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ABSTRACT

Accurate estimation of precipitation at high spatial and temporal resolution of weather radars is an open

problem in hydrometeorological applications. The use of dual polarization gives the advantage of multipa-

rameter measurements using orthogonal polarization states. These measurements carry significant in-

formation, useful for estimating rain-path signal attenuation, drop size distribution (DSD), and rainfall rate.

This study evaluates a new self-consistent with optimal parameterization attenuation correction and rain

microphysics estimation algorithm (named SCOP-ME). Long-term X-band dual-polarization measurements

and disdrometer DSD parameter data, acquired in Athens, Greece, have been used to quantitatively and

qualitatively compare SCOP-ME retrievals of median volume diameterD0 and intercept parameterNW with

two existing rain microphysical estimation algorithms and the SCOP-ME retrievals of rain rate with three

available radar rainfall estimation algorithms. Error statistics for rain rate estimation, in terms of relative

mean and root-mean-square error and efficiency, show that the SCOP-ME has low relative error if compared

to the other three methods, which systematically underestimate rainfall. The SCOP-ME rain microphysics

algorithm also shows a lower relative error statistic when compared to the other two microphysical algo-

rithms.However,measurement noise or other signal degradation effects can significantly affect the estimation

of the DSD intercept parameter from the three different algorithms used in this study. Rainfall rate estimates

with SCOP-ME mostly depend on the median volume diameter, which is estimated much more efficiently

than the intercept parameter. Comparisons based on the long-term dataset are relatively insensitive to path-

integrated attenuation variability and rainfall rates, providing relatively accurate retrievals of the DSD pa-

rameters when compared to the other two algorithms.

1. Introduction

Weather radar can provide spatiotemporal rainfall

observations that can support hydrometeorological

modeling and flood forecasting. Rain rate retrievals can

be estimated from the single polarization radar mea-

surement, that is, the radar reflectivity (Marshall and

Palmer 1948; Battan 1973; Atlas and Ulbrich 1990; Joss

and Waldvogel 1990) using the traditional standard

reflectivity–rainfall (Z–R) relation on a physical basis

of additional convective–stratiform rain classification

information (Anagnostou and Krajewski 1999). A Z–R

relation is obtained by regression analysis of gauge

measurements and radar reflectivity or from drop size

distributions (DSD) measured by aircraft and in situ

disdrometers. However, the standard Z–R relation does

not carry enough information to account for the clima-

tological and orographic uniqueness of each location

and temporal changes of the DSD. Thus, it cannot

provide accurate rainfall rate (R in mm h21) estimates

for different types of storms that are associated with

varying microphysical processes.

On the other hand, rainfall rate estimators can be

derived from modern polarimetric radar observations,

which are related to the DSD in the radar volume
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(Bringi and Chandrasekar 2001). Dual-polarization (or

polarimetric) weather radars have a significant advan-

tage over single-polarization systems because they allow

multiparameter measurements using orthogonal polar-

ization states. Polarimetric measurements, apart from

the horizontal polarization reflectivity (ZH in dBZ),

usually include the differential reflectivity (ZDR in dB),

the differential phase shift (FDP in degrees), and the

copolar correlation coefficient (rHV, unitless).

Polarization diversity has a significant impact on cor-

recting for rain-path signal attenuation in attenuating

frequency (C band and X band) radar measurements,

making these systems applicable in heavy precipitation

estimation (Testud et al. 2000). The typical range of

X-band radar can be short (60–120 km) compared to the

long-range operational weather radars [consisting pri-

marily of S-band, like the Weather Surveillance Radar-

1988Doppler (WSR-88D) network in theUnited States,

and C-band radars, like most of the radar networks in

Europe], but X-band radar can be low power, mobile,

and constitute a cost effective system for filling up gaps

in existing national radar networks. Examples include

monitoring small-scale basins in mountainous regions

and urban areas (Anagnostou et al. 2010; Park et al.

2005) where, owing to the high spatial resolution asso-

ciated with X-band radars, flood forecasting with dis-

tributed hydrologic modeling could be more effectively

carried out with high-resolution rainfall forcing (Ogden

et al. 2000;Maki et al. 2008).Amajor drawback inX-band

rainfall estimation is the rain-path signal attenuation

effect, which can be larger than 10 dB for heavy rain

events, causing significant errors in rainfall estimation.

The fundamental aspect that brought X-band back to

the interest of hydrometeorologists for rainfall esti-

mation is that the copolarization differential phase shift

(FDP) measurement can be used as a constraint param-

eter for the effective estimation of specific copolar (AH),

differential (ADP), and rain attenuation profiles (Testud

et al. 2000; Matrosov et al. 2005; Park et al. 2005;

Anagnostou et al. 2009; Marzano et al. 2010).

Based on data from different hydroclimatic regimes,

numerous studies have confirmed that the estimation of

rain microphysics can be significantly improved by the

use of polarimetric radar parameters (Ryzhkov and

Zrni�c 1996; Anagnostou et al. 2004; Anagnostou et al.

2007; Matrosov et al. 2005; Park et al. 2005; Kim et al.

