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Abstract
In this article, by employing the hyperbolic tangent function tanh z, a subfamily S∗

tanh
of starlike functions in the open unit disk D ⊂ C:

D =
{
z : z ∈C and |z| < 1

}

is introduced and investigated. The main contribution of this article includes
derivations of sharp inequalities involving the Taylor–Maclaurin coefficients for
functions belonging to the class S∗

tanh of starlike functions in D. In particular, the
bounds of the first three Taylor–Maclaurin coefficients, the estimates of the
Fekete–Szegö type functionals, and the estimates of the second- and third-order
Hankel determinants are the main problems that are proposed to be studied here.

Keywords: Analytic (or regular or holomorphic) functions; Univalent functions;
Starlike functions; Principle of subordination; Schwarz function; Hyperbolic and
trigonometric functions; Coefficient bounds; Fekete–Szegö functional; The quantum
or basic (or q-) calculus and its trivial (p,q)-variation

1 Introduction, definitions, and preliminaries
Let us represent the family of analytic (or regular or holomorphic) functions in D by the
notation H(D) and suppose that A is the subclass of H(D) defined as follows:

A :=

{

f : f ∈H(D) and f (z) =
∞∑

k=1

akzk(a1 = 1)

}

. (1)

Further, all normalized univalent functions in D are contained in the set S ⊂ A. For two
given functions g1, g2 ∈ H(D), we say that g1 is subordinate to g2, written symbolically as
g1 ≺ g2, if there exists a Schwarz function w, which is analytic in D with

w(0) = 0 and
∣∣w(z)

∣∣ < 1,

such that

f (z) = g
(
w(z)

)
(z ∈D).
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Moreover, if the function g2 is univalent in D, then the following equivalence holds true:

g1(z) ≺ g2(z), (z ∈D) ⇐⇒ g1(0) = g2(0) and g1(D) ⊂ g2(D).

Though the subject of function theory was founded in 1851, the coefficient conjecture
presented by Bieberbach [13] in 1916 led to the field’s emergence as a promising area of
new research. This conjecture was proved by de Branges [18] in 1985. Between 1916 and
1985, many of the finest scholars of the day sought to prove or disprove this Bieberbach
conjecture. As a consequence, they discovered numerous sub-families of the class S of
normalized univalent functions connected to distinct image domains. The families of star-
like and convex functions, respectively, denoted by S∗ and K, are the most fundamental
and significant subclasses of the set S . In 1992, Ma and Minda [36] considered the general
form of the family as follows:

S∗(φ) :=
{

f ∈A :
zf ′(z)
f (z)

≺ φ(z)
}

,

where φ is a holomorphic function with φ′(0) > 0 and has a positive real part in D. Also,
the function φ maps D onto a star-shaped region with respect to φ(0) = 1 and is symmet-
ric about the real axis. They addressed some specific results such as distortion, growth,
and covering theorems. In recent years, several sub-families of the normalized analytic
function class A were studied as a special case of the class S∗(φ). For example, we have:

(i) If we choose

φ(z) =
1 + Lz
1 + Mz

(–1 � M < L � 1),

then we achieve the class given by

S∗[L, M] ≡ S∗
(

1 + Lz
1 + Mz

)
,

which is described as the functions of the Janowski starlike class investigated in
[22]. Furthermore, the class S∗(ξ ) given by

S∗(ξ ) := S∗[1 – 2ξ , –1]

is the familiar starlike function family of order ξ with 0 � ξ < 1.
(ii) The following family:

S∗
L := S∗(φ(z)

) (
φ(z) =

√
1 + z

)

was studied in [49] by Sokól and Stankiewicz. The function φ(z) =
√

1 + z maps
the region D onto the image domain which is bounded by |w2 – 1| < 1.

(iii) The class given by

S∗
car := S∗(φ(z)

) (
φ(z) = 1 +

4
3

z +
2
3

z2
)
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was examined by Sharma et al. [46]. It consists of functions f ∈A in such a
manner that

zf ′(z)
f (z)

is located in the region bounded by the cardioid given by

(
9x2 + 9y2 – 18x + 5

)2 – 16
(
9x2 + 9y2 – 6x + 1

)
= 0.

(iv) By selecting φ(z) = 1 + sin z, the class S∗(φ(z)) leads to the family S∗
sin, which was

investigated by Cho et al. [17]. On the other hand, the function class given by

S∗
e ≡ S∗(ez)

was studied in [38] and, subsequently, in [48]. This function class was recently
generalized by Srivastava et al. [56] in which the authors determined an upper
bound of the Hankel determinant of the third order.

(v) The following families:

S∗
cos := S∗(cos z)

and

S∗
cosh := S∗(cosh z)

were considered, respectively, by Raza and Bano [9] and Alotaibi et al. [2]. In both
of these papers, the authors studied some interesting properties of the families
which they studied.

