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ABSTRACT

A successful description of a convective boundary layer requires that the model employed takes into
account the nonlocal nature of turbulent convection. In this paper new third-order moments (TOMs) are
presented and tested. Numerical solutions are obtained using mean flow components and second-order
moments as input. The problem of the turbulent damping of the TOMs is considered. The terms in the
dynamic equations responsible for the unphysical growth of the TOMs are parameterized, taking into
account their dependence on the integral length scale vertical profile. The calculated profiles are presented
and tested against large-eddy simulation data and aircraft measurements. In both cases the results compare

favorably.

1. Introduction

Within the boundary layer (BL) turbulence is gener-
ated and maintained by shear and buoyancy. An im-
portant feature of convective boundary layer (CBL) is
the presence of large-scale semiorganized structures
(large-scale implies that the structure’s spatial scale is
comparable to the CBL depth). The nonlocal nature of
vertical transport of potential temperature (buoyancy),
momentum, and passive scalars across the CBL is es-
sentially due to these structures. The models used to
describe such atmospheric flows can be roughly classi-
fied into two categories. The first one is represented by
local models (e.g., Mellor and Yamada 1974, 1982; Ca-
nuto and Cheng 1994; Canuto et al. 2002; Abdella and
McFarlane 1997; Trini Castelli et al. 2001) in which the
third-order moments (TOMs) are neglected and all
fluxes are determined by vertical local gradients of the
mean wind and mean potential temperature. It is
known that these models fail when applied to convec-
tive flows (Moeng and Wyngaard 1989) since they con-
siderably underestimate the TOMs and produce insuf-
ficient vertical transport, thus predicting the maxima of
the relative humidity and the cloud height closer to the
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surface than the observations (e.g., Holstag and Boville
1993). The improvements of these models (e.g., Dear-
dorff 1972; Holstag and Moeng 1991; Wyngaard and
Weil 1991; Canuto et al. 2005) include nonlocal terms
but do not resolve dynamic equations for the TOMs
and, thus, the results, especially for convective flows,
are not completely satisfactory. Thus, one must over-
come these limitations and employ models that contain
dynamic equations for the third-order moments, that is,
nonlocal models (e.g., Canuto 1992; Canuto et al. 1994;
Zilitinkevich et al. 1999; Canuto et al. 2001; Cheng et al.
2005; Ferrero and Racca 2004; Ferrero 2005; Gryanik et
al. 2005).

Recently Ferrero and Racca (2004) showed that the
nonlocal transport plays an important role, not only in
the case of CBL, but also in the case of pure shear BL.
They demonstrated that a model including TOMs is
able to better determine the BL height in the neutral
case, even though such flows are not characterized by
such large-scale structures, as in the case of convective
flows. Therefore it is essential that a turbulence model
for the shear-buoyancy BL takes into account the non-
local transport.

Canuto (1992) proposed a new complete model for
the TOMs, including shear, buoyancy, rotation, and
overshooting that is capable of describing pure convec-
tive boundary layer as assessed in Canuto et al. (2001).
This model was also successfully applied by Ferrero
(2005), who carried out a satisfactory comparison of the
TOM model with the prediction of large-eddy simula-
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tion (LES) results by Moeng and Sullivan (1994) for a
pure shear BL.

In general, the most studied cases are, for the sake of
simplicity, the neutral BL, and the pure convective
flow. Here we consider a flow with both shear and con-
vection that represent a more realistic atmospheric
boundary layer. A similar flow was considered by Grya-
nik and Hartmann (2002), but in that paper the closure
problem for the convective turbulence of the shear-free
and weakly sheared atmospheric BL is investigated
with the mass-flux approach.

Experimental studies of the atmospheric CBL with
measurements of higher-order moments of the turbu-
lence were performed by Lenschow (1974) and Len-
schow et al. (1980). In these works aircraft measure-
ments of the turbulent kinetic energy, temperature and
humidity budgets, turbulent kinetic energy, and poten-
tial temperature variance vertical fluxes are shown. A
comparison between LES simulations and atmospheric
data is provided by Moeng and Rotunno (1990). In that
paper, they demonstrated that the TOMs simulated by
LES and those measured in the atmosphere can show
different behavior. Thus, to test a turbulence model it is
essential to consider both LES and field experiments.

