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Abstract
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1 Introduction and results
The results presented here will be proved in Section .

Let H be a Hilbert space and let f : H → H be a ρ-contraction. It is well known that if
T : H → H is a quasi-nonexpansive mapping, the set of the fixed points Fix(T) is closed
and convex and the variational inequality problem (VIP)

〈
(I – f )x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T), (.)

admits a unique solution.
The interactions between fixed point theory and the calculus of variations are certainly

not recent. In this direction Moudafi in  [], Xu in  [] and Marino and Xu
[] in  have shown deep connections between the approximation of fixed points for
nonlinear mappings and the approximation of solutions of variational inequalities.

In this paper our aim is to approximate on Fix(T) the unique solution of a (VIP) when
T is a nonspreading mapping, i.e.

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉, ∀x, y ∈ H . (.)

The class of nonspreading mappings has been introduced recently by Kohsaka and Taka-
hashi in []. They observed that it contains the class of firmly nonexpansive-type mappings,
introduced by the same authors in []

Note that a nonspreading mapping T is quasi-nonexpansive [].
The choice to consider quasi-nonexpansive mappings is made since these operators

are widely used in the sub-gradient projection operator techniques to solve convex con-
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strained problems (see Maingé [] and the references contained therein). Nevertheless,
the lack of continuity of a quasi-nonexpansive mapping makes it difficult to prove asymp-
totical stability of iterates of T (see, for example, []). This property is a key for the con-
vergence analysis of sequences generated by well-known iterative methods.

To fill this gap, we employ regularizations that involve matrices (bn,k)n,k∈N, so-called
triangular-Toeplitz matrices, satisfying the following properties:

(h) bn,k ≥  for all n, k ∈N;
(h) for any n ∈ N, bn,k =  for k > n and for all n ∈N, (bn,k)k∈N is a nonincreasing

sequence;
(h) for any n ∈ N,

∑n
k= bn,k = , and

(h) for any k ∈N, bn,k → , as n → ∞.
We will denote by T the set of the triangular-Toeplitz matrices; T is a subclass of the reg-
ular matrices in the sense of Toeplitz (see []). The weak limits of a regularized sequence
that involves a nonspreading mapping and a triangular-Toeplitz matrix are fixed points
of T ; more precisely, we will prove the following.

Lemma . Let T : H → H be a nonspreading mapping and let (bn,k)n,k∈N ∈ T.
Let (xn)n∈N be a bounded sequence in H ; we define

yn :=
n–∑

k=

bn,k+Tkxn. (.)

Then the weak limits of (yn)n∈N are fixed points of T , i.e. ωw(yn) ⊂ Fix(T).

In  Mann [], taking in account the works of Cesaro, Fejer and Toeplitz, considered
the problem to construct a sequence in a convex and compact set C of a Banach space X
that converges to a fixed point of a continuous transformation T : C → C.

Mann introduced an infinite triangular matrix (an,k)n,k∈N,

⎛

⎜⎜⎜⎜⎜⎜
⎝

   . . . 
a, a,  . . . 
. . . . . . . . . . . . . . .
an, an, . . . an,n . . .
. . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

such that

(M) an,k ≥ , and an,k = , for k > n; (M)
n∑

k=

an,k = , ∀n.

We will denote by M the set of matrices satisfying (M) and (M).
Let us observe that T ⊂M.
By using (an,k)n,k∈N Mann introduced the following iteration process:

⎧
⎨

⎩
vn =

∑n
k= an,kxk ,

xn+ = T(vn).
(.)
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It is very easy to check that the Cesaro matrix

C :=

⎛

⎜⎜⎜⎜⎜⎜
⎝

   . . . 




  . . . 

. . . . . . . . . . . . . . .

n


n . . . 

n . . .
. . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

belongs to T. Moreover, by using C, (.) becomes

vn+ =
(

 –


n + 

)
vn +


n + 

Tvn. (.)