(vi) By choosing φ(z) = 1 + sin z, we obtain the following class:

S∗
sin := S∗(φ(z)

)
,

which was investigated in [17]. The authors in [17] addressed the radii problems
for the defined class S∗

sin.
(vii) By considering the function φ(z) = 1 + sinh–1 z, we get the recently-examined

family given by

S∗
ρ := S∗(1 + sinh–1 z

)
,

which was introduced by Kumar and Arora [29]. They discussed relationships of
this class with the already known classes. In 2021, Barukab et al. [12] derived sharp
bounds for the Hankel determinant of the third order for the following function
class:

Rs :=
{

f : f ∈A and f ′(z) ≺ 1 + sinh–1 z (z ∈ D)
}

.
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In the present paper, we consider the following hyperbolic function:

ϕ1(z) := 1 + tanh z
(
ϕ1(0) = 1

)
.

Also, one can easily find that �(ϕ1(z)) > 0.

Definition 1 ([59]) By using the above-defined hyperbolic function ϕ1(z), we define the
following family of functions:

S∗
tanh :=

{
f : f ∈ S and

zf ′(z)
f (z)

≺ 1 + tanh z (z ∈D)
}

. (2)

In other words, a function f is in the class S∗
tanh if and only if there exists a holomorphic

function q, fulfilling q(z) ≺ q0(z) := 1 + tanh z, such that

f (z) = z exp

(∫ z

0

q(t) – 1
t

dt
)

. (3)

By taking

q(z) = q0(z) = 1 + tanh z

in (3), we get the function that plays the role of the extremal function in many problems
of the class S∗

tanh, given by

f0(z) = z exp

(∫ z

0

tanh t
t

dt
)

= z + z2 +
1
2

z3 +
1

18
z4 + · · · . (4)

Definition 2 The Hankel determinant

HDq,n(f )
(
q, n ∈ N := {1, 2, 3, . . .}; a1 = 1

)

for a function f ∈ S of the series form (1) was given by Pommerenke [40, 41] as follows:

HDq,n(f ) :=

∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q–1

an+1 an+2 . . . an+q
...

... . . .
...

an+q–1 an+q . . . an+2q–2

∣∣∣∣∣∣∣∣∣∣

.

In particular, the following determinants are known as the first-, the second-, and the
third-order Hankel determinants, respectively:

HD2,1(f ) =

∣∣∣∣∣
1 a2

a2 a3

∣
∣∣∣∣

= a3 – a2
2, (5)

HD2,2(f ) =

∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣
= a2a4 – a2

3, (6)
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and

HD3,1(f ) =

∣∣∣∣∣∣∣

1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣
= a3

(
a2a4 – a2

3
)

– a4(a4 – a2a3) + a5
(
a3 – a2

2
)
. (7)

In the literature, there are just a few references to the Hankel determinant for functions
belonging to the general family S . For the function f ∈ S , the best established sharp in-
equality is given by

∣∣HD2,n(f )
∣∣� λ

√
n,

where λ is an absolute constant. This result is due to Hayman [21]. Further, for the same
class S , it was derived in [39] as follows:

∣∣HD2,2(f )
∣∣ � λ

(
1 � λ � 11

3

)

and

∣∣HD3,1(f )
∣∣ � μ

(
4
9
� μ� 32 +

√
285

15

)
.

The challenge of finding the sharp bounds of Hankel determinants for a particular family
of functions drew the attention of numerous researchers. For example, the sharp bounds
of |HD2,2(f )| for the sub-families K, S∗, and R (the family of bounded turning functions)
of the class S were calculated by Janteng et al. [23, 24]. These estimates are given by

∣∣HD2,2(f )
∣∣ �

⎧
⎪⎪⎨

⎪⎪⎩

1
8 (f ∈K),

1 (f ∈ S∗),
4
9 (f ∈R).

For the families

S∗(β) (0 � β < 1)

of starlike functions of order β and

SS∗(β) (0 < β � 1)

of strongly starlike functions of order β , the authors in [15, 16] showed that |HD2,2(f )| is
bounded by (1 –β)2 and β2, respectively. The exact bound for the family S∗(φ) of the Ma–
Minda type starlike functions was derived in [33] (see also [19]). For other works involving
|HD2,2(f )|, see (for example) [4, 10, 14, 25, 35].

It is quite clear from the formulas given in (5), (6), and (7) that the calculation of the
bound for |HD3,1(f )| is far more challenging in comparison with the finding of the bound
for |HD2,2(f )|. In the year 2010, Babalola [8] investigated the bounds for the third-order
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Hankel determinant for the families of K, S∗, and R. Subsequently, by using the same or
analogous approach, several authors in [3, 11, 28, 43, 45] derived bounds for the third-
order Hankel determinant |HD3,1(f )| for various sub-families of analytic and univalent
functions. On the other hand, in the year 2017, Zaprawa [61] improved the findings of
Babalola [8] by applying a new methodology to show that

∣∣HD3,1(f )
∣∣ �

⎧
⎪⎪⎨

⎪⎪⎩

49
540 (f ∈K),

1 (f ∈ S∗),
41
60 (f ∈R).

