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WASHNITZER’S CONJECTURE AND THE
COHOMOLOGY OF A VARIETY WITH A SINGLE
ISOLATED SINGULARITY

BY
ALBERTO COLLINO

Introduction

Let X be an irreducible quasi-projective variety defined over C, the field of
complex numbers, and let H *( X, C) denote the singular cohomology.

One has a morphism of sites 7: X, = Xz., hence a Leray spectral
sequence

Hg,.(X,R? C) » H (X, C),

which yields a decreasing filtration in H?*9( X, C). Washnitzer conjectured
that if X is non-singular the filtration above coincides with the filtration by

“coniveau”. Recall that this filtration, also called the arithmetic filtration, is
given by

NPH™ = UKer{ H™"(X) » H™(X — Z): Z is Zariski closed and cod Z > p }.

Bloch and Ogus proved Washnitzer’s conjecture in [2].

We extend their results to the case of a variety with at most a single isolated
singularity.

We fix a distinguished closed point x, on X and assume that X — {x,} is
non-singular. In this case we say that X is almost non-singular [3].

We define N** = H™ and for p > 1

N*?H™ = UKer{ H"(X) > H"(X — Z):

Z is Zariski closed, cod Z > p and x, & Z}.

Our result is that this arithmetic filtration coincides with the Leray filtration
induced by the morphism of sites 7 described above. More precisely the
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arithmetic filtration N7 is the filtration of a natural spectral sequence which
we show to coincide from E{? on with the Leray one.

It is known that the Leray spectral sequence coincides with the second
spectral sequence of hyper-cohomology associated to the algebraic de-Rham
cohomology described in [5). There (p. 8), Hartshorne proposes the problem of
understanding the related filtration for a variety with arbitrary singularities.
Our result provides therefore an answer to Hartshorne’s question in the
particular case of almost non-singular varieties.

1. Arithmetic E{9 = H?( X, 5#9)

In this section we use singular cohomology with either integral or complex
coefficients. Following [2] we let 5™ be the sheaf in the Zariski topology
associated to the presheaf H™(U).

Let X' be the set of points (i.e. irreducible cycles) of codimension i on X
and let

Xt = {xeX’: xo & {x} }

Let Z° be the set of all Zariski closed subsets of X, Z*= {W e Z"
xo, &€ W}; note that there is a filtration

Z2°>272*=2"'>52Z*?> ... whereZ"'={WeZ"codZ=>i}.
Let G™(*, W) be the presheaf in the Zariski topology defined by
G"(U,W)=H"(UN(X - W))
and let
(1.1) G™(U) =limG™(U,W), WeZ".
We denote by ¢™ the sheaf associated to the presheaf G™. Similarly we set
F"(U,W)=H"(U,UN(X - W))=Hy.,(U),
and write

(1.2) F™(U) =lLmF™(U,W), WeZ*,

F ™ = the sheaf associated to F™.
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From the long exact sequence of cohomology for the couple (U,U N (X —
W), taking direct limits, one has an exact sequence

(1.3) ...F"(U)-> H™(U)-> G™(U) -» F"*Y(U)....
The associated exact sequence of sheaves is

(1.4) TS A > G FHL

(1.5) LEMMA. 0 > "™ > @™ > F M1 5 0 is exact.

Proof. We prove that ™ — 5™ is the zero map. Over the smooth open
set V= X — {x,} the map factors as

a
m m m
ﬂ},,—» v =Ky,

where ¢} ;1 is the sheaf on V associated to the presheaf of the cohomology
groups supported on subvarieties of cod > 1. The map a is zero by [2, 4.2.3].
To end the proof it suffices to show that the stalk £ = 0. If y € £ then
y = image y’, y’ € F™(U,W) for some U,W with x,€ U, We Z*. Let
V=U-WnU),then y’ - 0in F™(V,W) =0, hence y = 0.

If A4 is an abelian group and x € X let i A4 denote the constant sheaf 4 on

{x} , extended by zero to all of X. Let H"(x) = lim H"(V) Vopen C {x} .