However, to the best of our knowledge, there are not also convergence results for the
original Mann iterative method. Therefore, in light of the above facts, we study an itera-
tive method that implements two matrices: (an,k)n,k∈N ∈M to compute our iterations; and
(bn,k)n,k∈N ∈ T to regularize the mapping involved.

We will investigate on the following Mann-Toeplitz iteration process: let x ∈ H

⎧
⎨

⎩
vn =

∑n
k= an,kxk ,

xn+ = fμn

∑n–
k= bn,k+Tkvn,

(.)

where (an,k)n,k∈N satisfies (M) and (M), i.e. (an,k)n,k∈N ∈M, T is a nonspreading mapping,
f is a ρ-contraction, and fμn is the averaged mapping fμn = μnf + ( – μn)I (see [] for the
regularization properties of nonspreading and averaged mappings).

The matrix (bn,k)n,k∈N in (.) plays a regularization role similar to the Cesaro matrix. It
is well known that the Cesaro mean preserves (or it increases) the regularity of a sequence.
Therefore many recent papers, concerning the approximation of fixed points of nonlin-
ear mappings and sometimes solutions of a (VIP), combine well-known iterative methods
(Mann-Dotson, viscosity, Halpern, and so on) with the Cesaro means.

The first nonlinear ergodic theorem in Hilbert space was established by Baillon in [],
who proved that, if C is a nonempty closed convex subset of a Hilbert space and T : C → C
is a nonexpansive mapping with Fix(T) = ∅, the Cesaro means

Sn(x) =

n

n–∑

k=

Tk(x)

weakly converges to a fixed point of T .
Shimizu and Takahashi in [] studied by Cesaro means the convergence of an iteration

process for a family of nonexpansive mappings in a Hilbert space. This result has been ex-
tended by Shioji and Takahashi in [], by Song and Chen in [] in the setting of uniformly
convex Banach spaces.

However, all the cited approximation methods are not suitable for nonexpansive
nonself-mappings. In  Matsushita and Kuroiwa in [] and Su and Li in  (see
[]) studied two iterative methods for a nonexpansive nonself-mapping in a Hilbert space;
in [] Wangkeeree extended the results in [] in the more general setting of uniformly
convex Banach spaces.
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Many references can be cited dealing with the approximation of solutions of (VIPs) and
equilibrium problems. For instance in [, ], and [] the authors introduced iterative
processes in Hilbert spaces by using the Cesaro means for finding a common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium
problem.

In  and in  Song (see [] and []) studied an implicit viscosity method for a
continuous pseudocontractive mapping and a Mann iterations of its Cesaro mean for an
asymptotically nonexpansive mapping in Banach spaces.

Nevertheless the Cesaro matrix is not the unique matrix with regularization properties.
Toeplitz summability theorems proved that there exists a class of matrices including the
Cesaro means with the same regularization property. Therefore we consider it relevant,
in its generality, to put our attention on the class of triangular-Toeplitz matrices.

We denote by M∗ an interesting subclass of M of matrices such that an,n →  as n →
+∞. An example of such matrices is

Ã :=

⎛

⎜⎜⎜⎜⎜⎜
⎝

   . . . 




  . . . 

. . . . . . . . . . . . . . .


n(n–)


n(n–) . . .  – 
n . . .

. . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (.)

In Section  for this subclass of matrices we will prove the following.

Theorem . Let f : H → H be a ρ-contraction and let fμn be the averaged mapping fμn =
μnf + ( – μn)I . Let T be a nonspreading mapping.

Let us choose (an,k)k,n∈N ∈ M∗ and (bn,k)n,k∈N ∈ T.
Let us choose μ < (–ρ)

(+ρ) and (μn)n∈N ⊂ (,μ) such that
(h) limn→∞ μn = ,

∑
n∈N μn = ∞.

(h) limn→∞ –an,n
μn

= .
Set τ =  – ρ .

Then the sequence generated by the Mann-Toeplitz iterative method (.) strongly con-
verges to x∗ ∈ Fix(T), that is, a unique solution of the variational inequality

〈
(I – f )x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T).

Remark . The assumption (h) is easily satisfied. For example, choosing μn = 
n and Ã

as in (.), we see that it holds.