Zaprawa [61] remarked that such limits were indeed not the best ones. Later in the
year 2018, Kwon et al. [31] strengthened Zaprawa’s result for f ∈ S∗ and showed that
|HD3,1(f )| � 8

9 , and this bound was further improved by Zaprawa et al. [62] by showing
in 2021 that

∣∣HD3,1(f )
∣∣ � 5

9
(
f ∈ S∗).

In recent years, the following sharp bounds for the third-order Hankel determinant
|HD3,1(f )| were given by Kowalczyk et al. [27] and Lecko et al. [32]:

∣∣HD3,1(f )
∣∣ �

⎧
⎨

⎩

4
135 (f ∈K),
1
9 (f ∈ S∗( 1

2 )),

where S∗( 1
2 ) represents the family of starlike functions of order 1

2 in D. The interested
readers may also refer to the research provided by Mahmood et al. [37] in which they
calculated bounds for the third-order Hankel determinant for the basic (or q-) starlike
functions in D.

For more contributions in this direction, the interested reader should see, for example,
[20, 44, 47, 52–55]. In particular, Arif et al. [6], Srivastava et al. [55], Arif et al. [5], and
Wang et al. [60] successfully investigated bounds for the fourth-order Hankel determinant
for different subclasses of analytic functions.

In the present article, our aim is to calculate the sharp bounds of the coefficient inequal-
ities, Fekete–Szegö type functional, and the Hankel determinants of order two and order
three for the subclass S∗

tanh of starlike functions.

2 A set of lemmas
Definition 3 A function p is said to be in the class P if and only if it has the following
series expansion:

p(z) = 1 +
∞∑

n=1

cnzn (z ∈D) (8)

and satisfies the inequality given by

�(
p(z)

)
� 0 (z ∈D).
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Lemma 1 Let the function p ∈P have the series form (8). Then, for x, δ,ρ ∈D = D∪ {1},

2c2 = c2
1 +

(
4 – c2

1
)
x, (9)

4c3 = c3
1 + 2c1x

(
4 – c2

1
)

– x2c1
(
4 – c2

1
)

+ 2
(
1 – |x|2)(4 – c2

1
)
δ (10)

and

8c4 = c4
1 + x

[
c2

1
(
x2 – 3x + 3

)
+ 4x

](
4 – c2

1
)

– 4
(
4 – c2

1
)(

1 – |x|2)

× [
c(x – 1)δ + xδ2 –

(
1 – |δ|2)ρ](

4 – c2
1
)
. (11)

Remark 2 In Lemma 1 and elsewhere in this paper, for the formula for c2, see [42]. The
formula for c3 is due to Libera and Złotkiewicz [34]. The formula for c4 was proved in [30].

Lemma 3 If the function p ∈P has the series form (8), then

|cn+k – μcnck|� 2 max
(
1, |2μ – 1|) (12)

and

|cn| � 2 (n � 1). (13)

If B ∈ [0, 1] with B(2B – 1) � D � B, then

∣∣c3 – 2Bc1c2 + Dc3
1
∣∣ � 2. (14)

Remark 4 Inequalities (12), (13), and (14) in Lemma 3 are taken from [26, 42] and [6, 7,
47], respectively.

3 Coefficient inequalities for the function class S∗
tanh

The first two findings, Theorem 5 and Theorem 6, are special cases of the results estab-
lished in the paper [1], and that is why we omitted both the proofs.

Theorem 5 Let the function f of the form (1) be in the class S∗
tanh. Then

|a2|� 1,

|a3|� 1
2

,

|a4|� 1
3

.

Each of these bounds is sharp.

Theorem 6 Let the function f of the form (1) be in the class S∗
tanh. Then

∣∣a3 – λa2
2
∣∣� max

{
1
2

,
1
2
|2λ – 1|

}
.

This inequality is sharp.
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Theorem 7 Let the function f of the form (1) be in the class S∗
tanh. Then

|a2a3 – a4|� 1
3

.

This result is sharp.

Proof Let f ∈ S∗
tanh. Then equation (2) can be written in the form of a hyperbolic function

w as follows:

zf ′(z)
f (z)

= 1 + tanh w(z).