2010). The method by Gorgucci et al. (2006), which was

proposed for C-band, and a more robust algorithm,

proposed for S, C, andX band (Gorgucci et al. 2008), can

provide an estimate of the two DSD governing pa-

rameters, namely, the raindrop median diameter D0

(mm) and intercept parameter NW (mm21 m23) of the

assumed normalized gamma distribution, by utilizing

power-related radar parameters (ZH and ZDR), the

specific differential phase shift KDP (in degrees per ki-

lometer), and the slope parameter b of drop shape (axis

ratio r) against rain droplet diameter. Park et al. (2005)

adapted a method similar to Gorgucci et al. (2001) at

X-band frequencies. Many studies have also proposed

the estimation of the DSD parameters as part of rain

attenuation correction and/or rain estimation algo-

rithms. The method developed by Testud et al. (2000)

provides estimates of NW for C-band and X-band fre-

quencies using an attenuation correction algorithm,

employing the differential phase shiftFDP as an external

constraint within the attenuation-estimation method,

whereas Matrosov et al. (2005) estimatedD0 by relating

it with the attenuation-corrected ZDR for X-band. The

aforementioned methods are either two- or three-

parameter physical-based ad hoc or empirical algorithms.

There is also a nonparametric estimation of DSD from

slant-profile dual-polarized Doppler spectra observa-

tions, presented byMoisseev et al. (2006). Vulpiani et al.

(2009) and Anagnostou et al. (2008) have developed a

nonparametric approach to estimate the three govern-

ing parameters of DSD from S or C band and X-band

dual-polarization radar parameters on the basis of a

regularized artificial neural network (NN) or a Bayesian

approach, respectively.

Recent studies by Anagnostou et al. (2009, 2010) and

Kalogiros et al. (2013a) have led to the development and

demonstration of a new algorithm for both polarimetric

attenuation correction in rain and rain parameter esti-

mation (i.e., rain rate and DSD). Anagnostou et al.

(2009, 2010) evaluated a modified ZPHI algorithm

(Testud et al. 2000) for attenuation and rainfall estima-

tion with NW normalization, using observations from

mobile X-band dual-polarization radar over complex

terrain basins. Kalogiros et al. (2013a,b) showed that

the new self-consistent with optimal parameterization

(SCOP) attenuation correction and rain microphysics

estimation (SCOP-ME) algorithm can provide im-

proved estimates of rain rate andDSD parameters when

compared with existing algorithms on the basis of sim-

ulated radar data derived from long-term observed

raindrop spectra. The objective of this work is to sta-

tistically evaluate the performance of the SCOP-ME

algorithm using an extensive database of actual X-band

dual-polarization observations coincident with in situ

measurements from a 2D video disdrometer (2DVD)

acquired in Athens, Greece, in a period of four years.

The statistical performances of the SCOP-ME algorithm

are also evaluated with different rainfall rate and DSD

estimation algorithms taken from the literature. The

statistical error evaluation of the SCOP-ME algorithm

is performed for the horizontal polarization ZH and
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differential ZDR reflectivity observed with the radar and

corrected for attenuation in rain against the corre-

sponding radar products calculated from the 2DVD-

observed DSD as a function of different path-integrated

attenuation (PIA) values in four different categories.

The paper is organized as follows. In section 2 the

SCOP-ME algorithm is briefly described. In sections 3

and 4 the results of the quantitative (statistics) and

qualitative (test case) comparison of the estimations

from the SCOP-ME algorithm and two different rain

microphysical estimation (i.e., median volume diameter

D0 and intercept parameter NW) algorithms, found in

the literature, against the disdrometer-observed DSD

parameters and three different radar rainfall estimation

algorithms, also taken from the literature, are presented.

Finally, the conclusions in section 5 summarize the re-

sults of this work.

2. Rain microphysics retrieval algorithm

The polarimetric rain microphysics algorithm SCOP-

ME for X-band radars was based on relations valid at

the theoretical Rayleigh scattering limit corrected by a

multiplicative rational polynomial function of reflectivity-

weighted raindrop diameter (Dz) to approximate the

Mie character of scattering at these electromagnetic

frequencies. The reflectivity-weighted mean diameter is

given by Dz5E[D7]/E[D6] [1], where D is the raindrop

equivolume diameter and E stands for the expectation

value. The expectation value is estimated in practice

as the DSD-weighted integral over the whole range of

diameter values. The algorithm was developed from

T-matrix scattering simulations (Kalogiros et al. 2013a)

for a wide range of DSD parameters, a variable raindrop

axis ratio around the relationship given by Beard and

Chuang (1987), a Fisher distribution with a circular

standard deviation of 7.58 for canting angle distribution,
and air temperature varying from 58 to 208C. The max-

imum parameterization error of SCOP-ME is less than

5%. The rain drop size distribution (DSD) model used

in the simulations was the normalized gamma distribu-

tion n(D), as presented in many polarimetric radar

rainfall studies (Testud et al. 2000; Bringi andChandrasekar

2001; Illingworth and Blackman 2002):

n(D)5NWf (m)

�
D

D0

�m

exp

�
2(m1 3:67)

D

D0

�
, (1)

where n(D) (m23 mm21) is the volume density, D0

(mm) is the median volume diameter, NW (mm21 m23)

is the intercept parameter, and m (no units) the shape

parameter. The SCOP-ME rainfall rate relation is given

by the following equation (Kalogiros et al. 2013a):

R5 0:8106FR(m)NWD4:67
0 fR

2
(D0) , (2)

where the factor fR2(D0) accounts for an exponential

relationship more accurate than the usual power law

(Atlas et al. 1973; Bringi and Chandrasekar 2001) and

for the terminal velocity of raindrops against their di-

ameter. The median volume diameter D0, the intercept

parameter NW, and the shape parameter m of the DSD

are estimated from the polarimetric radar measure-

ments ZH, ZDR, and KDP using the following equations.