In this work, we first use LES data by Moeng and
Sullivan (1994) to investigate the case of a buoyancy-
dominated flow with a relatively small shear effect
(Moeng and Sullivan 1994, case B). We consider a hori-
zontally homogeneous BL. The dynamic equations for
the TOMs are derived following Canuto (1992), nu-
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merically solved and tested against LES data. We also
used to test our results aircraft measurements taken
during the Arctic Radiation and Turbulence Interac-
tion Study (ARTIST) campaign in the polar convective
boundary layer during a cold air outbreak over the
ocean at moderate wind (Hartmann et al. 1999). Then,
in order to verify the general validity of our approach,
we compare our model with the case SB1 of Moeng and
Sullivan (1994), which is characterized by both shear
and buoyancy.

In section 2 the dynamic equations system and other
model settings are presented. In section 3 the problem
of the turbulent damping for the TOMs is discussed and
a new approach to avoid the unphysical growth of the
TOMs is suggested. Finally, in section 4, the model re-
sults are presented and tested against LES data and
aircraft measurements.

2. Third-order moments

Since the dynamic equations for the third order mo-
ments entail fourth-order moments (FOMs), a proper
parameterization of the FOMs is required. The TOM
fluxes are expressed in term of second-order correla-
tions (Hanjalic and Launder 1972, 1976; Zeman 1981):

1

Following Canuto (1992), the resulting system of 20
dynamic equations, in horizontally homogeneous con-
ditions, is given by
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FI1G. 1. Vertical profile of the normalized convective heat
flux wo.

where g% = uu;, lower cases represent fluctuating fields,
and upper cases indicate the mean values; cg, ¢, €11, Cy
are constants discussed in the following; 3 and 7, are
characteristic times scales whose value will be deter-
mined in section 3; A; = g;a where g; = (0, 0, g) is the
gravitational acceleration; and « is the thermal expan-
sion coefficient. The above equations do not include
rotation and viscosity terms since their contributions to
the TOMs are negligible in the atmospheric boundary
layer.

In the present work, the TOMs are evaluated using
mean flow and second order moments as input of the
model. The vertical profiles are taken from the LES
performed by Moeng and Sullivan (1994), who pro-
vided all the second-order moments (except for uv, fu,
6v, 6w, 6°) and the variances vertical fluxes (u*w, v*w,
w?) together with the mean flow components.

Concerning the missing second-order moments, for
6w and 6, whose quite standard trend is well known in
literature, we constructed the profiles reported in Figs.
1 and 2, similar to those shown in Canuto et al. (1994)
in the case of the buoyancy-dominated BL. Since gen-
eral profiles of @v, fu, v are not available in literature
we solved for them the following dynamic equations:

duv AfaU+AgaV 9 I .
o - T\wop T az YW w  (0)
u 90 64,6[] 9 i ;
ot - uw aZ w GZ aZ uw Ou ( )
L —]C) E,av GET* . o
ot Waz T Moz e T Hew ®
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FIG. 2. Vertical profile of the normalized temperature
fluctuation variance 6>

where the pressure correlation terms II,,,, 11, and I,
were prescribed as in Canuto (1992).

The Moeng and Sullivan (1994) case B LES consid-
ered here, starts with a laminar flow with an initial
mean potential temperature stable profile that then be-
comes unstable during the simulation, keeping thermal
inversion at the top. For this reason, in this case, we
have used as input of the TOM model a temperature
vertical profile similar to those of the LES final situa-
tion in which the turbulence moments were calculated.
The mean potential temperature (Fig. 3) shows a
slightly linear decreasing profile that begins to increase
near the top of the BL.

The surface heat flux was set to Q,. = (w), = 0.24
(m s~! K) and the convective velocity w, = [(g/
T0)Q.Z]" = 2.02 (m's™') where g/T, is the buoyancy
coefficient and Z; is the PBL height; the temperature
scale is 0, = Q,/w,. The values of the constants that
appear in the dynamic equations are reported in Table
1. The value of ¢, is taken from Canuto (1992), while
¢, 1s a value taken between that suggested by Lumley et
al. (1978), ¢, = 1, and that of André et al. (1982), c,, =
0. The constants ¢4 and cg4, in Table 1, are present in the
pressure correlation terms (not shown) of the second-
order moments equations used to calculate the missing
profiles of wv, 6u, and v [Egs. (6), (7), (8)]. Their values
are slightly different to those suggested in Canuto
(1992), ¢, = 1.75 and ¢, = 3.75. The value of ¢, is larger
than the standard used for this constant (e.g., Canuto
1992) so as to correctly simulate the buoyancy contri-
bution. The value of the constant cg will be largely dis-
cussed in the following section.
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The equations were numerically solved on a 60-level
vertical grid using a centered finite differences scheme
for derivatives in space and a forward difference
scheme for derivatives in time. No boundary conditions
were required.