(1.6) PROPOSITION. (Gersten resolution). There is an exact complex

00— Fm+l H ime_l(X)—) ]'_'[ ime—2(x)__) e

xext! xex+?
Proof. First we build the complex. Set
1.7 Fr,(X)=lmH}(X), WeZ*? p>1.
z w p

In particular, F1:(X) = F™(X); see [1] and [2]. As in [1, (4.15)], there are
long exact sequences

(1.8) ...Fr,a—>Fn, > |1 H™?(x)-> Frth > Fpst...

xeXxtr
hence a spectr al sequence

(1.9) Epi= ]] HI??%(x)= Frti(X).

xeX+p+l
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The Gersten complex we look for is the sheafified form of the complex
Fm+1(X) - El(),m+1 - Ell,m+l —

As in [2, (4.2.2)], the Gersten complex is exact if the natural map of sheaves
fzﬂ,“ — F 41 is the zero map, p > 1. The same argument as the one given
in [2, p. 191] applies provided we prove the following claim: Given W’ €
Z*tP+l p > 1, x € W, there exists a W € Z*? containing W’ and an affine
neighborhood U of x in X such that the map W’ N U - W N U is locally
homologically effaceable at x. Now the same proof for the claim [2] works if
we use a finite morphism f (notations as in [2]) having the properties stated in
Lemma (2.9) of [3].

(1.10) COROLLARY

0->#">9g"> [ i H" Y(x)> LI i H" %(x)> ---

xext! xext?
is a resolution of ™.

(1.11) Lemma. HY(X,9™) = G™(X).

Proof. Let R be the local ring Oy , and let i: SpR — X be the natural
map. Set £™ = i %™ Then g = i, @™ Now HX,9") =
H°(SpR, #™) =27 = G™(X); cf. [3, (3.8)].

(1.12) PROPOSITION. ¥™ is acyclic.

Proof. See (3.14) below.

Recall the exact sequence (1.3) and the sequences (1.8). The exact couple
technique yields a spectral sequence

(1.13)  EY = GYX),
Epi= [1 H??(x), p>0,with Ep9= H?*(X).

xeXx*t?
We call this spectral sequence the arithmetic spectral sequence and remark
that the filtration it induces on H™(X) is the filtration N*?, which we have
defined in the introduction.

(1.14) THEOREM

Arithmetic Ef9 = H?( X, #9).
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Proof. Since 97 is acyclic and since the other terms in the resolution (1.10)
are flabby, the cohomology group H?(X, »#7) is just the cohomology of the
complex of global sections of the resolution. This last complex is exactly the
spectral complex EQX? — E}9 — --- of (1.14).

2. Arithmetic filtration = Leray filtration

In this section we use singular cohomology with complex coefficients.

We have seen above that Arithmetic E{? = H?( X, # 7). Now Ri7 ,C = 57
by definition, then Arithmetic Ef¢ = Leray E{4. In order to prove that the two
spectral sequences coincide from Ef? terms on we need to produce a map of
spectral sequences which induces the given isomorphism.

Following [2] we indicate how to produce the required map using the
algebraic de Rham cohomology Hr( X). Recall [5] that H}Jr(X) is defined in
the following way.

(2.1) Let X be embedded as a closed subscheme in Y, where Y is non-singu-
lar.

Let Y be the formal completion of Y along X and let €~ be the completion
of Q°, the complex of sheaves of regular differential forms on Y.

Then HJR(X) = hypercohomology H™(Y, ") of the complex " on the
formal scheme Y~ Since topologically Y = X, H[(X) is the hypercohomol-
ogy of a certain complex of abelian sheaves on X. Note that HJR(X) =
H™(X,C) [5].

(2.2) LeMMA. From E{? on the Leray spectral sequence coincides with the
second spectral sequence of hypercohomology associated to the D-R complex .

Proof. The same argument as for the smooth case [2, (6.4)] applies if one
uses the formal analytic Poincaré lemma of [5, (IV, 2.1)].

We consider now a modified form of the Cousin complex associated to an
abelian sheaf & on X; cf. [4, (IV, 2)]. Given the filtration Z°> Z*1 > ... of
Section 1, there are long exact sequences

(23) “ee Xzi+p+l(f) b fziﬂa d Xzi+p/z+p+1 g Wzifpln ce-
and a spectral sequence
(24) 809 = H 3 gors(F) = H(F).

The “Cousin” complex we need is the complex F— &YX - &1°—> ---
namely

(25) 0_"7—"}?200/2“(‘?)_)'}?ZI”/Z”(‘%)—) .
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(2.6) Remark. If n>1,

”Z'l+n/z+n+l(g) = ]__I IXH:(‘gz—),

xextn

where H!(%) is the n-th local cohomology group with support at x.
Hp sz (F) = igi™'F where i X,, — X is the embedding of the local
scheme at x,.