The function FR (m) is given by

FR(m)5 0:63 1023p3 3:78
6

3:674
(3:671m)m14

G(m1 4)

3
G(m1 4:67)

(m1 3:67)(m1 4:67)
, (3)

where G indicates the gamma function. The DSD gov-

erning parameters (D0 and NW) are estimated from the

following relationships:

D05DZfD
0
(DZ) , (4a)

DZ 5DZ
1
fD

Z1

(DZ
1
),

DZ
1
5 0:1802

�
ZH

KDP

j20:2929
DR (12 j20:4922

DR )

�1/3
, (4b)

NW 5 3610

"
KDP

(12 j20:3893
DR )

#
D24

0 fN
W2

(DZ) , (4c)

m5 165e22:56D
0 2 1, (4d)

where DZ is the reflectivity-weighted mean diameter

(mm), jDR is the differential reflectivity in linear units

(ratio of reflectivity at horizontal and vertical polariza-

tion), and the horizontal reflectivity ZH in these re-

lations is also given in linear units (mm6 m23). The

constraint of the shape parameter m in Eq. (4d) was

obtained from long-term disdrometer data, as described

in Kalogiros et al. (2013a), with a method of best fit of

the normalized gamma distribution to the measured

DSD. The shape parameter was not estimated with

a moments method like in Vivekanandan et al. (2004)

because this involves estimation of high-order moments

of the DSD (up to fifth- or sixth-order moment), which

are characterized by large error due to the measurement

errors in the high tail (high raindrop diameter values) of

the DSD. The available disdrometer data supported the

idea of a constrained gamma DSD and agree with

Zhang et al. (2001) and Vivekanandan et al. (2004) for

D0 , 2 mm. The functions fp(DZ), where the subscript
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p indicates the corresponding parameter, are third-

degree rational polynomial regression functions, which

were found to adequately describe the Mie character of

scattering and to include most of the dependence on DZ:

fp(DZ)5

�
3

n50

anD
n
Z

�
3

n50

bnD
n
Z

. (5)

The coefficients of the polynomials in the numerator and

denominator of fp(DZ) are given in the appendix (Table

A1) for the corresponding relations.

Before applying the microphysical retrieval algorithm

(as well all the algorithms presented in this section and

the following sections), reflectivities ZH and ZDR are

corrected for the attenuation in rain. Path attenuation of

a radar signal is significant, especially for high-frequency

radars (like X band). For the correction of path atten-

uation in rain the SCOP algorithm is used. This algo-

rithm is a self-consistent polarimetric algorithm, based

on the parameterizations of the specific attenuation co-

efficients and backscattering phase shift in rain, derived

by Kalogiros et al. (2013a), and applied with an iterative

scheme to separate radar rays (Kalogiros et al. 2013b). As

was shown by Kalogiros et al. (2013a), the parameter-

izations of the specific attenuation coefficients and back-

scattering phase shift are quite robust and independent

of the constraining function of DSD shape parameter m

against D0 [Eq. (4d)]. This independence is due to the

use ofDZ in the parameterizations. Application to radar

data and comparison with disdrometer data and other

polarimetric algorithms presented in the literature

(Testud et al. 2000; Gorgucci et al. 2006) showed that

this algorithm performed similarly to or better than the

other attenuation correction algorithms. However, all

algorithms presented a systematic underestimation at

high values of differential attenuation, probably due to

the presence of hail in the path of the radar beam during

those cases, which are not considered in these correction

algorithms (Marzano et al. 2010).

In addition, various rainfall and rain microphysics

algorithms available in the literature are evaluated in

this work against the new polarimetric algorithm SCOP-

ME. The ‘‘standard’’ reflectivity-to-rainfall relationship

is the most widely used method in radar–rainfall esti-

mation (hereafter called R–ZH) as it relates directly to

the radar reflectivity measured by any conventional

weather radar:

RZ
H
5a1Z

b
1

H . (6)

The coefficients (i.e., a1 and b1) of this algorithm were

determined from radar data collected during the years

2005–2006 in the area of Athens (Greece) by Kalogiros

et al. (2006) and tested with various radar datasets by

Anagnostou et al. (2009, 2010).

FIG. 1. Experimental area showing the radar site (NOA) and the in situ 2D video disdrometer

site (GV1).On the right are pictures of theXPOL atNOAand the disdrometer at theGV1 site.

APRIL 2013 ANAGNOSTOU ET AL . 563



The differential phase shift–rainfall relationship

(hereafter called R–KDP), for X-band radars is, on av-

erage, nearly linearly related to the rainfall rate:

RK
DP
5a2K

b
2

DP . (7)

Various researchers have adopted formulations, which

are special cases of the following power-law expression

(hereafter named ‘‘combined’’ or R–ZHZDRKDP):

RZ
H
Z

DR
K

DP
5 aZb

HZc
DRK

d
DP . (8)

The coefficients a1, a2, b1, b2, a, b, c, and d are given in

the appendix (Table A2) and are obtained by perform-

ing a multiple regression of Eqs. (6)–(8) using T-matrix

simulations as in Kalogiros et al. (2006), Montopoli et al.

(2008b), and Marzano et al. (2010).

3. Results

The performances of the SCOP-ME rainmicrophysics

algorithm and other algorithms, described in section 2,

are evaluated using measurements from the National

Observatory of Athens (NOA) high-resolution dual-

polarization Doppler X-band radar (XPOL) during the

period from 2008 to 2011 in the urban area of Athens.