3. Turbulent damping

Since the dynamic equations for the TOMs, as seen in
the previous section, involve the fourth-order moments
(FOMs), the treatment of the latter plays a key role in
describing the nonlocal features of the flow, which are
represented by the fluxes of the fluxes (TOMs). The
most common and widely used closure for the FOMs is
the quasi-normal approximation [QN; Eq. (1); see, e.g.,
Tatsumi 1957; Ogura 1972; Zeman and Lumley 1976;
André et al. 1976, 1978; Canuto et al. 1994, 2001]. As
has been recently demonstrated (Cheng et al. 2005) this
approximation could not provide sufficient damping for
the TOMs, which became arbitrarily large while in re-
ality they have finite values. To limit this unphysical
growth many approaches were suggested, such as the
clipping approximation (André et al. 1976) and the
Eddy-Damped Quasi-Normal Markovian (EDQNM)
model (Orszag 1977; Lesieur 1992) in which the damp-
ing is represented by an additional time scale chosen on
physical grounds.

TABLE 1. Model constant values.

Co n Cq Cio Cx

35 0.9 1.5 6 0.4
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F1G. 4. Vertical profile of the normalized integral length scale
for the dissipation rate from LES case B data.

In this paper we adopt the QN approximation but we
propose a new method for the damping. As discussed in
detail by Zeman (1981), the FOMs are taken to be
distributed in accordance with a normal probability
density but the pressure correlation terms are param-
eterized by third order terms divided by a time scale,
usually denoted by 75. Lumley et al. (1978), demon-
strated that this approximation is physically equivalent
to the EDQNM model (Orszag, 1977; Lesieur, 1992).

On the lhs of Egs. (2), (3), (4), and (5) the second and
the third terms derive from the third-order pressure
correlations, here parameterized following André et al.
(1982). These terms, in which appear the time scale 74
and the analogous 7,, are essentially connected to the
turbulent damping of the TOMs. Therefore, a proper
choice of 75 and 7, can avoid the unphysical growth of
the TOMs (Canuto et al. 2001). Both 75 and 7, depend
on the characteristic turbulence life time 7

T T
T3=2—C8 and 76:2_6‘2’ 9)
where 7 = 2ele, e = (g*/2) is the turbulent kinetic en-
ergy, and e is its mean dissipation rate. Thus the con-
stants ¢g and ¢, should be chosen accurately and on
physical ground, as in Canuto et al. (2001) and Ferrero
(2005) in order to obtain the proper turbulence damp-
ing. The values of cg and ¢, are usually chosen constant
(André et al. 1982; Canuto 1992).

Since the size of the eddies in the BL vary with the
height, as shown in Fig. 4 where the length scale
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<w3>/wi

FIG. 5. Normalized vertical profile of w? for case B. Comparison
between TOM model with constant values of cg and ¢,, where the
dashed line represents c¢g = 10, ¢, = 5; and the dotted line repre-
sents cg = 9.5, ¢, = 4.5, LES (O symbols), and aircraft data (X
symbols) are shown.

L. = [?(3/2)/6] obtained from Moeng and Sullivan
(1994) LES data (case B) is reproduced, the turbulence
damping should be different at different levels. Thus
the value of cg and ¢, can be set as functions of the ratio
L. /Z; and estimated as follows:

L,
c8=cg‘<l +CAZ>
&7,

(10)

(11)

where ¢ and c§ are the values suggested by André et
al. (1982) and Canuto (1992), respectively, (c5 = 8 and
S =25).

