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Abstract: Pupil filters for cylindrical (two-dimensional) focusing with 
extended depth of field are investigated. An important application is in 
generating light sheets with uniform intensity. Filters for spherical (three-
dimensional) focusing with a flat axial intensity, coupled with weak side 
lobes are also discussed. 
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1. Introduction 

In numerous applications we require to optimize depth of field for a given aperture size, i.e. 
while maintaining transverse spatial resolution and light collection efficiency. We investigate 
the use of pupil filters to increase the focal depth for cylindrical focusing systems. We note 
that there are many practical examples of such two-dimensional (2D) optical systems, 
including integrated optics (planar waveguides) and plasmonics, and also optical systems 
such as light sheet microscopy [1–4], line illumination microscopy [5, 6], and cubic phase 
mask systems [7]. 

We start by deriving performance parameters for focusing by centro-symmetric 
cylindrical focusing systems, in analogy with those presented previously for rotationally 
symmetric spherical focusing systems [8]. We then continue with development of binary 
phase pupil filters (i.e. those having regions of amplitude 1+ and 1− ) that give maximally-
flat (MF) axial intensity, using an analytic approach (i.e. not iterative) previously investigated 
for rotationally symmetric pupils [9, 10]. 

For the rotationally symmetric case, the solution that gives a completely flat axial 
intensity is the Bessel beam [11, 12], which is a propagationally-invariant solution of the 
wave equation. One family of MF solutions derived for the rotationally-symmetric case tends 
towards a Bessel beam for large number of elements. The Bessel beam contains infinite 
energy, so approximations such as the Bessel-Gauss beam [11, 13] have been developed, that 
are finite energy beams exhibiting a more uniform axial intensity than a Gaussian beam. But 
these approximations to the Bessel beam do not usually give nearly as good axial uniformity 
as the MF solutions, nor are they band limited, i.e. they do not correspond to a pupil of 
compact support. The 2D analog of the Bessel beam is the cosine beam, but perhaps this 
should not be regarded as a beam, because each lobe has the same maximum intensity. The 
cosine-Gauss beam [14] is the 2D analog of the Bessel-Gauss beam. The cross-section of the 
beam is the product of a cosine and a Gaussian, while the pupil (far-field) is the product of a 
hyperbolic cosine and a Gaussian. In the terminology of Ref [11], the amplitude of the cosine-
Gauss beam for any point in space can be written very simply as 

 
2 2

2 22

( )
( , ) cos exp ,

1 2(1 )1

ikze v v b iu
U v u

iub iubiub

 + = −  + + +  
 (1) 

where b is a dimensionless parameter, v and u are transverse and axial optical coordinates, 
respectively (given in Eqs. (3), 4 below), and the waist 0w of the underlying Gaussian is 

related to the nominal numerical aperture sinα  by 0 sin 2kw b α = , with 2 /k π λ= . The 
axial intensity can be seen from Eq. (1) to stretch out as b becomes smaller, but still the 
variation near the focus is parabolic. 

2. Performance parameters for symmetric, cylindrical focusing systems 

We can introduce performance parameters to describe various features of the focusing system 
for the 2D case, in a similar way to those used for 3D systems [8]. These parameters are 
useful because they allow the filter performance to be investigated without the necessity for 
calculating the focused field. These parameters can be used as a design tool, including use as 
merit functions for iterative optimization. The amplitude in the focal region for a cylindrical 
lens with pupil function (i.e. the amplitude transmission of the lens pupil) given by ( )P ξ  in 
the scalar, paraxial, Fresnel regime can be written [15] 
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where, for a system of width 2a  and focal length f , pupil /x aξ =  and the optical coordinates 

in the transverse and axial directions are 

 sin ,
kf x kxa

v
z z

α= =  (3) 
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f
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f z z
δ α   = − =   

   
 (4) 

respectively (to be consistent with Born and Wolf [16], and Li and Wolf [17, 18]), and 
2( ) /N z a zλ=  is a depth dependent Fresnel number [19]. Here the pupil is assumed to be in 

the plane of the lens. The Debye approximation follows by putting N → ∞  and z f= , and 
is equivalent to the pupil being situated in the front focal plane of the system, at z f= − . For 
a high numerical aperture system in the scalar regime, 2sin α is then more accurately replaced 

by 24sin ( / 2)α  [20]. Expanding as power series to quadratic terms in ,v u , for a symmetrical 
pupil for large Fresnel number, we obtain 
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where 