XPOL is one of the first mobile research-quality radars,

which have been extensively used since 2000 in different

scientific field experiments in the United States, Greece,

and Italy (E. N. Anagnostou et al. 2004, 2006; M. N.

Anagnostou et al. 2006, 2009, 2010). XPOL was deployed

at the NOA premises 500 m MSL. The radar conducted

plan position indicator (PPI) scans at three different an-

tenna elevations (0.58, 1.08, and 1.58) over an azimuth

sector scan of 1208–3308 with 150-m range resolution for

a total range of 60 km. Antenna rotation rate was 68 s21

and the total time for a volume scan was about 3 min.

An optical 2D video disdrometer (2DVD) was de-

ployed within a 35-km range at a coastal area southeast

of the XPOL site (see Fig. 1), providing high temporal-

resolution (1 min) drop size distribution measure-

ments. There were no terrain obstacles in the path from

the radar to the disdrometer.

Twenty-one rain events of coincident XPOL and

disdrometer observations with significant rain in the

TABLE 1. Selected rain cases with corresponding statistical analysis for each event. The first column is the date of the event. The ‘‘Corr’’

column shows the value of the correlation between the reflectivity ZH values measured by XPOL and the 2DVD for each event. The

columns labeled ‘‘max,’’ ‘‘mean,’’ ‘‘ % rain . 1 mm h21,’’ and ‘‘% rain . 10 mm h21’’ the statistics of 2DVD (left-hand side of each

column) and XPOL (right-hand side of each column).

Date Corr Max (mm h21) Mean (mm h21) % rain . 1 mm h21 % rain . 10 mm h21

14 Jan 2008 0.88 81.4 130.3 11.7 12.7 31.8 34.9 10.6 10.6

28 Mar 2008 0.79 13.0 9.6 1.3 1.9 46.8 60.7 0.7 0.0

2 Apr 2008 0.8 34.0 33.8 5.7 4.6 87.2 83.5 14.9 8.8

5 Apr 2008 0.88 17.9 14.8 2.0 2.0 41.2 43.2 2.0 1.5

22 Sep 2008 0.63 2.5 2.1 1.3 1.3 73.3 66.7 0.0 0.0

25 Sep 2008 0.84 87.8 53.6 29.5 20.6 64.0 80.0 48.0 48.1

17 Nov 2008 0.68 11.7 8.7 2.4 2.0 35.2 34.6 0.6 0.0

29 Nov 2008 0.78 13.0 15.7 3.5 2.7 75.0 67.5 5.0 2.5

2 Jan 2009 0.78 4.7 7.9 0.8 0.9 17.6 24.2 0.0 0.0

5 Jan 2009 0.78 4.1 5.3 1.0 1.1 38.3 41.3 0.0 0.0

8 Jan 2009 0.64 14.3 9.4 3.8 2.7 31.0 31.0 3.5 0.0

13 Jan 2009 0.69 4.5 6.8 1.3 1.6 39.0 40.4 0.0 0.0

31 Jan 2009 0.51 5.1 37.5 1.8 6.5 66.7 88.1 0.0 15.1

8 Feb 2009 0.76 12.5 9.4 3.7 2.7 62.5 57.1 3.6 0.0

5 Mar 2009 0.81 11.0 10.3 2.8 2.5 84.6 83.5 1.2 1.1

12 Mar 2009 0.69 4.0 6.1 1.2 1.7 47.7 58.1 0.0 0.0

21 Mar 2009 0.63 16.0 37.5 4.0 5.7 75.5 77.4 4.7 1.4

5 Apr 2009 0.59 0.6 1.5 0.3 0.7 0.0 2.9 0.0 0.0

17 Oct 2009 0.76 2.1 2.0 0.7 0.9 16.9 27.7 0.0 0.0

25 Oct 2009 0.75 31.5 25.7 2.4 2.4 61.6 75.3 3.4 4.1

12 Nov 2010 0.82 29.5 53.2 4.2 8.7 12.5 17.6 4.2 8.0

16 Jan 2011 0.48 6.1 8.5 2.1 2.9 76.0 86.0 0.0 0.0

27 Jan 2011 0.59 7.8 7.8 2.1 2.2 70.6 66.7 0.0 0.0

2 Feb 2011 0.57 3.0 11.1 0.7 2.6 09.4 24.3 0.0 0.7

18 Feb 2011 0.54 3.8 7.5 1.0 1.5 14.9 16.6 0.0 0.0

20 Feb 2011 0.52 14.7 16.8 1.1 1.8 16.9 29.2 1.5 3.1

2 Mar 2011 0.78 5.3 5.3 1.3 1.3 54.8 59.6 0.0 0.0

29 Mar 2011 0.56 3.9 3.9 1.0 1.5 34.1 59.7 0.0 0.0
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path between the radar and the disdrometer were se-

lected from the database (see Table 1). The selection of

the cases was based on the quality control of the radar

and the 2DVD observations. To limit the effects of

sampling differences and the separation in altitude be-

tween the disdrometer and the radar volume, only rain

events with correlation greater than 0.5 between the

disdrometer-derived and radar-observed reflectivity

were selected. Furthermore, only the lower radar ele-

vations (below 18) were used in order to avoid possible

melting layer effects during some stratiform rain events.

The bias calibration of ZH and ZDR is made using long-

term disdrometer data, as described in Kalogiros et al.