Let p ∈P . Then, in terms of the Schwarz function w, we have

p(z) =
1 + (w(z))
1 – (w(z))

:= 1 + c1z + c2z2 + c3z3 + c4z4 + · · · (15)

or, equivalently,

w(z) :=
p(z) – 1
p(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · ,

where

w(z) =
1
2

c1z +
(

1
2

c2 –
1
4

c2
1

)
z2 +

(
1
8

c3
1 –

1
2

c1c2 +
1
2

c3

)
z3

+
(

1
2

c4 –
1
2

c1c3 –
1
4

c2
2 –

1
16

c4
1 +

3
8

c2
1c2

)
z4 + · · · . (16)

By using (1), we obtain

zf ′(z)
f (z)

:= 1 + a2z +
(
2a3 – a2

2
)
z2 +

(
a3

2 – 3a2a3 + 3a4
)
z3

+
(
4a5 – a4

2 + 4a2
2a3 – 4a2a4 – 2a2

3
)
z4 + · · · . (17)

After some calculation and by using the series expansion given by (16), we get

1 + tanh
(
w(z)

)
= 1 +

1
2

c1z +
(

–
1
4

c2
1 +

1
2

c2

)
z2 +

(
1

12
c3

1 –
1
2

c1c2 +
1
2

c3

)
z3

+
(

1
2

c4 +
1
4

c2
1c2 –

1
2

c1c3 –
1
4

c2
2

)
z4 + · · · . (18)

Now, if we compare (17) and (18), we get

a2 =
1
2

c1, (19)

a3 =
1
4

c2, (20)

a4 =
1
6

c3 –
1

72
c3

1 –
1

24
c1c2, (21)
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and

a5 =
1
8

c4 +
5

576
c4

1 –
1

32
c2

2 –
1

24
c1c3 –

1
48

c2
1c2. (22)

By using (19), (20), and (21), we obtain

|a2a3 – a4| =
1

72
∣∣c3

1 + 12c1c2 – 12c3
∣∣,

which, in view of (9) and (10), together with c1 = c ∈ [0, 1], yields

|a2a3 – a4| =
1

72
∣∣4c3 + 3c

(
4 – c2)x2 – 6

(
4 – c2)(1 – |x|2)δ∣∣.

Now, upon applying |δ| � 1 and |x| = b � 1, and using the triangle inequality, we get

|a2a3 – a4|� 1
72

[
4c3 + 3

(
4 – c2)(c – 2)b2 + 6

(
4 – c2)] = F(c, b).

It is a simple exercise to differentiate F(c, b) with respect to b and show that F ′(c, b) � 0 on
the rectangle [0, 2] × [0, 1]. So, by putting b = 0, we obtain

max
{

F(c, b)
}

= F(c, 0).

We thus find that

|a2a3 – a4|� 1
72

[
4c3 + 6

(
4 – c2)] = G(c).

Finally, upon taking G′(c) = 0, we obtain c = 0, 1. Thus, clearly, G(c) has its maximum
value at c = 0, so that

|a2a3 – a4|� 1
72

(24) =
1
3

,

in which the equality holds true for the extremal function given by

f3(z) = z exp

(∫ z

0

(1 + tanh t3) – 1
t

dt
)

= z +
1
3

z4 +
1

18
z7 –

5
162

z10 + · · · . (23)

This evidently completes our demonstration of Theorem 7. �

Theorem 8 Let the function f of the form (1) be in the class S∗
tanh. Then

∣∣HD2,2(f )
∣∣ � 1

4
.

This inequality is sharp.
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Proof We can write HD2,2(f ) as follows:

HD2,2(f ) =
∣∣a2a4 – a2

3
∣∣.

From (19), (20), and (21), we have

∣∣a2a4 – a2
3
∣∣ =

1
144

∣∣–c4
1 – 3c2

1c2 + 12c1c3 – 9c2
2
∣∣.

Now, by using (9) and (10) in order to express c2 and c3 in terms of c1 and also c1 = c (0 �
c � 2), we obtain

∣∣a2a4 – a2
3
∣∣ =

1
144

∣∣∣∣–
7
4

c4 – 3
(
4 – c2)c2x2 + 6c

(
4 – c2)(1 – |x|2)δ –

9
4
(
4 – c2)2x2

∣∣∣∣.

By using |δ| � 1 and |x| = b � 1 and applying the triangle inequality, if we take c ∈ [0, 2],
we obtain

∣∣a2a4 – a2
3
∣∣� 1

144

[
7
4

c4 + 3
(
4 – c2)c2b2 + 6c

(
4 – c2)(1 – b2) +

9
4
(
4 – c2)2b2

]

=: 	(c, b).

Upon differentiating with respect to b, we have

∂	(c, b)
∂b

=
1

144

(
3
2
(
4 – c2)(c2 – 8c + 12

)
b
)

.

It is a simple exercise to show that 	′(c, b) � 0 on [0, 1], so that

	(c, b) � 	(c, 1).

Putting b = 1, we get

∣∣a2a4 – a2
3
∣∣� 1

144

(
7
4

c4 + 3
(
4 – c2)c2 +

9
4
(
4 – c2)2

)
:= G(c).

As G′(c) � 0, so G(c) is a decreasing function of c, so that it gives the maximum value at
c = 0:

∣∣HD2,2(f )
∣∣ � 1

144
(36) =

1
4

.

Finally, the above bound for HD2,2(f ) is sharp and is achieved by the following extremal
function:

f2(z) = z exp

(∫ z

0

(1 + tanh t2) – 1
t

dt
)

= z +
1
2

z3 +
1
8

z5 –
5

144
z7 + · · · . (24)

We have thus completed the proof of Theorem 8. �
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4 The third Hankel determinant
In this section, we determine the bounds of |HD3,1(f )| for the function f ∈ S∗

tanh.

