences not correctly assigned to species level, and in several cases also
for higher taxonomical levels (genus, family...). Therefore, | suggest to clarify how the species assignment
was done, because it looks like that each gene-species was considered as one species, and each gene
found for a single species was counted as a hew species.

Alpha diversity indexes employed are not the best ones, in my opinion, to describe or compare the
sub-samples proposed in this manuscript. The chao1 index, an estimator of richness, has a strong
influence on the number of singletons obtained in the samples, which due to the complexity of the
samples-data tends to be high. Shannon index is influenced by both richness (number of taxa) and
evenness (equability, Pielou index), and the reduction of richness due to the loss of rare taxa has a strong
influence on this index. | propose to use the number of observed taxa instead of estimated taxa, and any
evenness index, like the Pielou index, instead of the Shannon index. Moreover, the use of a coverage
index, such Good’s coverage index, could be useful to compare the loss of information associated to
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sampled size or coverage.

In conclusion, although the raw data can contains some important information, the manuscript has to be
improved with new “pathogen contaminated” samples, and be re-written to focus on the detection of
pathogens in the samples, which due to the low abundance of the samples could not be detected
depending of the shotgun coverage.

Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
No

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: microbial ecology, metabarcoding sequencing, NGS data analysis, bacterial
communities, fungal communities

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Reviewer Report 27 November 2018

https://doi.org/10.5256/f1000research.18370.r40445

© 2018 Sanchez-Flores A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

X

Alejandro Sanchez-Flores
Institute of Biotechnology, National Autonomous University of Mexico (UNAM)), Cuernavaca, Mexico

The authors propose and evaluate a whole metagenome shotgun analysis via a low sequencing yield
approach, using the lllumina platform.
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In general, the idea and hypothesis are good, but the experimental design itself lacks important controls
and there are many variables that are not analyzed and that can potentially bias the results.

My main concern is that the used samples have many variables and despite using a "replicate" for each
case, samples within the same type were very different. Also the nature of each sample could have an
effect in the DNA isolation, in particular for the vaccine ones. Also, regarding the vaccines, it is not clear to
me, if what they are looking for is DNA of potential contaminants, since all viruses in the vaccine are
ssRNA. That would be my guess, but is not clear from the text.

The main problem is that to test the influence of the sequencing yield, it would be extremely important to
know the initial DNA concentration of each organism in the sample. Therefore, a mock metagenome or
controlled sample would be much better as a reference to compare real life cases. In real life cases, the
presence of certain organisms detected by the presence of its DNA, is not necessarily an indicator of the
availability of alive organisms. Depending on the case, the presence of just the organism DNA could be
an indicator of contamination which in the case of vaccines could be really bad. However, in the case of
food material, finding DNA of pathogens, has to be associated with microbiology tests. However, with low
sequencing yield, is very probable that very DNA in low amounts will be missed, even if this is not
changing diversity indexes such as Chao1 and Shannon.

Finally, the main difference where low yield has a significant impact can be observed in the fecal samples.
This is expected since among all the tested samples, fecal ones are the most diverse and sub-sampling
will really affect them as observed in Figure 3.

Since the composition of each sample is not known a priori, then there are some factors that can
contribute to biases. As mentioned, the DNA concentration but also its integrity (fragmentation) will affect
the library construction; the cited kit requires DNA amplification which will have a bias towards GC rich
genomic regions; library size was not described and was not mentioned if the samples were pooled with
other libraries with different insert sizes, which affect not only the sequencing quality but the yield.

In terms of bioinformatics analysis, it will be required to put the parameters used for each program, in case
someone wants to reproduce this. For Kraken2, it is important to know what is the kmer size to index the
database. For MEGAHIT assembly it will be important to know the kmer and step sizes used. For the
completeness assessment, the authors used BUSCO, but apparently they are using the whole assembly
to assess the completeness. This is not correct, since they must first separate in bins which genomes
they have really reconstructed and then they can assess the completeness of them. Probably they can
report the an average completeness value for all the reconstructed genomes. By doing the binning they
can have a better analysis of what was really reconstructed and how complete it was.