(2013b). Furthermore, the calibration of ZDR is also

improved using a real-timemethod, which is based on an

average ZH–ZDR relation. The effect of calibration

biases and random noise on the SCOP-MEmicrophysics

and rain algorithms was examined using simulations

(Kalogiros et al. 2013a). For the above typical values of

errors, it was found that the proposed algorithms are

accurate within 20%. We note that without bias and

random errors the accuracy of the algorithms is better

than 5%, as mentioned in section 2. However, a point to

mention is that the measurement errors contribute

mainly to the random part of the error, assuming that

bias calibration has beenmade with a typical accuracy of

;1 dBZ for ZH and ;0.2 dB for ZDR.

A rain classification procedure, similar to that of

Montopoli et al. (2008b), was adopted to separate the

stratiform from convective rain types in the disdrometer

time series. The classification procedure is based on the

criterion that stratiform rain tends to be horizontally

uniform and low in intensity as opposed to the convec-

tive regime, which generally shows high intensities at

short time periods. Following the procedure discussed

by Montopoli et al. (2008b), the DSD features were

compared in terms of the mass-weighted mean diameter

DM 5 D0 (m 1 4)/(m 1 3.67) for a normalized gamma

DSD as a function of log10NW. Figure 2 indicates a

classification separation between the stratiform and

convective rain types using a linear least squares fit ap-

plied to the values of DM and log10NW from the 2DVD

DSD observations, which agrees with the relationship

from Montopoli et al. (2008b). The linear least squares

fit applied to all coincident 2DVD with XPOL values of

DM and log10NW, as log10NW 5 p1DM 1 p2 for both the

stratiform and convective rain types. The values of the

p1 and p2 are taken from Montopoli et al. (2008b), as

shown in Table 2. Note that, according to Table 1, there

are six convective type events of maximum rainfall rate

.30 mm h21 out of the 21 selected cases.

The statistical metrics for the evaluation of the algo-

rithms include: 1) the relative mean error (rME), which

is defined as the mean of the error (i.e., difference be-

tween reference values and radar estimates), normalized

by the mean of the reference values; 2) the relative rms

error (rRMSE), normalized by the storm average de-

rived from the reference values; and 3) the efficiency

score (Eff), described by Nash and Sutcliffe (1970), de-

fined as the difference between unity and the ratio of the

error variance to reference variance. Eff is a statistical

measure of the variability of the error normalized by the

natural variability of the estimated parameter and is

scaled from 2‘ to 1. A value of one indicates that the

estimate is perfect. An efficiency value equal to 0 or

negative indicates that the estimation is, respectively, no

better or evenworse than using simply themean value of

the predicted parameter.

Statistical error analysis of ZH and ZDR, observed by

XPOL and corrected for attenuation, is performed for

different values of path-integrated attenuation (PIA)

equal to 0.5–2, 2–4, 4–6, and .6 dB. PIA was deter-

mined by calculating the difference of the measured

reflectivity by XPOL to the reflectivity calculated from

disdrometer measurements using the T-matrix algorithm

FIG. 2. Scatterplot of the mean diameter (Dm) vs the intercept

parameter log10 (NW). The two least squares fits (taken from

Montopoli et al. 2008b) of the data points are shown for the

stratiform (left, black solid line) and convective (right, gray solid

line) cluster.

TABLE 2. Coefficient for the DM, log10NW linear relationship.

Cluster type p1 p2

Stratiform 22.51 6.68

Convective 20.88 5.51

APRIL 2013 ANAGNOSTOU ET AL . 565



(Mishchenko 2000). The analysis was performed for the

lowest two radar elevations (0.58 and 1.08) and for ZH

and ZDR greater than 10 dBZ and 0.5 dB, respectively.

Figure 3 shows that the attenuation-corrected ZH mea-

surements have low rME (almost 1%) and rRMSE

(around 10%–13%) for all PIA categories. The effi-

ciency score is also high (.0.8) for values of PIA even

higher than 6 dB. The point to note is that the perfor-

mance of the attenuation correction algorithm is nearly

independent of the PIA. Evaluation for ZDR shows

slightly worse results at PIA values below 6 dB, which

implies low intensity rainfall rates, exhibit overestima-

tion of about 15% and the relative RMSE in the range

from 60% to 85%. However, as shown by Kalogiros

et al. (2013b), in the cases of strong convective cells with

large PIAs (.6 dB) and observed ZDR less than21 dB,

the SCOP correction method was found to systemati-

cally underestimate, probably because of the presence

of mixed-phase hydrometeors (hail in addition to rain)

in the path of the radar beam.

a. Rainfall rate error statistics

The bulk statistics are performed as a function of the

four different PIA ranges (i.e., 0.5–2, 2–4, 4–6, and

.6 dB) and for values of reference rainfall rates greater

than 0.1 mm h21. The rainfall error statistics are per-

formed for the three above-mentioned rainfall estima-

tion algorithms (i.e.,R–ZH,R–KDP, andR–ZHZDRKDP)

and SCOP-ME. For evaluation of the rainfall algo-

rithms, in addition to the rME, rRMSE, and Eff, we also

used the Heidke skill score (HSS), which measures the

correspondence between the estimate and the reference

FIG. 3. Bulk error statistics (rME, rRMSE, and Eff) of radar observed and corrected for specific attenuation (left) horizontal polarization

reflectivity and (right) differential reflectivity vs the path-integrated attenuation (PIA).
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(Barnston 1992; Conner and Petty 1998). The one-

dimensional (1D) plot of HSS values at different rain-

fall rate thresholds is presented in Fig. 4. The SCOP-ME

has a higher HSS compared to R–ZH and R–KDP and

a similar HSS compared to the R–ZHZDRKDP algorithm

at low rainfall rates (,4 mm h21), which contribute 94%

of the cumulated rainfall. For medium to high rainfall

rates (5–12 mm h21), SCOP-ME exhibits better perfor-

mance compared to the other three retrieval methods.