(2.7) THEOREM. If & is locally free, of finite rank, either as a sheaf on the
scheme X or on the formal scheme Y (cf. (2.1)) then (i) sequence (2.5) is a
resolution of F and (i) #p ,,1(F) is acyclic.

(2.8) COROLLARY. Under the hypotheses of (2.7) sequence (2.5) is an acyclic
resolution of F .

To prove (2.7) we need the following:
(2.9) LEMMA. If & is as (2.7) then Hjep ,5e01(F ) =0, i # p.
Proof. 1f p =0, by (2.3) it suffices to show #}1(F) =0, i > 1. Now
Ky (F) = lim HL(F)
zZez*

by [4, IV, var. 5, motif D]. Also Hy(F) =R F,x_,), i>1, j: X—-Z
— X [4, var. 3, motif B].

If X — Z is affine then R}, (9)=0, i > 1, for any coherent sheaf ¥,
because the cohomology on affine schemes is 0 (cf. E.G.A. II ¢ 4, 4.1.7, for the
formal case). Since the set of Z’s such that X — Z is affine is a cofinal family
in Z*!, then ML (F)=0,i> 1.

If p>0,

Wzi+p/z+p+l(‘g_) = I_[ H;(-gz'),

xeXxtr

by (2.6). When % is locally free on the scheme X then (+) H(F) =0,
i # p, because X is Cohen-Macaulay at the point x of codimension p [4, (IV,
2.6)]. We do not know of a reference for (+) in the case of the formal scheme
Y, hence we sketch a proof of it.

In order to compute local cohomology at x we restrict the formal sheaf F#
to the local space X,. Setting U = X, — {x}, (+) is equivalent to:

1) H%X,%)—- H°U, %) is surjective,
and

2 HUF)=0,i>0,i#p+1.
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In any case H™(U, #)=0 if m > p — 1, because U has combinatorial
dimension ( p — 1). Since # is locally free and we work locally it suffices to
prove (1) and (2) with #= ¢, the completed structure sheaf of Y. Let .# be
the ideal of X in Y; there are exact sequences

0->H4,>0,>0,_, >0

where 0, is the structure sheaf of the subscheme of Y with ideal #”". Since X
and Y are non-singular at x, then (), is free. By induction on n one has
1) H%X,0, - H°U,O0,) is surjective,
and
2) H(U,0)=0,i<(p—1).
The same properties hold for the sheaf O, because of [5, (1.4.5)]. This
completes the proof of (+), hence of (2.9).

According to [5, IV, 1, Coda, Motif G], the spectral sequence (2.4) con-
verges. The exactness of (2.5) follows then from the lemma; recall that
H"(F) =0, n> 0. The acyclicity of 57 ,,+1(F) is proved below in (3.16).

(2.10) THEOREM. The Leray spectral sequence and the arithmetic spectral
sequence coincide.

Proof. As in [2, (6.4)], using the Cousin complex introduced above in (2.3),
instead of Hartshorne’s.

3. Some homological algebra

This section is independent of the preceding ones.

We establish a sufficient condition for acyclicity of a sheaf #° which we
have used before in (1.12) and (2.8). This condition may be used to provide
another proof for ¢ 4 of [3].

(3.1) Let x, be a distinguished closed point on X and let 4 be a sheaf of
abelian groups on X. We start with an exact sequence

d,
(3.1.1) 0o A FOSFl o oo S Fn S gnl 5 L.

and make the following hypotheses: (1) if i > 0 then %' is flabby and
0 = Z!, the stalk at x,; (2) there is a complex

dy
(3.1.2) 0o A E' s El s o0 SFr S FrTl 5 L.

which is exact on the open set X — {x,}; (3) &' is flabby, i > 0; (4)
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E'=F' @9, iz21; (5) HY(X,9')=¢], the stalk at x,; (6) there is a
morphism of complexes (3.1.1) — (3.1.2) which induces the identity on &/ and
which is the natural inclusion on F' — &', i > 1.

(3.2) ProposITION. F° is acyclic.

(3.3) There is a spectral sequence Ef? = HU( X, 7)== E?! =
HP* (X, o).

The proposition amounts to (+) EQ?=0, g > 1. From hypothesis (1),
EP9=0, p>1, q=>1; therefore E}? = E9, g > 1.

We shall see that Ef° = E?, p > 1, and also that E;° — E! is surjective.
Property (+) follows immediately.