These expressions can be regarded as a first order
correction to the ¢4 and ¢§ constant. We consider a
linear dependence on the L./Z,; ratio. As a matter of
fact, quadratic dependence could give too large values,
completely different from those available from litera-
ture. We are looking for a slight modulation of the
constant based on physical ground. It can be also noted
that the factor L/Z; is always positive being defined
through two length scales.

4. Results

First we considered the buoyancy-dominated flow
with a relatively small shear effect (Moeng and Sullivan
1994, case B). Following Ferrero (2005), we performed
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FIG. 6. Same as Fig. 5 except for 12w.

a first simulation in which the values of ¢4 and ¢, were
chosen constant. Taking into account that the maxi-
mum of L is about 2.6Z; (Fig. 4), we set ¢cg = 10 and ¢,
= 5. The results, shown in Figs. 5, 6, 7, and 8 (dashed
line) demonstrate that with this values for the constants
the TOMs are largely underestimated in the lower lay-
ers and near the top of the BL. Choosing slightly
smaller values for the two constants (cg = 9.5 and ¢, =
4.5) the TOMs vertical profiles (dotted line) are im-
proved in the bottom and top levels of the BL but show
overestimation in the middle of the BL. For small val-

1.2 T T T
1r -
0.8 |
-
N 0.6 b
~
N
0.4 b
0.2 b
1 1 1
£0w =005 0 005 0.1 Q.15 02
2 3
<V ws/wy

FiG. 7. Same as Fig. 5 except for vw.
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FIG. 8. Same as Fig. 5 except for ¢*w.

ues of c¢g and ¢, [as those suggested by André et al.
(1982) and Canuto (1992)] the vertical profiles are ex-
cessively overestimated at the BL intermediate levels,
while for large values of the constants they show un-
derestimation in the upper and lower layers.

These results suggest that, as discussed in the previ-
ous section, the constants cg and ¢,, which are respon-
sible for the turbulent damping, cannot be taken con-
stant throughout the whole BL. For this reason we per-
formed a new simulation calculating cg and ¢, at each

1.2 T
1+ 4
0.8 q
A
N 0.6 X =
e
N
0.4 q
X
0:2 F &
0 I
-0.1 0.3 0.4

FIG. 9. Normalized vertical profile of w? for case B. Comparison
between TOM model (solid line), LES (O), and aircraft data (X).
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FIG. 10. Same as Fig. 9 except for i2w.

level as a function of the length scale L from Egs. (10)
and (11).

The resulted TOMs are depicted in the following fig-
ures together with the LES data (Moeng and Sullivan
1994), where available, and aircraft measurements
(Hartmann et al. 1999). Figures 9, 10, 11, and 12 show
the normalized vertical profiles of the three variances
fluxes and the resulting turbulent kinetic energy verti-
cal flux. Generally the agreement of the simulated
TOM s is satisfactory as is shown by the g°w vertical
profile, which reproduces well both the LES data and

-0.1

FiG. 11. Same as Fig. 9 except for vw.
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FIG. 12. Same as Fig. 9 except for ¢*w.

the aircraft measurements. Nevertheless it can be noted
that the w? vertical profile is slightly underestimated in
the lower part of the BL while an opposite behavior
occurs for the u?w and v*w vertical profiles. This fact
suggests that the model is able to correctly simulate the
turbulence production and transport, while is not com-
pletely satisfactory in the redistribution along the dif-
ferent components.

In Figs. 13, 14, and 15 the normalized vertical profiles

1.2 T T T T
1} _
0.8 A
-
N 0.6 .
~
N
0.4 b
0.2 + -
+
L 1 |/<|‘r ﬁ‘!‘ + L L
0
=2 =L 0 ne 2 3 4 S 6

<0%w>/0%w,

FIG. 13. Normalized vertical profile of ¢*w for case B. Comparison
between TOM model (solid line) and aircraft data (+).
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F1G. 14. Same as Fig. 13 except for .

of 6*w, Ow?, and 6> are compared with the aircraft mea-
surements only, as in this case the LES data were not
available. The agreement is particularly good for 6° and
6w?, while 6*w is underestimated near the ground
where the simulated profile decrease similarly to that
found by Cheng et al. (2005).