Table 3 summarizes the bulk statistics of the algorithm

estimates for different time integrations (15, 30, and 60)

in rainfall (in millimeters). It is evident from the table

that the two algorithms with the lowest rME (range

from 0.03 to 0.04 and 20.17 to 20.16), rRMSE (range

from 0.51 to 0.63 and 0.60 to 0.69), and Eff (range from

0.79 to 0.83 and 0.73 to 0.87) are the SCOP-ME and

R–ZHZDRKDP algorithms, respectively. The quite good

statistics of the SCOP-ME rainfall algorithm [Eq. (2)],

despite the significant error of NW (as shown in section

3b below), is due to the dependence on the power ofD0.

As shown in the section, the efficiency for the estimation

of D0 is significantly better than Nw. Thus, Nw is, on

average, only estimated correctly from the algorithms

(SCOP-ME performs better than the other algorithms

examined in this work), and rainfall rate estimate vari-

ations are mainly due to D0 variations. Overall, SCOP-

ME outperforms all three algorithms in terms of the

examined error statistics, having from 3 to 12 times less

rME and higher Eff (10%–21%) scores.

Figure 5 presents the error metrics for the three dif-

ferent rainfall estimation algorithms and SCOP-ME

versus PIA. Similar to Fig. 3, the SCOP-ME algorithm

has very low rME (ranging between 1% and 5% in ab-

solute values) and is nearly insensitive to PIA. It also

has the largest Eff (0.82–0.73) and the smallest rRMSE

(0.8–0.65) values. On the other hand, the R–ZH rainfall

algorithm suffers from large errors at high PIAs, while

the combined method R–ZHZDRKDP performs better

when compared to the other two methods. A point to

note is that the rME of the combined method exhibits

a slight increase (;2% in absolute values) with respect

to PIA. Dependency on PIA indicates that the com-

bined algorithm is more sensitive to the attenuation

correction errors.

b. Rain microphysics error statistics

This section investigates the accuracy of the estima-

tion of DSD-normalized gamma model parameters

from XPOL observations. The SCOP-ME algorithm

error statistics are compared against two algorithms

from the literature, the Park et al. (2005, hereafter P05)

andGorgucci et al. (2008, hereafter G08). Error statistics

were evaluated, as in previous sections, through com-

parison against the 2DVD DSD observations. Figure 6

shows scatterplots of the XPOL estimates of two DSD

parameters (Nw and D0) against parameters derived

from 2DVD observations using the DSD moments

method (Bringi et al. 2003). The x axis indicates the

FIG. 4. One-dimensional HSS plot vs rainfall rate (mm h21) threshold.

TABLE 3. Total bulk statistics in terms of rainfall (mm) for the

four different radar rainfall estimation algorithms compared with

2DVDDSD observations as a function of time integrations (15, 30,

and 60 min).

15/30/60 (min)

rME rRMSE Eff

SCOP-ME 0.04/0.03/0.04 0.63/0.59/0.51 0.82/0.79/0.83

R–ZH 20.21/20.21/20.18 0.81/0.77/0.74 0.70/0.65/0.64

R–KDP 20.37/20.37/20.37 0.72/0.73/0.69 0.76/0.69/0.69

R–ZHZDRKDP 20.16/20.17/20.16 0.69/0.68/0.60 0.78/0.73/0.76
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reference disdrometer observations, while the y axis

shows the radar estimates. The top two panels are the

radar estimates from the SCOP-ME algorithm, the mid-

dle one is of the G08 estimates, and the lower one of the

P05 estimates. The scatterplot shows similar variability in

all algorithms, which is probably due to the measurement

error effects and radar volume versus point (disdrometer)

measurement-scale mismatch and spatial separation.

However, the bulk statistics evaluated on the above data

(see Table 4) shows a very low rME for the SCOP-ME

FIG. 5. Bulk error statistics (rME, rRMSE, and Eff) of the four radar rainfall algorithms vs PIA.
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algorithm (20.03 and 0.04) and notably higher efficiency

scores (0.37 and 20.17) for both D0 and NW estimates

when compared to the P05 and G08 algorithms. The ef-

ficiency is slightly negative for SCOP-ME, but it is worse

for the other algorithms. This results show that the NW

estimate, by all algorithms, is significantly affected by

noise or any other factors that contribute to data. Still,

SCOP-ME is better than the other algorithms.

Figure 7 presents the joint frequency plots of the two

DSD parameters (log10NW versus D0). We note simi-

larities in terms of size dimensions (on both the estimate

and reference, the D0 ranges between 1.1 and 1.8 and

log10NW between 2 and 4) and the average slope of

log10Nw–D0 relation in the radar retrievals and the

reference parameters. As shown in this figure, the core

of the SCOP-ME density is more frequent than the

reference, but it exhibits a lower error bias with respect

to reference measurements. The G08 estimates give

a slope similar to the slope of the reference measure-

ments, but with significant bias. As shown in Fig. 6, this is

due to the combination of D0 underestimation and

log10Nw overestimation in the G08 estimates.