Theorem 9 Let the function f of the form (1) be in the class S∗
tanh. Then

∣∣HD3,1(f )
∣∣ � 1

9
.

This result is sharp.

Proof The third-order Hankel determinant can be written as follows:

HD3,1(f ) = 2a2a3a4 – a2
2a5 – a3

3 + a3a5 – a2
4.

By using (19), (20), (21), and (22), together with c1 = c ∈ [0, 2], we have

HD3,1(f ) =
1

20,736
(
–49c6 + 57c4c2 + 312c3c3 – 198c2c2

2 – 648c2c4 + 936cc2c3

– 486c3
2 + 648c2c4 – 576c2

3
)
. (25)

For simplifying the computation, we let t = 4 – c2 in (9), (10), and (11). Then, by using the
simplified form of these formulas, we have

57c4c2 =
57
2

(
c6 + c4tx

)
,

312c3c3 = 78c6 + 156c4tx – 78c4tx2 + 156c3t
(
1 – |x|2)δ,

198c2c2
2 =

99
2

(
c6 + 2c4tx + c2t2x2),

648c2c4 = 81c4tx3 – 324c2tx̄
(
1 – |x|2)δ2 – 324c3tx

(
1 – |x|2)δ – 243c4tx2

+ 324c2t
(
1 – |x|2)(1 – |δ|2)ρ + 324c3t

(
1 – |x|2)δ + 243c4tx

+ 81c6 + 324c2ax2,

936cc2c3 = –117c2t2x3 – 117c4tx2 + 234cxt2(1 – |x|2)δ + 243c2t2x2 + 243c3t
(
1 – |x|2)δ

+ 117c6 + 351c4tx,

486c3
2 =

243
4

(
t3x3 + 3c2t2x2 + 3c4tx + c6),

648c2c4 =
81
2

(
4c2tx2 + 4t2x3 + c6 + 4c4tx + 4c3t

(
1 – |x|2)δ + 4c2t

(
1 – |x|2)(1 – |δ|2)ρ

+ 3c2t2x2 + 4ct2x
(
1 – |x|2)δ + 4t2x

(
1 – |x|2)(1 – |δ|2)ρ – 3c4tx2

– 4c3tx
(
1 – |x|2)δ – 4c2tx̄

(
1 – |x|2)δ2 – 3c2t2x3 – 4ct2x2(1 – |x|2)δ

– 4t2xx̄
(
1 – |x|2)δ2 + c4tx3 + c2t2x4)

and

576c2
3 = 36c2t2x4 – 144ct2x2(1 – |x|2)δ – 144c2t2x3 – 72c4tx2 + 144t2(1 – |x|2)2

δ2
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+ 288ct2x
(
1 – |x|2)δ + 144c3t

(
1 – |x|2)δ + 144c2t2x2 + 144c4tx + 36c6.

Upon substituting these expressions into (25) and simplifying, we get

HD3,1(f ) =
1

20,736

[
–

49
4

c6 + 84c3t
(
1 – |x|2)δ + 162t2x3 – 162c2t

(
1 – |x|2)(1 – |δ|2)ρ

+ 108ct2x
(
1 – |x|2)δ –

243
4

t3x3 + 162t2x
(
1 – |x|2)(1 – |δ|2)ρ

+ 162c3tx
(
1 – |x|2)δ + 162c2tx̄

(
1 – |x|2)δ2 – 18ct2x2(1 – |x|2)δ

– 162t2xx̄
(
1 – |x|2)δ2 – 144t2(1 – |x|2)2

δ2 –
3
2

c4x2t –
81
4

c2t2x2

–
189

2
c2t2x3 – 162c2tx2 +

9
2

c2t2x4 –
81
2

c4tx3 +
117

4
c4tx

]
.

Now, since t = (4 – c2), we have

HD3,1(f ) =
1

20,736
[
v1(c, x) + v2(c, x)δ + v3(c, x)δ2 + �(c, x, δ)ρ

]
,

where

v1(c, x) = –
3
4
(
4 – c2)x

[
3
(
4 – c2)x

(
–2x2c2 + 15xc2 + 9c2 + 36x

)

+ 54c4x2 + 2c4x – 39c4 + 216xc2] –
49
4

c6,

v2(c, x) = –6
(
4 – c2)(1 – |x|2)c

[(
3x2 – 18x

)(
4 – c2) – 27xc2 – 14c2],

v3(c, x) = –18
(
4 – c2)(1 – |x|2)[(x2 + 8

)(
4 – c2) – 9x̄c2],

and

�4(c, x, δ) = 162
(
4 – c2)(1 – |x|2)(1 – |δ|2)[(4 – c2)x – c2].