In the following we adopt the convention that an italic letter represents the
global sections group of the corresponding sheaf, e.g., F = H°(X, #). Also
we write H'(%) instead of H'(X, #), i > 0. We recall that Ef° is the p-th
cohomology group of

(3.4) 0> F'S Fls ... 5 s pr+l 5 (L.

which is the complex of global sections associated with (3.1.1).
Let

(3.5) @Y =Image: F/'' >FI/, B/ =Image: /71 > &/
Zt = Ker: FI > FIH, ZJ = Ker: &/ - &%
By our hypotheses .o/ = Z+%, #*/ = 2"/, j > 1;then 4 = Z*°, B¥ = Z¥,
j=1.
(36) (@) Ef°=Hr-\(&*Y), p>2.
(b) E = B*1/ImageF°.

Proof. (a) 0> B! >F1 5> F2 > ... isexact.
(b) B*l=Z*!'=Ker: F! - F2.

By hypothesis, (3.1.2) there is an exact sequence
(3.7) 0->B/ >Z/ >R >0, j=1,

with #/ a skyscraper sheaf, supported at x,. Using (3.7) and the exact
sequences 0 > &/ — &/ - #/*! > 0 one has, by simple chase,

(38) H(«Z)=H Y (#B)=H Y 2Y)=--- =H(F'), ix=2,
and, similarly,

(3‘9) Hi_l(.@"'l) — Hl(g+(i—l))0
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(3.10) LeMMA. (a) The natural map HY(B+"~V) - HY(#'"') is an iso-
morphism, i > 2.
(b) B*! - HY) is surjective.

The proposition follows because by (3.6), (3.9) and (3.8) the lemma is equiv-
alent to (a) E° = E!, i > 1and (b) E;° > E} is surjective.

Proof of (3.10)(a). In the following we omit the index (i — 1) when there is
no confusion.

There is a diagram with exact rows

02" >F %" >0

) ) |
(3.11) 0B 6> 2 -0
) \) \)

0> >E->% -0

where 2 is defined by exactness. The associated diagram of global sections is

0-—>Z+—->F‘—1-:B+‘—->C+—*O
) ! hlr lg

(3.12) 0-B > E -Q —»T -0
Vool=ds Ly

052Z > E 5B 5C >0

where C*, T, C are defined to be the cokernels of d*, &, d. Since # and & are
acyclic, C*= HY(Z*""1) and T = H'(#'~'). One has to prove that g is an
isomorphism.

(3.13) LEeMMA. Letj > 0. If z € Z/ is a global section whose restriction at
the stalk at x is 0 (i.e., z, = 0) then z € BY.

Proof. Consider the diagram

BY =t SF
Vool
B S FI g

where all maps are injective. Associated to it there is the corresponding
diagram of global sections, which we omit, and the maps are still injective.

By hypothesis, z, =0, then z € F/ by (3.1.1), (3.4), (3.5), hence z € Z*/,
because d*z = dz = 0.
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Proof of the surjectivity of g. Let t € T, we shall find a representative
q’ € Q for t such that ¢’ = r(b*), some b*€ B*'. Let g be some representa-
tive of ¢ in Q. Since & — 2 is surjective and & is flabby, there is a global
section e € E such that in the stalk at x,, h(e), = q,. We take ¢’ = g —
h(e); note g, = 0. Then b= s(q’) has image zero in the stalk at x,, so
be B (3. 13)

We claim that r(b) = q’. The sequence (3.7) induces an exact sequence
0->R—>2—> R — 0, by chase on (3.11). Since Z is acyclic the correspond-
ing sequence of global sections

O—-)R—>Q-—S+Bi—>0

is exact. To prove the claim we note that (i) sr(b) = s(q’), i.e. (r(b) — q’) € R
and (ii) in the stalk at x,, 0 = (r(b) — q),,-
Therefore 0 = r(b) — q’, because £ is skyscraper, supported at x,.

Proof of the injectivity of g. Let a € Kerg be represented by b* < B*'; we
shall show hA*e€ Imaged*: F — B*'. We have r(b*) = h(e), some e € E,
because g(a) = 0. Evaluating at the stalk at x,, b} =0 =r(b"), = h(e),.

By exactness of the middle row of (3.11), in the stalk at x, thereis 8 € fé’
such that B =e, . Now d: &2 > % is surjective and &'~? is ﬂasque
because i > 1; hence there is a global section w € E'~2 with (aw),, = B=e,,
Since (e — dw) = 0 in the stalk &, then (e — dw) € F, by (3. 1), (3.4), (3. 5)
We claim that b* = dt(e —aw). It sufﬁces to show

srd* (e — aw) = sr(b™"),
because sr is an inclusion. Now

srd*(e — dw) = d(e — dw) = d(e) = sh(e) = sr(b™).