The use of Krona in Figure 2 is not very convenient. The whole point of a Krona graph is that is interactive.
If authors want to provide the Krona data to be downloaded it would be possible and recommended.
Having said that, | recommend to use bar plots to represent the relative abundance and composition of
the samples at a given taxa level.

Again, the idea is very good but the work needs to be improved before indexing.

Is the rationale for developing the new method (or application) clearly explained?
Yes
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Is the description of the method technically sound?
No

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
No

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Genomics, Transcriptomics, Metagenomics, Bioinformatics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

We are grateful for the constructive comments. We agree with all of them and we are planning
corrective actions, listed below.

My main concern is that the used samples have many variables and despite using a
“replicate" for each case, samples within the same type were very different.

The observation is correct. Actually, the diversity of the samples was sought by purpose in order to
be able to generalize the conclusions of our paper. The fact that diversity estimate and species
abundance estimation remain reliable even with strong down-sampling for all of the samples is
encouraging us to think that this is a general (although not necessarily universal) observation. The
same is true for the observation that de-novo assembly quickly loses accuracy when decreasing
the number of sequenced reads. Maybe this wasn’'t made clear enough in the paper, and we will
clarify it.

Also the nature of each sample could have an effect in the DNA isolation, in particular for
the vaccine ones.

Quantities of DNA isolated from vaccine samples (B1 and B2) were estimated to be ~2 ug using
Qbit fluorimeter. However, we will provide a table with all the details about quantity, concentration,

quality and size of starting DNA for all samples used in the study.

Also, regarding the vaccines, it is not clear to me, if what they are looking for is DNA of
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potential contaminants, since all viruses in the vaccine are ssRNA. That would be my
guess, but is not clear from the text.

The vaccine composition declared by the producer is the following:

Live attenuated viruses: Measles (ssRNA) Swartz strain, cultured in embryo chicken cell cultures;
Mumps (ssRNA) strain RIT 4385, derived from the Jeryl Linn strain, cultured in embryo chicken cell
cultures; Rubella (ssRNA) Wistar RA 27/3 strain, grown in human diploid cells (MRC-5); Varicella
(dsDNA) OKA strain grown in human diploid cells (MRC-5).

By DNA-seq we expected to find Varicella (dsDNA) OKA strain DNA (which was found and
confirmed by variant analysis with respect to AB097932.1 Human herpesvirus 3 DNA, sub strain
vOka). In addition, we found also human and chicken DNA. For human’s, we confirmed MRC-5 cell
origin by mitochondrial genome variant analysis.

Genotyping analyses gave us confidence on the validity of the obtained results, even though they
were beyond the scope of this work.

To identify vaccine’s ssRNA viruses we extracted RNA and performed RNA-seq from the same B1
and B2 samples. This aspect also goes beyond the scope of this work.

The main problem is that to test the influence of the sequencing yield, it would be
extremely important to know the initial DNA concentration of each organism in the
sample. Therefore, a mock metagenome or controlled sample would be much better as a
reference to compare real life cases.

A mock community experiment is already on-going by using ‘10 Strain Staggered Mix Genomic
Material (ATCC® MSA-1001™)’. Of course, the data obtained will be integrated in the analysis
results.

In real life cases, the presence of certain organisms detected by the presence of its DNA,
is not necessarily an indicator of the availability of alive organisms. Depending on the
case, the presence of just the organism DNA could be an indicator of contamination which
in the case of vaccines could be really bad. However, in the case of food material, finding
DNA of pathogens, has to be associated with microbiology tests.

We agree with the observation of the reviewer. However, the aim of this work is to determine if
low-pass whole genome sequencing can be an appropriate approach to broadly describe a
complex matrix; finding and confirming contaminants in vaccines or DNA pathogens in food
samples was beyond of the scope of the paper.