Thus, upon setting |δ| = y and |x| = x, and by taking |ρ|� 1, we obtain

∣∣HD3,1(f )
∣∣ � 1

20,736
(∣∣v1(c, x)

∣∣ +
∣∣v2(c, x)

∣∣y +
∣∣v3(c, x)

∣∣y2 +
∣∣�(c, x, δ)

∣∣),

� 1
20,736

[
H(c, x, y)

]
, (26)

where

H(c, x, y) =
(
h1(c, x) + h2(c, x)y + h3(c, x)y2 + h4(c, x)

(
1 – y2)), (27)

with

h1(c, x) =
3
4
(
4 – c2)x

[
3
(
4 – c2)x

(
–2x2c2 + 15xc2 + 9c2 + 36x

)

+ 54c4x2 + 2c4x – 39c4 + 216xc2] +
49
4

c6,
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h2(c, x) = 6
(
4 – c2)(1 – x2)c

[(
–3x2 + 18x

)(
4 – c2) + 27xc2 + 14c2],

h3(c, x) = 18
(
4 – c2)(1 – x2)[(x2 + 8

)(
4 – c2) + 9xc2],

and

h4(c, x) = 162
(
4 – c2)(1 – x2)[(4 – c2)x + c2].

Let the closed cuboid be of the following form:

� : [0, 2] × [0, 1] × [0, 1].

We need to find the points of maxima inside this closed cuboid �, inside the six faces,
and on the twelve edges in order to maximize the function H(c, x, y) given by (27). For this
objective in view, we consider the following three cases.

I. Let c, x, y ∈ (0, 2) × (0, 1) × (0, 1). In order to find the points of maxima inside �, we
take partial derivative of (27) with respect to y, so that we achieve

∂H
∂y

= 6
(
4 – c2)(1 – x2)[6y(x – 1)

[
(x – 8)

(
4 – c2) + 9c2]

+ c
(
3x

(
4 – c2)(6 – x) + c2(27x + 14)

)]
, (28)

which can be seen to vanish when

y =
c[3x(4 – c2)(x – 6) – c2(27x + 14)]

6(x – 1)[(4 – c2)(x – 8) + 9c2]
.

If y0 is a critical point inside �, then y0 ∈ (0, 1), which is possible only if

c
(
3x

(
4 – c2)(6 – x) + c2(27x + 14)

)
– 6(1 – x)

(
4 – c2)(8 – x)

< –54(1 – x)c2 (29)

and

c2 >
4(8 – x)
17 – x

. (30)

We now have to get the solutions which satisfy both of inequalities (29) and (30) for the
existence of the critical points. Let us set

h(x) =
4(8 – x)
17 – x

.

Since h′(x) < 0 for (0, 1), the function h(x) is decreasing in (0, 1). Hence c2 > 7
4 , and a simple

exercise shows that (29) does not hold true in this case for all values of x ∈ (0, 1) and there
is no critical point of H(c, x, y) in (0, 2) × (0, 1) × (0, 1).

II. In order to find the points of maxima inside the six faces of the cuboid �, we deal
with each face individually. On c = 0, H(c, x, y) reduces to

q1(x, y) = H(0, x, y) = 1296x3 + 72
(
1 – x2)(4x2 + 32

)
y2
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+ 2592x
(
1 – x2)(1 – y2) (

x, y ∈ (0, 1)
)
. (31)

Clearly, q1 has no optimal points in (0, 1) × (0, 1) since

∂q1

∂y
= 144

(
1 – x2)(4x2 + 32

)
y – 5184

(
1 – x2)xy �= 0

(
x, y ∈ (0, 1)

)
. (32)

On c = 2, H(c, x, y) reduces to

H(2, x, y) = 784
(
x, y ∈ (0, 1)

)
. (33)

On x = 0, H(c, x, y) reduces to

q2(c, y) = H(c, 0, y) =
49
4

c6 + 14
(
24 – 6c2)c3y +

(
72 – 18c2)(32 – 8c2)y2

+ c2(648 – 162c2)(1 – y2), (34)

where y ∈ (0, 1) and c ∈ (0, 2). We now solve

∂q2

∂y
= 0 and

∂q2

∂c
= 0

in order to find the points of maxima. On solving

∂q2

∂y
= 0,

we obtain

y =
7c3

3(17c2 – 32)
=: y1 (35)

for the given range of y, y1 that should belong to (0, 1). This is possible only if

c > c0 (c0 ≈ 1.54572016538129).

A calculation shows that

∂q2

∂c
= 0

implies that

147
2

c5 – 420c4y + 1008c2y + 1224c3y2 – 3600cy2 – 648c3 + 1296c = 0. (36)

By substituting from equation (35) into equation (36) and simplifying, we have

9c
(
2499c8 – 47,888c6 + 239,904c4 – 460,800c2 + 294,912

)
= 0. (37)

A further calculation gives the solution of (37) in (0, 2), that is, c ≈ 1.16653673056906.
Thus q2 has no optimal point in (0, 2) × (0, 1).
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On x = 1, H(c, x, y) reduces to

q3(c, y) = H(c, 1, y) = 49c6 – 426c4 + 792c2 + 1296
(
c ∈ (0, 2)

)
. (38)

Solving

∂q3

∂c
= 0,

we obtain the critical points given by

c = c0 = 0 and c = c1 ≈ 1.07838082301303.