 
1

1
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is the n-th order moment of the pupil, and we have normalized to unity at the origin for a 
uniform, unobstructed pupil. For a real-valued pupil function (which can nevertheless be 
negative as in the important case of a binary phase mask), the parabolic approximation to the 
intensity in the focal region can therefore be written 
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For a complex pupil, which can produce an asymmetric axial intensity and a shift of the 
primary focus, more complicated expressions need to be used [21–23]. For a uniform, 
unobstructed aperture, 0 2 42, 2 / 3, 2 / 5I I I= = = , so we can introduce the Strehl ratio and the 
transverse and axial gain parameters: 
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to give for the focal intensity distribution 
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The significance of ,T AG G  is that the parabolic width of the transverse or axial intensity 

point spread function is then 1/ 2 1/ 21 / ( ) , 1/ ( )T AG G , respectively, compared with the values for 

the unobstructed pupil. The maximum value of TG for a positive pupil is 3, corresponding to 
cosine fringes, as formed by two interfering plane waves. This can regarded as the 2D analog 
of a Bessel beam, as generated by a thin annulus, in the 3D case. As for the 3D case, we also 
have for the fractional power transmission of the pupil 

 ( )
1

22
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1

1
( ) / ,

2
E P d Pξ ξ

−

=   (10) 

so that the intensity at the focus normalized by the focused power is /F S E= . , , ,T AS G G E  
and F  are all unity for an unobstructed pupil. These parameters can be used to investigate 
the focal performance of various designs of mask, without the necessity to evaluate directly 
the focal distribution. 

3. Pupil filters for maximally flat axial intensity 

From Eq. (2) with ( ) 1P ξ = , the amplitude of the focused field for a slit pupil element 

extending from aξ =  to bξ =  in the scalar, Fresnel regime, can be written in terms of error 
functions as [15] 
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We now use the same approach that we used to calculate maximally flat filters for the 
rotationally symmetric case [9]. Along the axis 0v = , and restricting our attention to the case 
of large N, we expand the error functions as power series in u, put the lowest order terms to 
zero to give a flat axial intensity, and solve the resulting simultaneous nonlinear equations. 
For three symmetric elements of alternating sign ( 1, 1+ − ), we can make the 2u  term zero, so 

that 0AG = . For five symmetric elements, we can make the terms in 2u  and 4u zero, and for 

seven symmetric elements we can also make the term in 6u  zero. The resulting solutions for 
the boundaries of the pupil elements imξ = ±  are shown in Table 1, together with S and TG  
calculated from Eq. (8). For three or five elements, there are two different solutions in each 
case. For seven elements there are four solutions. In Table 1 we list these in decreasing TG  
(increasing S) for each order. We also introduce the parameter W, the normalized axial length 
to the 90% point in intensity, which is calculated from the axial intensity. 

Table 1. Values of Various Parameters for Filters with 1, 3 5 or 7 Elements 

Filter m1 m2 m3 W S GT S/(GT)
1/2 WGT 

1   1 1 1 1 1 
3a 0.23630  2.58 0.278 1.846 0.21 4.76 
3b 0.89076  2.59 0.611 0.529 0.84 1.37 
5a 0.15957 0.47648 4.25 0.134 2.162 0.09 9.19 
5b 0.78061 0.94754 4.25 0.444 0.375 0.73 1.59 
7a 0.12166 0.36267 0.59966 5.99 0.080 2.337 0.05 14.00 
7b 0.15191 0.42355 0.93925 5.62 0.112 1.528 0.09 8.59 
7c 0.18658 0.84615 0.95331 5.65 0.170 1.129 0.16 6.38 
7d 0.70018 0.87347 0.96899 5.90 0.350 0.293 0.65 1.73 
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The overall S versus TG performance is illustrated in Fig. 1. The behavior for general 

symmetrical 3 element binary phase filters is also shown: there are two branches, for 1TG ≥  

and 1TG ≤ . 
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Fig. 1. The variation of the Strehl ratio S with transverse gain TG for different filters. The 

maximally flat filters 3a, 5a, 7a lie on the dashed line indicated. The maximally flat filters 3b, 
5b, 7d lie on another dashed line. The behavior for general symmetrical 3 element binary phase 

filters is also shown as solid lines: there are two branches, shown in red for 1TG ≥  and in 

green 1TG ≤ . 

The first solutions listed in Table 1 for each number of elements (Nos. 3a, 5a, 7a) 
approximate to a cosine beam, with strong side lobes, becoming closer to a cosine beam as 
the number of elements increases ( 3TG → ). The axial and transverse intensity variations 
calculated from Eq. (2) are shown in Fig. 2(a) and 2(b), where they are plotted against the 
optical coordinates given by Eqs. (3), 4. The last solutions listed in Table 1 for each number 
of elements (Nos. 3b, 5b, 7d) exhibit 1TG ≤  and weak side lobes, with the axial and 
transverse intensities shown in Fig. 2(e) and 2(f). As the number of elements increases, this 
solution tends to a plane wave ( 0TG → ). The other solutions for seven elements (Nos. 7b, 
7c) are shown in Fig. 2(c) and 2(d): they also have strong side lobes. The side lobe behavior is 
indicated by the parameter 1/ 2/ ( )TS G in Table 1, which is a measure of the fraction of the 
power in the central lobe. It is seen that the last solutions for each number of elements exhibit 
much larger values for this parameter, indicating that the side lobes are weak. 