However, with low sequencing yield, is very probable that very DNA in low amounts will
be missed, even if this is not changing diversity indexes such as Chao1 and Shannon.
Finally, the main difference where low yield has a significant impact can be observed in
the fecal samples. This is expected since among all the tested samples, fecal ones are the
most diverse and sub-sampling will really affect them as observed in Figure 3.

We agree with the reviewer; we add some thoughts just to clarify. We indeed observed that
extremely rare species (with frequencies lower than 1/10000) are lost when subsampling to the
most extreme levels. When subsampling to 100K reads we are losing species with a frequency
around 1/100,000 (very approximate estimate). However, the effect of losing such species on the
global sample diversity as estimated by Shannon diversity index is negligible (see Figure 4, in
which we show that reduction in sequencing depth has no dramatic effect on Shannon’s diversity
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index). The situation is different for the Chao 1 estimator. This is expected and is due to the way
Chao1 is computed: this estimator relies heavily on the number of singletons (i.e. species
represented by only one read). By subsampling, singletons (i.e. the rarest species) are very likely
to be lost. The same phenomenon can be inferred by looking at Figures 5 and 6. Those represent a
scatterplot of the relative abundance of species in full sample and reduce samples (100K and 10k
reads, respectively). The plots are shown in log log scale to emphasize differences for
low-frequency species. Only low-frequency species have some variation in frequency estimation.
However, even when sampling only 10K read, species with frequency around 0.1% (i.e. 1/1000)
are appropriately quantified. All of these observations led us to conclude that coverage reduction
doesn’t prevent a satisfactory characterization of complex matrices (with the only exception of
Chao 1 estimator).

Since the composition of each sample is not known a priori, then there are some factors
that can contribute to biases. As mentioned, the DNA concentration but also its integrity
(fragmentation) will affect the library construction; the cited kit requires DNA amplification
which will have a bias towards GC rich genomic regions; library size was not described.

The Nugen Ovation® Ultralow System V4 kit used is a standard kit for NGS library preparation (
https://www.nugen.com/sites/default/files/DS_v2-Ovation_Ultralow_V2.pdf

It is a standard protocol widely used by the scientific community to perform DNA-seq also from low
input DNA quantities (1 ng), even if in our case input DNA was of moderate quantity. Mock
community experiment will shed light on eventual biases.

DNA concentration and integrity as well as input DNA quantities used in library construction and
libraries insert size will be reported in the version 2 of the paper.

It was not mentioned if the samples were pooled with other libraries with different insert
sizes, which affect not only the sequencing quality but the yield.

Samples were sequenced in different runs and pooled with other libraries of similar insert sizes.
The number of reads obtained per sample reflects and respects their quantities, i.e. nmols that
were loaded on the sequencer.

In terms of bioinformatics analysis, it will be required to put the parameters used for each
program, in case someone wants to reproduce this. For Kraken2, it is important to know
what is the kmer size to index the database. For MEGAHIT assembly it will be important to
know the kmer and step sizes used.

All these details will be provided in the version 2 of the paper.

For the completeness assessment, the authors used BUSCO, but apparently they are
using the whole assembly to assess the completeness. This is not correct, since they
must first separate in bins which genomes they have really reconstructed and then they
can assess the completeness of them. Probably they can report the an average
completeness value for all the reconstructed genomes. By doing the binning they can
have a better analysis of what was really reconstructed and how complete it was.

This is a good point. While our aim was to estimate the total proportion of BUSCO genes that were
reconstructed, irrespective of the species of the organism to which they belong, we understand
that a practical application is likely to require separating the reconstructed genomes. We will
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integrate our analysis by binning the reconstructed genomes.

The use of Krona in Figure 2 is not very convenient. The whole point of a Krona graph is
that is interactive. If authors want to provide the Krona data to be downloaded it would be
possible and recommended. Having said that, | recommend to use bar plots to represent
the relative abundance and composition of the samples at a given taxa level.

We will either provide a link to interactive krona graphs and/or bar plots reporting the relative
abundance and composition of the samples.
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