Since c0 is the minimum point of q3, q3 attains its maximum value at c1, that is, at c =
1717.98045.

On y = 0, H(c, x, y) reduces to

q4(c, x) = H(c, x, 0)

=
49
4

c6 +
(

3 –
3
4

c2
)

x
[(

12 – 3c2)x
(
15c2x – 2x2c2 + 9c2 + 36x

)

+ 54c4x2 + 2c4x – 39c4 + 216c2x
]

+
(
648 – 162c2)(1 – x2)[(4 – c2)x + c2].

A computation reveals that the following system of equations has no solution:

∂q4

∂x
= 0 and

∂q4

∂c
= 0

in (0, 2) × (0, 1).
On y = 1, H(c, x, y) reduces to

q5(c, x) = H(c, x, 1)

=
49
4

c6 +
(

3 –
3
4

c2
)

x
[(

12 – 3c2)x
(
15c2x – 2x2c2 + 9c2 + 36x

)

+ 54c4x2 + 2c4x – 39c4 + 216c2x
]

+
(
24 – 6x2)(1 – x)c

[(
18x – 3x2)(4 – c2) + 27xc2 + 14c2]

+
(
72 – 18c2)(1 – x2)[(x2 + 8

)(
4 – c2) + 9c2x

]
.

A computation reveals that the following system of equations has no solution:

∂q5

∂x
= 0 and

∂q5

∂c
= 0

in (0, 2) × (0, 1).
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III. In this case, we find the maxima of H(c, x, y) on the edges of �. By putting y = 0 in
(34), we have

H(c, 0, 0) = m1(c) =
49
4

c6 – 162c4 + 648c2.

Clearly, m′
1(c) = 0 for c = η0 = 0 and c = η1 = 1.75122868295016 in [0, 2], where η0 is the

minimum point and the maximum point of m1(c) is attained at η1. This implies that

H(c, 0, 0) � 816.973630
(
c ∈ [0, 2]

)
.

Solving equation (34) at y = 1, we get

H(c, 0, 1) = m2(c) =
49
4

c6 – 84c5 + 144c4 + 336c3 – 1152c2 + 2304.

Since m′
2(c) < 0 for c ∈ [0, 2], m2(c) is decreasing in [0, 2] and hence the maximum is ob-

tained at c = 0. Thus

H(c, 0, 1) � 2304
(
c ∈ [0, 2]

)
.

By putting c = 0 in (34), we get

H(0, 0, y) = 2304y2.

A simple calculation gives

H(0, 0, y) = 2304
(
y ∈ [0, 1]

)
.

Equation (38) is independent of y, so we have

H(c, 1, 1) = H(c, 1, 0) = m3(c) = 49c6 – 426c4 + 792c2 + 1296.

Now m′
3(c) = 0 for c = η0 = 0 and c = η1 = 1.07838082301303 in [0, 2], where η0 is the

minimum point and the maximum point of m3(c) is attained at η1. We conclude that

H(c, 1, 1) = H(c, 1, 0) � 1717.98045
(
c ∈ [0, 2]

)
.

By putting c = 0 in (38), we obtain

H(0, 1, y) = 1296.

As (33) is independent of c, x, and y, we find that

H(2, 1, y) = H(2, 0, y) = H(2, x, 0) = H(2, x, 1) = 784
(
x, y ∈ [0, 1]

)
.

By putting y = 0 in (31), we have

H(0, x, 0) = m4(x) = –1296x3 + 2592x.
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Now m′
4(x) = 0 for x = x0 = 0.8164965809 in [0, 1]. Therefore, the function m4(x) is in-

creasing for x � x0 and decreasing for x0 � x. Hence m4(x) has its maximum at x = x0. We
conclude that

H(0, x, 0) � 1410.906092
(
x ∈ [0, 1]

)
.

By putting y = 1 in (31), we get

H(0, x, 1) = m5(x) = –288x4 + 1296x3 – 2016x2 + 2304.

Since m′
5(x) < 0 for [0, 1], therefore the function m4(x) is decreasing in [0, 1] and hence

attains its maximum value at x = 0, so that

H(0, x, 1) � 2304
(
x ∈ [0, 1]

)
.

Thus, from the above cases, we conclude that

H(c, x, y) � 2304 on [0, 2] × [0, 1] × [0, 1].

From equation (26), we can write

∣∣HD3,1(f )
∣∣ � 1

20,736
(
H(c, x, y)

)
� 1

9
.