Figure 8 presents the bulk statistics of the error of the

DSD parameters estimated from radar against the pa-

rameters derived from the 2DVD spectra observations

(for ZH values. 20 dBZ,D0 . 0.5 mm, and log10NW .
1 mm21 m23) versus PIA. The SCOP-ME estimates

exhibit the lowest rME (20.5%–2% forD0 and 1%–3%

for log10NW) and are insensitive to PIA. Similarly,

rRMSE ranges from 11.7% to 12.7% for D0 and 11.5%

to 12.5% for log10NW and weakly depend on PIA. On

the other hand, the other two methods exhibit moderate

dependence on PIA, especially in the case of to the

log10NW estimates. Specifically, the Eff score of log10NW

estimation is below zero, indicating weakness of the

ability of these algorithms to capture the variability of

the parameter. In the case of rME, a point to note is that

both P05 and G08 methods systematically underes-

timate D0 and overestimate log10NW (see Fig. 6). The

rRMSE ofD0 estimates ranges from 16% to 17% for the

G08 and is around 14% for the P05. A significant de-

pendence of the G08D0 estimate on PIA is noted. Similar

results are observed in Table 4 for the log10NW estimates

since the SCOP-MEmethod has small rME (equal to 0.04)

and rRMSE (equal to 0.14). The P05method shows results

(0.09 for rME and 0.15 for rRMSE) similar to the SCOP-

ME, whereas the G08 method systematically tends to

overestimate (rME equal 0.24) with the rRMSE close to

0.19. The SCOP-ME method also exhibits a better Eff

(equal to 20.17) when compared to the other two

methods, the G08 and the P05 methods having a large

negativeEff values equal to21.15 and20.31, respectively.

FIG. 6. Scatterplots of radar estimated (SCOP-ME, Park, and

Gorgucci) D0 and log10NW vs calculated from 2DVD observed

spectra.

TABLE 4. Bulk statistics of the selected rain events for the three different radar rain microphysics estimation algorithms compared with

2DVD observations.

P05/G08/SCOP-ME

rME rRMSE Eff

D0 (mm) 20.12/20.16/20.03 0.16/0.19/0.14 0.13/20.31/0.37

log10NW (mm21 m23) 0.09/0.24/0.04 0.15/0.19/0.14 20.31/21.15/20.17
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In summary, the critical issue in the improvement of

polarimetric microphysical algorithms is the system-

atic error (bias) introduced by the model parameter-

ization. This bias error is added to the total error and

the discrepancy because of volume-to-pointmeasurement-

scale differences. Even though averaging could reduce

the random measurement error, it cannot reduce the

parameterization (bias) error. The minimization of the

parameterization error is significant, as it was shown in

Kalogiros et al. (2013a) by comparing simulations with

measurement noise to disdrometer data. This is also

proved in the current paper using radar data (e.g., Figs.

6, 7) compared to the other algorithms.

4. Case study analysis

In this section, evaluation of the rain algorithms is

performed qualitatively with a visual interpretation of

case studies, which include time series of selected rain

events and total rain accumulation maps. The presented

rain events are the 28 March 2008 event, which is a

stratiform type rain event, and the 14 January 2008

event, which is a short-duration convective-type event.

These events are used to compare the spatial differences

of the four radar rainfall algorithms and the two mi-

crophysical estimation algorithms and their temporal

covariance with corresponding rain microphysics ob-

servations from the 2DVD data.

Figures 9a and 9b present time series (with 15-min

temporal resolution) of radar rainfall rate (mm h21)

and DSD parameter (D0 and log10NW) estimates and

disdrometer observations for the two rain events. The

first case (stratiform event) evolves in two phases. The

duration of the first phase is about 2 h, with its peak of

about 5 mm h21 at 0800 UTC. The second phase of

the event started in the afternoon (1500 UTC) of the

same date and dissipated just before midnight.

In the second phase there are three rainfall peaks,

each one of about 3 mm h21. Figure 9 shows that the

SCOP-ME algorithm follows well the variations of the

FIG. 7. Two-dimensional frequency contour plots of log10NW (mm21 m23) vs D0 (mm).
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disdrometer observations when compared to the other

algorithms.

In the convective rain event a short-duration rainfall

rate peak of;35 mm h21 is observed at midday. During

the peak rainfall the SCOP-ME and the combined

algorithmare the two algorithms that performbetter. The

SCOP-ME and the combined methods are the two al-

gorithms with the best bulk statistics (0.13 and 0.07 for

rME, 0.34 and 0.22 for rRMSE, and 0.98 and 0.99 for

Eff) for the rainfall rate estimate. Regarding the DSD

FIG. 8. Bulk statistics (rME, rRMSE, and Eff) of radar-estimated log10NW (mm21 m23) and

D0 (mm) parameters vs PIA (dB).
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parameter estimation, the SCOP-ME shows a perfor-

mance comparable with theG08method in terms of rME

for the D0 parameter estimation (0.05 and 20.02, respec-

tively), whereas for the log10NW parameter retrieval,

SCOPE-ME shows the best performance. Furthermore,

SCOP-ME shows better performances in terms of rRMSE

(15%and 23%) andEff scores (0.60 and20.04) forD0 and

log10NW DSD parameter estimates, respectively.

5. Conclusions

The performance of a new combined self-consistent

with optimal parameterization attenuation correction

and rain microphysics estimation (SCOP-ME) algo-

rithm for polarimetric X-band radars was investigated in

this study. The proposed method performance was

compared against three other radar rainfall algorithms

(R–ZH, R–KDP, and R–ZHZDRKDP) and two DSD re-

trieval algorithms [Park et al. (P05) and Gorgucci et al.

