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Abstract: A quality quantifier, referred to as measurement quality 

quantifier (MQQ), is proposed for indirect measurements. It satisfies the 
property that the MQQ of the data fusion of two or more independent 
measurements is the sum of the MQQs of the individual measurements and 
can also be determined in absolute terms for ill-posed problems. It is 
calculated from the covariance and Jacobian matrices of the observations, 
but the same result is also obtained using the covariance and averaging 
kernel matrices of the retrieved quantities. In the case of measurements of a 
continuous distribution a quantifier that provides the information 
distribution can be derived from the MQQ. The proposed quantifiers are 
herewith used for the quality assessment of atmospheric ozone 
measurements performed by IASI and MIPAS instruments. 
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1. Introduction 

The quantification of the quality of indirect measurements is an important tool needed for the 
comparison of different experiments and for the identification of the strategy that provides the 
best information about a target set of parameters. In particular, the quality quantification is the 
very issue in the design of atmospheric measurements [1] where a choice among different 
proposed experiments has to be done with the purpose of maximizing the information on 
some atmospheric parameters. 

Many observation systems are presently operating on board space-borne and airborne 
platforms, as well as from ground-based stations, providing complementary and redundant 
measurements of a variety of atmospheric parameters. The use of potential synergies among 
these observing systems is a key element for the full exploitation of current and future 
missions within an overall strategy in which the combination of data obtained with different 
sensors (data fusion) can provide target products of the best quality in terms of precision and 
accuracy, as well as spatial and temporal coverage and resolution [2–4]. In order to optimize 
the design of single and coordinated atmospheric measurements it is essential to have a 
quality parameter able to characterize consistently both the single measurements and the 
result of data fusion of several measurements. 

For the quality quantification we would like to have a parameter that has some useful 
properties. The first property is that it has to increase when the errors of the target parameters 
decrease. The second property is that the quality quantifier of the data fusion of two or more 
independent measurements is the sum of the quality quantifiers of the individual 
measurements (we refer to this property as additivity property). In this paper, starting from 
these two basic properties we identify a parameter, that we call measurement quality 
quantifier (MQQ), and evaluate its performances. 

Currently the quality quantification of measurements of atmospheric vertical profiles is 
often made using the Shannon information content [1]. This quantifier is used in the 
framework of the optimal estimation and evaluates the information gain brought by the 
measurement with respect to the a priori information. Consequently the value of the Shannon 
information content is a relative quality quantifier depending on the covariance matrix (CM) 
of the a priori profile and it cannot be adapted to quantify the absolute information coming 
from the observations in case of ill-posed problems. Furthermore, as illustrated in [4], the 
Shannon information content does not satisfies the additivity property for data fusion. Another 
quality quantifier recently introduced [5] is the information load. It describes the information 
brought by the observations with respect to a set of target parameters and we will show that it 
is closely linked with the MQQ introduced in this paper. 

The MQQ of indirect measurements depends on type and number of the target parameters 
that we are estimating, therefore, in the case of indirect measurements of a continuous 
distribution, such as the vertical profiles of atmospheric constituents, the MQQ depends on 
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the grid on which the distribution is represented. However, in the case of comparison of 
performances of two instruments that measure the vertical profile of an atmospheric 
parameter, the two retrieval analyses have in general different vertical grids and the MQQs 
calculated for the two instruments cannot be directly compared. In order to overcome this 
difficulty we derive from the MQQ a quantifier that for fine enough grids is independent of 
the grid. We refer to this quantifier as grid normalized MQQ. Because of this property, the 
value of this quantifier coincides with that obtained for an infinitely small grid step. 
Consequently the grid normalized MQQ has the property of providing the measurement 
quality of the vertical profile when it is represented by a continuous function of altitude. 

In Section 2 we identify the MQQ for direct measurements and in Section 3 we extend the 
definition of MQQ to indirect measurements. In Section 4 we define the relative MQQ that 
quantifies the measurement quality in relation to the value of the measured quantity. In 
Section 5 we show how to calculate the MQQ from the diagnostic of the solution of a 
constrained retrieval. In Section 6 we face the problem of the quality quantification of indirect 
measurements of a continuous distribution and introduce the grid normalized MQQ. In 
Section 7 we provide some examples of applications in which the MQQ is used to evaluate 
the performances of the instruments IASI (Infrared Atmospheric Sounding Interferometer) [6] 
and MIPAS (Michelson Interferometer for Passive Atmospheric Sounding)) [7]. Finally in 
Section 8 we draw the conclusions. 

2. Quality quantifier for direct measurements 

The quality quantifier of indirect measurements must be a generalization of that used for 
direct measurements. For this reason, we first perform the identification of the quality 
quantifier in the case of direct measurements. 

2.1 Direct measurement of a scalar quantity 

We consider the direct measurement affected by Gaussian noise of a scalar quantity x and 
look for a quantifier that properly describes the measurement quality. The standard deviation 
σ of the Gaussian probability distribution of the value of the measured quantity represents the 
error of the measurement and, therefore, as stated in the introduction, we look for a quality 
quantifier of the measurement that decreases when σ increases. 