Proof of (3.10)(b). The proof given for (a) applies, using the diagram

0> >F°>3"1 >0

R
0-B°>6°> 2 -0
Lol

0-2°-5¢6° > %' -0

which is the analogue of (3.11) with i = 1, where #° = Image.s«/ —> &°.
We apply the proposition to the sheaf ¥™ of Section 1.

(3.14) COROLLARY. 9™ is acyclic.
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Proof. The hypotheses in (3.1) are satisfied, taking the exact complex
(3.1.1) to be the complex (1.10) and (3.1.2) to be the complex

0-u#" > [ iH™(x)-> LI iH"(x)— -

xex’ xeXx!

which is exact on X — {x,} by [2].
Similarly for the sheaf % ,z+1(F) of Section 2:

(3.15) COROLLARY. 30 ,5+1(F) is acyclic.

Proof. The hypotheses (3.1) are satisfied taking (3.1.1) to be the resolution
(2.6) and the complex (3.1.2) to be

0-F- [[iH(F)> i H(F)—> -

xex° xex!

which is exact on X — {x,} by [4, IV.2)].

4. Final remarks

(4.1) In the following we use singular cohomology with integer coefficients.

Let Bi(Y) be the group of cycles of codim i mod algebraic equivalence on Y,
a smooth variety; by [2, (7.4)], B (Y) = H'(Y, #"). In particular H'(Y, 1)
= Image: PicY - H*(Y).

PROPOSITION . If X is almost non-singular, H'(Y, ') = Image: Pic X —
H2(X).

Proof. Since X is irreducible, 5y is the constant sheaf Z in the Zariski
topology; therefore H'(X, #°) = 0, i > 0. From the Leray spectral sequence
we have exact sequence

0 - HY(X, #') > HX(X) - H(X, #2) > H*(X, #").

Although not needed later we note that H2(X, »#') = 0 by (1.10). Further,
from the description in (1.10) and (1.15) we see that H'( X, 5#') is generated
by the classes of the irreducible divisors which do not contain x,. The
proposition follows because Pic X is generated by such divisors.

Question. Let X be a variety with arbitrary singularities. Has H'( X, ')
any reasonable geometric interpretation? Our motivation is that for K-theory
HY(X, ") = Pic X.
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(4.2) Let (X, x,) be almost non-singular, let Z?( X, x,) be the free abelian
group with set of generators X7, let R(X, x,) be the relations of algebraic
equivalence which avoid x, (cf. [3] for the definition in the case of rational
equivalence). We have

H?(X,#7) = ZP(X,x0)/R(X, x,), p>1,

by the same argument as for [2, (7)], using our (1.10).

It does not appear that H?( X, »£?), p > 1, is a reasonable candidate for an
extension to the almost non-singular case of the notion of B™(X); see (4.1).
Indeed one expects such a group to be countably generated at most, because
this is the case when the variety is smooth. On the other hand some computa-
tion we have show that if X is P3 blown up along a rational curve with one
single node, so that X is almost non-singular, then H?(X, 5#?) is not
countably generated. We sketch the example. Let Y be the rational curve with
a single node in P3. By the same arguments as in my paper “Grothendieck’s K
theory and the cubic threefold with an ordinary double point” one has an
isomorphism CH?(X) = PicY & CH?(P?), where CH?(X) denotes the group
of codimension 2 cycles on X which avoid the singular point x, modulo the
relations of rational equivalence which avoid x, [3]. In the isomorphism, PicY
corresponds to the subgroup of CH?( X) generated by the classes of lines in
the exceptional divisor which avoid x,. We recall that PicY = C* & Z, and let
A%(X) be the subgroup of CH?(X) which is isomorphic to C*. Let f:
CH?*(X) —» H*(X, #?) be the natural map. We shall prove that the restric-
tion of f to A%(X) is injective; from this it follows that H?(X, 52) is not
countably generated as an abelian group. Let Z, and Z, be effective 1-cycles
on X for which

class(Z, — Z,) € Ker(f) N 4A%( X).

By our Bloch-Ogus type result one can produce a complete and smooth
parameter curve T and a cycle W in T X X, such that for every point t € T,
W, is a l-cycle on X which avoids x,, and there are #; and ¢, with
W, =Z,+ R, i = 1,2. The correspondence g: T — A%*(X) given by g(t) =
class(W, — Z, — R) maps a complete curve to C*; hence it is constant.
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