If f ∈ S∗
tanh, then the equality is achieved by the function given by

f3(z) = z exp

(∫ z

0

(1 + tanh t3) – 1
t

dt
)

= z +
1
3

z4 +
1

18
z7 –

5
162

z10 + · · · . (39)

Theorem 9 has thus been proved as asserted. �

5 Concluding remarks and observations
In the present article, we have introduced and studied a new subfamily of starlike func-
tions in the open unit disk D, which involves the hyperbolic function tanh z. For functions
belonging to such a class of starlike functions, we have considered some interesting prob-
lems such as the bounds of the first three Taylor–Maclaurin coefficients, the estimates of
the Fekete–Szegö type functional, and the estimates of the second- and third-order Han-
kel determinants. All of the bounds which we have investigated in this article have been
shown to be sharp.

A potential direction for further research based upon our present investigation would
involve the use of the familiar quantum or basic (or q-) calculus as (for example) in the
related recent works [37, 44, 50, 53, 54, 56], [57], and [58]. However, as clearly pointed
out in the survey-cum-expository review articles by Srivastava (see, for details, [50, p.
340]; see also [51, pp. 1511–1512]), any attempt to translate these suggested q-results in
terms of the so-called trivial and inconsequential (p,q)-calculus would obviously lead to a
shallow research, because the additional forced-in parameter p is obviously redundant or
superfluous.



Ullah et al. Journal of Inequalities and Applications        (2021) 2021:194 Page 18 of 20

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Conflicts of interest
The authors declare that they have no conflicts of interest.

Competing interests
The authors declare that there are no competing interests.

Authors’ contributions
All authors have equally contributed the work in this manuscript. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Abdul Wali khan University, 23200, Mardan, Pakistan. 2Department of Mathematics and
Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada. 3Department of Medical Research, China
Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, Republic of China. 4Department of
Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007, Baku, Azerbaijan. 5Section of
Mathematics, International Telematic University Uninettuno, I-00186, Rome, Italy. 6Institute of Space Technology,
University of Islamabad, Islamabad, 44000, Pakistan. 7Department of Mathematics and Informatics, University of Agadez,
Post Office Box 199, Agadez, Niger.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 September 2021 Accepted: 5 December 2021

References
1. Ali, R.M., Ravichandran, V., Seenivasagan, N.: Coefficient bounds for p-valent functions. Appl. Math. Comput. 187,

35–46 (2007)
2. Alotaibi, A., Arif, M., Alghamdi, M.A., Hussain, S.: Starlikness associated with cosine hyperbolic function. Mathematics

8, Article ID 1118 (2020)
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4. Altınkaya, Ş., Yalçın, S.: Upper bound of second Hankel determinant for bi-Bazilevic functions. Mediterr. J. Math. 13,

4081–4090 (2016)
5. Arif, M., Rani, L., Raza, M., Zaprawa, P.: Fourth Hankel determinant for the set of star-like functions. Math. Probl. Eng.

2021, Article ID 6674010 (2021). https://doi.org/10.1155/2021/6674010
6. Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H.: Hankel determinant of order three for familiar subsets of analytic

functions related with sine function. Open Math. 17, 1615–1630 (2019)
7. Arif, M., Umar, S., Raza, M., Bulboaca, T., Farooq, M.U., Khan, H.: On fourth Hankel determinant for functions associated

with Bernoulli’s lemniscate. Hacet. J. Math. Stat. 49, 1777–1780 (2020)
8. Babalola, K.O.: On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 6, 1–7

(2010)
9. Bano, K., Raza, M.: Starlike functions associated with cosine function. Bull. Iran. Math. Soc. (2020).

https://doi.org/10.1007/s41980-020-00456-9
10. Bansal, D.: Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 26,

103–107 (2013)
11. Bansal, D., Maharana, S., Prajapat, J.K.: Third order Hankel determinant for certain univalent functions. J. Korean Math.

Soc. 52, 1139–1148 (2015)
12. Barukab, O., Arif, M., Abbas, M., Khan, S.K.: Sharp bounds of the coefficient results for the family of bounded turning

functions associated with petal shaped domain. J. Funct. Spaces 2021, Article ID 5535629 (2021)
13. Bieberbach, L.: Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises

vermitteln. Sitz.ber. Preuss. Akad. Wiss. 138, 940–955 (1916)
14. Çaglar, M., Deniz, E., Srivastava, H.M.: Second Hankel determinant for certain subclasses of bi-univalent functions.

Turk. J. Math. 41, 694–706 (2017)
15. Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: Some coefficient inequalities related to the Hankel

determinant for strongly starlike functions of order alpha. J. Math. Inequal. 11, 429–439 (2017)
16. Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for starlike functions of

order alpha. Bull. Malays. Math. Sci. Soc. 41, 523–535 (2018)
17. Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V.: Radius problems for starlike functions associated with the sine

function. Bull. Iran. Math. Soc. 45, 213–232 (2019)
18. De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)

https://doi.org/10.1155/2021/6674010
https://doi.org/10.1007/s41980-020-00456-9


Ullah et al. Journal of Inequalities and Applications        (2021) 2021:194 Page 19 of 20
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