(G08)] derived from the literature. The evaluation in-

cluded data collected during a 3-yr period (2008–11)

with an X-band dual-polarization Doppler weather ra-

dar and coincident DSD observations from a 2D video

disdrometer (35-km range from the radar) in the urban

area of Athens, Greece.

FIG. 9a. Time series of the 28 Mar 2008 rain event: (top) rainfall rates from the four radar

rainfall algorithms and the 2DVD rainfall rate observations and DSD parameters, (middle)

D0 and (bottom) log10NW, from the three different microphysical algorithms and the pa-

rameters calculated from the 2DVD measured spectra.
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The SCOP-ME polarimetric rainfall andmicrophysics

algorithm was developed from T-matrix simulations at

X band, based on the Rayleigh scattering limit re-

lations, with the addition of a rational polynomial de-

pendence on reflectivity-weighted droplet diameterDZ

due to Mie scattering effects. The algorithm is based

on the consideration that a gamma distribution model

can adequately describe the shape of raindrop size

distribution. For the evaluation of the SCOP-ME al-

gorithm, a statistical error analysis of the horizontal

polarization ZH and differential ZDR reflectivity ob-

served with the radar and corrected for attenuation in

rain against the corresponding radar products calcu-

lated from the 2DVD-observed DSD was performed

as a function of different path-integrated attenuation

values in four different categories (0.5–2, 2–4, 4–6, and

.6 dB). The corrected-for-rain attenuation ZH and

ZDR overall showed very good performance with low

relative error compared to the measured ones. We have

shown that the correction of ZH is nearly independent

of PIA.

Error statistics of the three rainfall estimation algo-

rithms and the SCOP-ME algorithm, evaluated against

the disdrometer rainfall observations, showed that the

SCOP-ME has a low relative error in all PIA categories

compared to the other three methods, while the other

algorithms systematically underestimate rainfall. The

efficiency statistics, determined from SCOP-ME esti-

mates, exhibited better results at low to moderate (0.5–

4 dB) PIAs and comparable results at large (.4 dB)

PIAs to the combined R–ZHZDRKDP rainfall algorithm.

The Heidke skill score statistic had comparable results

FIG. 9b. As in Fig. 9a, but for the 14 Jan 2008 rain event.
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of the SCOP-ME, with the R–ZHZDRKDP rainfall al-

gorithm at low rainfall rates (,4 mm h21), while for

moderate to high rainfall rates (4–12 mm h21) SCOP-

ME exhibited better results.

The SCOP-ME rain microphysics algorithm was also

compared to two existing DSD parameter estimation

algorithms. Overall, SCOP-ME was shown to have

lower relative error statistics when compared to the

other algorithms. The SCOP-ME algorithm performed

better for all PIA ranges and rainfall rates and provided

relatively accurate retrievals of the DSD parameters.

However, the estimation of Nw by all algorithms is sig-

nificantly affected by noise or other factors like radar

volume versus point (disdrometer) measurement-scale

mismatch and spatial separation. Thus, Nw is, on aver-

age, only estimated correctly from all algorithms. The

good statistics for rainfall rate estimate with SCOP-ME

are due mainly to D0 variation, which is usually esti-

mated much more effectively than Nw.

Although the study included a long-term dataset, the

latter is still to be considered limited in terms of hydro-

climatic regime variability. Additional studies based on

data from different climatic regions (i.e., tropical, oce-

anic, complex terrain, etc.) and more extensive ground

validation observations are needed to verify the ex-

tended performance and also the generalization capa-

bility of the SCOP-ME retrieval technique for different

storm types and radar ranges. Furthermore, future work

should focus on precipitation classification (snow, hail,

graupel, in addition to rain) and development of radar

microphysics algorithms for each precipitation type.

Neural networks and fuzzy logic are tools to be consid-

ered in future extensions of this work.
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APPENDIX

Fitted Coefficients of the Rational Polynomial

The values of the coefficients of the rational poly-

nomial functions of Eq. (5) in the parameterization of

rainfall rate by Eqs. (2)–(4) at X band (9.37 GHz) are

reported in Table A1, and fitted coefficients of Eqs. (6)–

(8) from the simulated spectra DSD in Table A2. It is

worth noting that the simulated radar observables for

the regression analysis, used to estimate the coefficients

of Eqs. (7) and (8) inMontopoli et al. (2008a), are DSD

spectra taken from seven different climatological regions

(i.e., three from Japan, two from the United States, one

from the United Kingdom, and one from Greece).

Moreover, in the simulated radar observables, three dif-

ferent types of noise due to instrumental, reconstruction,

and attenuation correction errors are included.

TABLEA1. Values of the coefficients of the rational polynomial functions Eq. (5) in the parameterization of rainfall rate by Eqs. (2)–(4) at

X band (9.37 GHz).

Function a0/b0 a1/b1 a2/b2 a3/b3

fD0 in Eq. (4a) 0.9542/1.0000 0.2989/0.2243 0.0577/0.2949 0.0030/20.005

fDz1 in Eq. (4b) 0.9190/1.0000 0.1501/20.2248 20.1722/0.0182 0.0511/0.023

fNw2 in Eq. (4c) 1.0000/1.0000 20.6792/20.6410 0.2112/0.1551 20.0109/20.006

fR2 in Eq. (4d) 1.0000/1.0000 21.2313/20.2176 2.1166/0.3064 0.6842/1.230

TABLE A2. Fitted coefficients of Eqs. (6)–(8) from the simulated

spectra DSD.

a1 b1 a2 b2 a B C d

3.36 3 1022 0.58 11.37 0.98 1.88 0.25 21.07 0.61
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