If (γn)n∈N is a sequence in [, ], we can define, recursively, a matrix (ãn,k)n,k∈N by

(ãn,k)n,k∈N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

, n = k = ,
, n ≥  and k > n,
γn–an–,k , n ≥ , k < n,
( – γn–), n ≥ , k = n.

(.)
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Then the Mann-Toeplitz iterative method (.) becomes

vn+ = γnvn + ( – γn)fμn

n–∑

k=

bn,k+Tkvn. (.)

The use of this matrix of regularization will be that it permits us to improve the main the-
orem of Dotson [], obtaining strong convergence instead of weak convergence. Indeed,
we will prove the following.

Theorem . Let f : H → H be a ρ-contraction and let fμn be the averaged mapping fμn =
μnf + ( – μn)I . Let T be a nonspreading mapping. Let (bn,k)n,k∈N ∈ T be a triangular-
Toeplitz matrix.

Let us choose μ < (–ρ)
(+ρ) and (μn)n∈N ⊂ (,μ) such that

(h) limn→∞ μn = ,
∑

n∈N μn = ∞.
Let us take (ãn,k)n,k∈N ∈ M defined by a sequence (γn)n∈N ⊂ [,α] ⊂ [, ) (see (.)) such

that
(h) limn→∞ γn = .

Then the sequence generated by v ∈ H and by the iteration (.) strongly converges to x∗ ∈
Fix(T), that is, the unique solution of the variational inequality

〈
(I – f )x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T).

2 Proofs
First we prove Lemma ., which is a fundamental tool to prove the convergence of our
methods.

Proof of Lemma . Note that since (bn,k)n,k∈N is nonincreasing,  ≤ bn,n ≤ bn,k , for any
k ≤ n, so (h) implies that bn,n → , as n → ∞.

Moreover, following [], one easily obtains
∥∥Tk+x – Ty

∥∥ ≤ ∥∥Tkx – Ty
∥∥ + ‖Ty – y‖ + 

〈
Tkx – Ty, Ty – y

〉

+ 
〈
Tkx – Tk+x, y – Ty

〉
, ∀k ∈ N.

Therefore the following inequality holds:
∥∥Tk+xn – Ty

∥∥ –
∥∥Tkxn – Ty

∥∥ ≤ ‖Ty – y‖ + 
〈
Tkxn – Ty, Ty – y

〉

+ 
〈
Tkxn – Tk+xn, y – Ty

〉
. (.)

Firstly we work on the right side of the previous equation. Multiplying by bn,k+ and sum-
ming up over k from  to (n – ), by (h) and (.) we obtain

n–∑

k=

bn,k+‖Ty – y‖ + 
n–∑

k=

bn,k+
〈
Tkxn – Ty, Ty – y

〉

+ 
n–∑

k=

bn,k+
〈
Tkxn – Tk+xn, y – Ty

〉

= ‖Ty – y‖ + 〈yn – Ty, Ty – y〉 + 

〈

yn –
n–∑

k=

bn,k+Tk+xn, y – Ty

〉

. (.)
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We observe that

yn –
n–∑

k=

bn,k+Tk+xn =
n–∑

k=

bn,k+Tkxn –
n–∑

k=

bn,k+Tk+xn

= bn,xn +
n–∑

k=

(bn,k+ – bn,k)Tkxn + bn,nTnxn;

then, by the boundedness of (xn)n∈N and by the quasi-nonexpansivity of T , there exists
M = M(y) such that, by (h), (.) becomes

‖Ty – y‖ + 〈yn – Ty, Ty – y〉 + 

〈

yn –
n–∑

k=

bn,k+Tk+xn, y – Ty

〉

= ‖Ty – y‖ + 〈yn – Ty, Ty – y〉

+ 

[

bn,〈xn, y – Ty〉 +
n–∑

k=

(bn,k+ – bn,k)
〈
Tkxn, y – Ty

〉
+ bn,n

〈
Tnxn, y – Ty

〉
]

≤ ‖Ty – y‖ + 〈yn – Ty, Ty – y〉 + M

[

bn, +
n–∑

k=

(bn,k+ – bn,k) + bn,n

]

= ‖Ty – y‖ + 〈yn – Ty, Ty – y〉 + Mbn,n.