To verify our approach and in particular the pro-
posed method for the damping on a wide range of at-
mospheric conditions, we applied the TOM model to
the case SB1 of Moeng and Sullivan (1994). This case is

z/Z;

-10 0 1 20 30 40

0
<0°>/63;
F1G. 15. Same as Fig. 13 except for 0.
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F1G. 16. Normalized vertical profile of w3 for case SBI.
Comparison between TOM model (solid line) and LES (O).

characterized by a value of z,/L = 1.5, Q,. = (6w), =
0.05 (m s™!' K) and w, = [(g/T,)Q+Z]"> = 0.94
(m s~ '), which correspond to a BL where both shear
and buoyancy contribute nearly equally. As for the
simulation of the case B, we evaluated the TOMs using
mean flows and second order moments as input of the
model. Most of the vertical profiles were provided by
Moeng and Sullivan (1994); the missing second-order
moments (v, Ou, Bv) were evaluated by solving their
dynamic equations [see Egs. (6), (7), and (8)], while the
profile of 6 was deduced from literature, as done for
the case B. Concerning the vertical profile of the mean
potential temperature we taken into account that a
small amount of buoyancy forcing can effectively mix
the mean flows in the middle of the BL and therefore
the profile used in input of the model was characterized
by a constant trend in the middle of the BL with a weak
instability near the ground and a capping inversion at
the upper layers. The constant ¢g and ¢, were pre-
scribed by Egs. (10) and (11) and the corresponding L,
profile for the case SBI.

The results of the simulation are shown in Figs. 16,
17,18, and 19, where the TOMs predicted by our model
are compared with LES results. Following Moeng and
Sullivan (1994), the TOMs are normalized by the ve-
locity scale for the shear-buoyancy-driven BL defined
as wy, = wi + Sul, (u, = 0.59 m s™!). Also in this
simulation the agreement between model results and
LES data is satisfactory. Concerning w> (and conse-
quently g°w) profile, it can be noted that the agreement
with LES data is less satisfactory in the lowest layer
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FIG. 17. Same as Fig. 16 except for u’w.

where it presents a maximum not shown in the LES
data. This is due to some features of the input variable
profiles, in particular the strong negative gradient of w?
near the ground. These results demonstrate that our
model and the proposed method for the TOMs damp-
ing can be applied to a wide range of BL flows.

5. Conclusions

In this work we present a turbulence model account-
ing for TOMs in a BL with both convection and shear.

z/Z;

0
=0led

FIG. 18. Same as Fig. 16 except for *w.
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FIG. 19. Same as Fig. 16 except for ¢’w.

The model we consider is based on the Canuto (1992)
paper in which the FOMs are closed with the QN ap-
proximation. As it is generally recognized (Cheng et al.
2005), this approximation needs a proper turbulent
damping in order to avoid the unphysical growth of the
TOMs. This problem is solved in this work prescribing
variable values for the constant cg and ¢,, according to
the vertical profile of the integral length scale of the
turbulence. The TOMs calculated with this model are
compared with LES data (Moeng and Sullivan 1994,
case B) and aircraft measurements (Hartmann et al.
1999). The results show a satisfactory agreement for all
the TOMs considered in both the cases, thus demon-
strating that the turbulent damping should depend on
the turbulence length scale that is a measurement of the
eddy size that can grow in different ways at the differ-
ent levels of the BL. The test is more significant be-
cause, together with LES data, atmospheric measure-
ments (as those provided by Hartmann et al. 1999) are
used for comparison. As a matter of fact, the TOMs
profiles obtained from LES can be slightly different,
even showing the same basic features, depending on the
code used (as assessed by Fedorovich et al. 2004).

To cover all the possible atmospheric conditions,
other cases characterized by different values of the Mo-
nin—-Obukov length, should be considered. As a matter
of fact, the roles played by buoyancy and shear respec-
tively may be different (see, e.g., Fedorovich et al.
2004). For this reason, we successfully tested our model
and the new damping method in the case of shear and

buoyancy driven BL (Moeng and Sullivan 1994, case
SB1).
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Furthermore, this paper points out the importance of
a proper choice of the turbulent time scales based on
physical ground to correctly simulate the vertical fluxes
of the wind velocity and temperature fluctuation vari-
ances, which are responsible for the nonlocal transport.
Finally, we would like to stress that the model here
presented is able to account for both the turbulence
production processes, namely shear and buoyancy, at
the same time and that such a complex situation corre-
sponds to the actual atmospheric BL.
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