Because the length of the focus is proportional to 2sinW α−  and the width of the beam is 

inversely proportional to sinTG α , an overall performance parameter TWG is independent 

of sinα . This increases with the number of elements, as shown in Table 1. For solution 7d, 
the transverse width is about twice that for an unobstructed slit aperture, but the focal depth is 
increased nearly six times, and the Strehl ratio is also quite high at 0.35. Hence to maintain a 
particular depth of focus, a higher numerical aperture can be used for a greater number of 
elements, thus giving a smaller transverse width. 

#180903 - $15.00 USD Received 29 Nov 2012; revised 11 Jan 2013; accepted 11 Jan 2013; published 6 Mar 2013
(C) 2013 OSA 11 March 2013 / Vol. 21,  No. 5 / OPTICS EXPRESS  6343



-30 -20 -10 10 20 30

1.0

-20 -10 10 20

1.0

-30 -20 -10 10 20 30

1.0

-10 -5 5 10

1.0

-30 -20 -10 10 20 30

1.0

-20 -10 10 20

1.0

u

u

u v

v

v

II

I I

II
(a) (b)

(e) (f )

(c) (d)

1

3a

5a

7a

1

3a
5a 7a

1

3b

5b

7d

1

3b

5b

7d

1

7b

7c

1

7b7c

 

Fig. 2. The axial (a, c, e) and transverse (b, d, f) intensity variations of the different maximally 
flat filters. (a, b) show filters 3a, 5a, 7a. (c, d) show filters 7b, 7c. (e, f) show filters 3b, 5b, 7d. 
The curves for an unobstructed slit pupil are shown as dotted lines. 

4. Spherical focusing with extended focal depth 

In our previous papers we investigated the properties MF filters for spherical lenses [9, 10]. 
We concentrated on the solutions that give the narrowest central lobe, which approximate to 
Bessel beams but exhibit strong side lobes. For either two or three elements there were two 
different solutions, while for four or five elements there were four solutions. In the light of 
our study for cylindrical lenses, we now consider the broad solutions for the spherical case, 
which exhibit weak side lobes. Actually some results for these cases were given in the 
previous papers: the values for S are the same as for the narrow solutions, while the sum of 

TG for the broad and narrow solutions is equal to 2 [9]. Meridional plots were also presented 

[10]. In Table 2 we present designs (rings of normalized radius iρ of alternating sign), 
together with values of the performance parameters, for the solution with weak transverse 
side lobes. The transverse normalized intensity variation is shown in Fig. 3. As the number of 
elements increases, the curves become broader, but the side lobes are not much stronger than 
for an unobstructed circular pupil. The overall performance parameter TWG increases with 
number of elements, indicating that a useful combination of depth of field and beam width 
can be achieved. 

Table 2. Values of Various Parameters for Circular Filters with 1-5 Elements 

Filter ρ1 ρ2 ρ3 ρ4 W S GT SGT WGT 
1   1 1 1 1 1 
2 0.3992  2.62 0.464 0.607 0.76 1.76 
3 0.8247 0.9581 4.29 0.275 0.458 0.60 1.96 
4 0.7534 0.8958 0.9744 6.01 0.184 0.372 0.50 2.24 
5 0.6980 0.8390 0.9301 0.9827 7.77 0.133 0.316 0.42 2.46 
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Fig. 3. The transverse variation in normalized intensity if the focal plane of a spherical lens 
with MF filters of 1-5 elements, for the broad solution. 1 element (black dashed line) 
corresponds to an unobstructed circular pupil. The curves get wider as the number of elements 
increases. Red: 2 elements. Green: 3 elements. Blue: 4 elements. Orange: 5 elements. 

5. Discussion 

We have shown numerically how binary phase filters to increase the focal depth of a 
cylindrically focusing system can be generated using an analytic method. The resulting 
designs giving a narrow transverse peak exhibit very strong side lobes. While these may be 
useful for generating arrays of flat-topped fringes, they are unsuitable for applications where a 
single light sheet, or a line in 2D, is desired. On the other hand, designs with a broad 
transverse peak have weak side lobes and a uniform axial intensity. The combination of 
transverse width and depth of field can give a superior performance to that of an unobstructed 
slit aperture. These designs are suitable for generating light sheets, or for producing a line 
focus in two-dimensional systems such as planar waveguides and plasmonics. 

In our previous studies [10], we showed how filters for spherical focusing are robust to 
small variations in dimensions, such that a practical liquid crystal modulator could be 
satisfactorily employed. Simulations show that the cylindrical filters are also quite robust. 

The fact that it is possible to produce a flat axial behavior, over an extended range, with 
transverse behavior very different from a cosine beam is in itself intriguing. 
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