In a similar manner, for the left side of (.), multiplying by bn,k+, summing over k from 
to (n – ) and using (h), we have

n–∑

k=

bn,k+
∥∥Tk+xn – Ty

∥∥ –
n–∑

k=

bn,k+
∥∥Tkxn – Ty

∥∥

= bn,n
∥∥Tnxn – Ty

∥∥ – bn,‖xn – Ty‖ +
n–∑

k=

(bn,k – bn,k+)
∥∥Tkxn – Ty

∥∥

≥ bn,n
∥∥Tnxn – Ty

∥∥ – bn,‖xn – Ty‖.

Therefore we have the following chain:

bn,n
∥∥Tnxn – Ty

∥∥ – bn,‖xn – Ty‖

≤
n–∑

k=

bn,k+
∥∥Tk+xn – Ty

∥∥ –
n–∑

k=

bn,k+
∥∥Tkxn – Ty

∥∥

≤ ‖Ty – y‖ + 〈yn – Ty, Ty – y〉

+ 

〈

yn –
n–∑

k=

bn,k+Tk+xn, y – Ty

〉

+ bn,‖xn – Ty‖

≤ ‖Ty – y‖ + 〈yn – Ty, Ty – y〉 + Mbn,
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and so, by the positivity of bn,k , it follows that

bn,n
∥∥Tnxn – Ty

∥∥ ≤ ‖Ty – y‖ + 〈yn – Ty, Ty – y〉 + Mbn,n + Mbn,.

Now, if w ∈ ωw(yn), by bn,n →  as n → +∞, we have the result that, for every y ∈ H ,

 ≤ ‖Ty – y‖ + 〈w – Ty, Ty – y〉

so, choosing y = w

‖Tw – w‖ ≤ ,

i.e. we have the thesis. �

To obtain our results we also need of the following (well-known) lemmas; the first is
proved in [], the second is the discrete Jensen inequality.

Lemma . [] Assume (an)n∈N is a sequence of nonnegative numbers for which

an+ ≤ ( – sn)an + δn, n ≥ ,

where (sn)n∈N is a sequence in (, ) and (δn)n∈N is a sequence in R such that
() limn→∞ sn =  and

∑∞
n= sn = ∞;

() lim supn→∞
δn
sn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . Let ψ : H → R be a convex function. Let {x, . . . , xn} ⊂ H and let positive
weights {a, . . . , an} ⊂R, we have the result that

ψ

(∑n
i= aixi∑n

i= ai

)
≤

∑n
i= aiψ(xi)∑n

i= ai
.

Proof of Theorem . It is well known that (see [])

‖fμn x – fμn y‖ ≤ ( – μnτ )‖x – y‖,

where τ :=  – ρ .
Moreover, we will denote yn =

∑n–
k= bn,k+Tkvn. Since T is quasi-nonexpansive and (h)

holds, for every w ∈ Fix(T), as a result one finds that

‖yn – w‖ ≤
n–∑

k=

bn,k+
∥∥Tkvn – Tkw

∥∥ ≤
n–∑

k=

bn,k+‖vn – w‖ = ‖vn – w‖.

Set

r := max

{
‖x – w‖,

‖(I – f )w‖
τ

}
,
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we prove, by induction on n, that (xn)n∈N and (vn)n∈N ⊂ B(w, r). Let us observe the follow-
ing:

‖xn+ – w‖ ≤ ‖fμn yn – w‖
≤ ‖fμn yn – fμn w‖ + ‖fμn w – w‖
≤ ( – μnτ )‖yn – w‖ + ‖fμn w – w‖
≤ ( – μnτ )‖vn – w‖ + μn

∥∥(I – f )w
∥∥

= ( – μnτ )

∥∥∥∥∥

n∑

k=

an,k(xk – w)

∥∥∥∥∥
+ τμn

‖(I – f )w‖
τ

.

Since x = v ∈ B(w, r), we immediately have x ∈ B(w, r) and then, by (M), v ∈ B(w, r).
Let us suppose that xi ∈ B(w, r), for every i = , . . . , n. Then, by (M), vn ∈ B(w, r). There-

fore by the previous results we have

‖xn+ – w‖ ≤ ( – μnτ )r + τμnr = r

and ‖vn+ – w‖ ≤ r.
The next step is to prove that the weak cluster points of (xn)n∈N are fixed points of T .

First we note that

‖xn+ – yn‖ = ‖fμn yn – yn‖
=

∥∥μn(I – f )yn
∥∥

≤ μn
∥∥(I – f )yn

∥∥,

so, since (μn)n∈N is a null sequence (see (h)), ωw(xn) = ωw(yn). By the boundedness of
(xn)n∈N, Lemma . ensures that the weak limits of the sequence (yn)n∈N are contained in
the set fixed points of T . The previous inequality shows that ωw(xn) ⊂ Fix(T).

Finally, if x∗ ∈ Fix(T) is the unique solution of a (VIP), as a result one finds that

∥∥xn+ – x∗∥∥ =
∥∥fμn yn – x∗ ± (

 – fμn x∗)∥∥

=
∥∥(

fμn yn – fμn x∗) – μn(I – f )x∗∥∥

≤ ∥∥(
fμn yn – fμn x∗)∥∥

– μn
〈
(I – f )x∗, xn+ – x∗〉

≤ ( – μnτ )∥∥vn – x∗∥∥

+ μn
〈
–(I – f )x∗, xn+ – x∗〉

= ( – μnτ )

∥∥∥∥∥

n∑

k=

an,k
(
xk – x∗)

∥∥∥∥∥



+ μn
〈
–(I – f )x∗, xn+ – x∗〉

≤ ( – μnτ )
n∑

k=

an,k
∥∥xk – x∗∥∥
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+ μn
〈
–(I – f )x∗, xn+ – x∗〉

= ( – μnτ )an,n
∥∥xn – x∗∥∥

+ ( – μnτ )
n–∑

k=

an,k
∥∥xk – x∗∥∥ + μn

〈
–(I – f )x∗, xn+ – x∗〉

≤ ( – μnτ )∥∥xn – x∗∥∥

+ r
n–∑

k=

an,k + μn
〈
–(I – f )x∗, xn+ – x∗〉

=
[
 +

(
μ

nτ
 – μnτ

)]∥∥xn – x∗∥∥

+ ( – an,n)r + μn
〈
–(I – f )x∗, xn+ – x∗〉

=
[
 – μnτ ( – μnτ )

]∥∥xn – x∗∥∥

+ ( – an,n)r + μn
〈
–(I – f )x∗, xn+ – x∗〉.

Since (xn)n∈N is bounded, there exists a subsequence xnk ⇀ z such that

lim sup
n

〈
–(I – f )x∗, xn+ – x∗〉 = lim

k

〈
–(I – f )x∗, xnk + – x∗〉 =

〈
–(I – f )x∗, z – x∗〉.

Since every weak cluster point of (xn)n∈N is in Fix(T),

lim sup
n

〈
–(I – f )x∗, xn+ – x∗〉 =

〈
–(I – f )x∗, z – x∗〉 ≤ .

By (h), (h), (h), and by using Lemma . we obtain xn → x∗. �

Proof of Theorem . Also here we will denote yn =
∑n–

k= bn,k+Tkvn. Since T is quasi-
nonexpansive and (h) holds, for all w ∈ Fix(T), as a result one finds that

‖yn – w‖ ≤
n–∑

k=

bn,k+
∥∥Tkvn – Tkw

∥∥ ≤
n–∑

k=

bn,k+‖vn – w‖ = ‖vn – w‖.

If

r := max

{
‖v – w‖,

‖(I – f )w‖
τ

}
,

we prove, by induction on n, that (vn)n∈N ⊂ B(w, r). Set τ =  – ρ , let us observe the follow-
ing:

‖vn+ – w‖ ≤ γn‖vn – w‖ + ( – γn)‖fμn yn – w‖
≤ γn‖vn – w‖ + ( – γn)‖fμn yn – fμn w‖ + ( – γn)‖fμn w – w‖
≤ γn‖vn – w‖ + ( – γn)( – μnτ )‖yn – w‖ + ( – γn)‖fμn w – w‖
≤ γn‖vn – w‖ + ( – γn)( – μnτ )‖vn – w‖ + ( – γn)μn

∥∥(I – f )w
∥∥

= γn‖vn – w‖ + ( – γn)( – μnτ )
∥∥(vn – w)

∥∥ + τμn( – γn)
‖(I – f )w‖

τ
.



Marino et al. Fixed Point Theory and Applications  (2015) 2015:73 Page 10 of 11

Now, v ∈ B(w, r). For induction, let us suppose that vi ∈ B(w, r), for every i = , . . . , n.
Therefore by the previous results we have

‖vn+ – w‖ ≤ γnr + ( – γn)( – μnτ )r + τμn( – γn)r = r

and ‖vn+ – w‖ ≤ r.
Now we want to prove that the weak cluster points of (vn)n∈N are fixed points of T . First

we note that

‖vn+ – yn‖ =
∥∥γnvn + ( – γn)fμn yn – yn

∥∥

=
∥∥γn(vn – yn) + ( – γn)μn(I – f )yn

∥∥

≤ γn‖vn – yn‖ + μn
∥∥(I – f )yn

∥∥,

thus, since (μn)n∈N, (γn)n∈N are null sequences (see (h) and (h)), ωw(vn) = ωw(yn). By
the boundedness of (vn)n∈N, Lemma . guarantees that the weak limits of the sequence
(yn)n∈N are contained in the set of fixed points of T . The previous inequality shows that
ωw(vn) ⊂ Fix(T).

Lastly, if x∗ ∈ Fix(T) is the unique solution of a (VIP), as a result one finds that

∥∥vn+ – x∗∥∥ =
∥∥γnvn + ( – γn)fμn yn – x∗ ± ( – γn)fμn x∗∥∥

=
∥∥γn

(
vn – x∗) + ( – γn)

(
fμn yn – fμn x∗) – ( – γn)μn(I – f )x∗∥∥

≤ ∥∥γn
(
vn – x∗) + ( – γn)

(
fμn yn – fμn x∗)∥∥

– ( – γn)μn
〈
(I – f )x∗, xn+ – x∗〉

≤ γn
∥∥vn – x∗∥∥ + ( – γn)( – μnτ )∥∥vn – x∗∥∥

+ ( – γn)μn
〈
–(I – f )x∗, vn+ – x∗〉

=
[
 + ( – γn)

(
μ

nτ
 – μnτ

)]∥∥vn – x∗∥∥

+ ( – γn)μn
〈
–(I – f )x∗, vn+ – x∗〉

=
[
 – ( – γn)μnτ ( – μnτ )

]∥∥vn – x∗∥∥

+ ( – γn)μn
〈
–(I – f )x∗, xn+ – x∗〉.

Since (vn)n∈N is bounded, there exists a subsequence vnk ⇀ z such that

lim sup
n

〈
–(I – f )x∗, vn+ – x∗〉 = lim

k

〈
–(I – f )x∗, vnk + – x∗〉 =

〈
–(I – f )x∗, z – x∗〉.

Since every weak cluster point of (vn)n∈N is in Fix(T),

lim sup
n

〈
–(I – f )x∗, vn+ – x∗〉 =

〈
–(I – f )x∗, z – x∗〉 ≤ .

By (h) and (h) and by using Lemma . we obtain vn → x∗. �
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Remark . If (bn,k)n,k∈N is generated recursively by iteration (.) and by a sequence
(ηn)n∈N such that

η = , ηn+ ≤ ηn

 + ηn

(e.g. ηn = 
(n+)η with η ≥ ) then (bn,k)n,k∈N belongs to T.
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