In order to identify the expression for the quality quantifier we consider the case of 
performing two independent measurements of the same quantity x. We indicate the results of 
the two measurements with y1 and y2 that are characterized by the errors σ1 and σ2. On the 
basis of the additivity property stated in the introduction we require that the quality quantifier 
of the fusion of the two measurements is the sum of the quality quantifiers of the two original 
measurements. It is well known that the best estimation of x from the two measurements is 
obtained determining the x value that minimizes the chi-square function: 

 ( ) ( ) ( )2 2

1 22

2 2

1 2

.
y x y x

xχ
σ σ

− −
= +  (1) 

The minimization of ( )2
xχ  provides the best estimation x̂  of x given by: 

 

1 2

2 2

1 2

2 2

1 2

ˆ ,
1 1

y y

x
σ σ

σ σ

+

=
+

 (2) 

which is affected by an error σ that is related to σ1 and σ2 by the equation: 

 
2 2 2

1 2

1 1 1
.

σ σ σ
= +  (3) 
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Equation (3) shows that the fusion of two independent measurements of the same quantity 
determines the sum of the inverse square errors of the two measurements. This result suggests 
that a good quality quantifier of the direct measurement of a scalar quantity is the inverse of 
the square error that we call measurement quality quantifier (MQQ) and indicate with Q. 

2.2 Direct measurement of a vector quantity 

Now we consider n direct measurements of a vector quantity x of n components. The values xi 

of the n components of x are individually determined by the measurements ˆ
i

x  that have errors 

σi uncorrelated with each other. This condition can be described saying that the CM Sx of x̂  is 
a diagonal matrix: 

 

2

1

2

2

2

0 ... 0

0 ... 0
.

... ... ... ...

0 0 ...

x

n

σ
σ

σ

 
 
 =
 
  
 

S  (4) 

We notice that the inverse matrix of Sx contains in the diagonal the MQQs of the 
components of x: 
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S  (5) 

We can consider the direct measurement of a vector as the fusion of n independent 
measurements of n different quantities and, on the basis of the additivity property, we define 
the MQQ associated with the measurement of x as the sum of the MQQs of its components: 

 
1

1

( ),
n

i x

i

Q Q tr
−

=

= =∑ S  (6) 

where tr(…) denotes the trace of the matrix. 
An expression has been found for the MQQ in the case of the direct measurement of a 

vector. 
Of course, for the sum in Eq. (6) to have a physical meaning it is necessary that the 

components of x are dimensionally homogeneous. 

3. Quality quantifier for indirect measurements 

3.1 Indirect measurement of a scalar quantity 

In the case of an indirect measurement of the scalar quantity x we observe another quantity y 
related to x by a model given by a function F(x): 

 ( )y F x=  (7) 

and determine an estimate x̂  of x from the inversion of Eq. (7). 

In order to distinguish the estimate x̂  from the experimental quantity y we call the former 

the measurement of x and indicate the latter as the observation y. 

The error σ of x̂  is calculated by propagating the error ε on y by means of an expansion of 

Eq. (7) at the first order: 

 ,
k

ε
σ =  (8) 
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where k is the derivative of F(x) with respect to x calculated in x̂ . From Eq. (8) we obtain the 

expression of the MQQ of the indirect measurement of x: 

 
2

2 2

1
.

k
Q

σ ε
= =  (9) 

Equation (9) shows that in the case of indirect measurements an important role is played 
by the derivative of the function relating the observation with the inferred quantity. This 
derivative expresses the sensitivity of the observation to the inferred quantity and, therefore, 
the measurement quality increases with it. 

Now we consider the case of performing two independent observations y1 and y2 

(characterized by errors 
1
ε  and 

2
ε ) of the same quantity x. The two observations are related 

to x by means of two functions: 

 
1 1

( )y F x=  (10) 

 
2 2

( ).y F x=  (11) 

Since now we have two equations and only one unknown we cannot directly solve the 
inversion problem as done for the case of Eq. (7), indeed, because of the experimental errors 
the two equations can be incompatible. Analogously to what we did in the case of direct 
measurements we look for the value that minimizes the chi-square function: 

 ( )
( )( ) ( )( )2 2

1 1 2 22

2 2

1 2

.
y F x y F x

xχ
ε ε

− −
= +  (12) 

The value x̂  of x that minimizes ( )2
xχ  is the one that makes equal to zero the derivative 

of ( )2
xχ  with respect to x and, therefore, satisfies the following equation: 

 
( )( ) ( )( )1 1 1 2 2 2
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− −
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where k1 and k2 are the derivatives of F1(x) and F2(x) at x̂ . 

Equation (13) determines x̂  as a function of the observations y1 and y2 and from a first 

order expansion of this function we can calculate the error propagation from y1 and y2 into x̂  

and determine its error σ: 

 2 2 2 2 2

1 1 2 2
,g gσ ε ε= +  (14) 

where 
1

1

x̂
g

y
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2

2
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g

y
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∂ 
. Performing the derivatives of Eq. (13) with respect to y1 

and y2 (neglecting the dependence of k1 and k2 on x̂ , that is assuming the linear 

approximation for F1(x) and F2(x) around the minimum of ( )2
xχ ) we obtain two equations 

from which g1 and g2 can be determined. Substituting these values of g1 and g2 in Eq. (14) we 
obtain the equation: 

 
2 2

1 2

2 2 2

1 2

1
.

k k
Q

σ ε ε
= = +  (15) 

Comparing Eq. (15) and Eq. (9) we see that also in the case of indirect measurements the 
MQQ of the fusion of two independent measurements of the same quantity is equal to the sum 
of the MQQs of the two original measurements. 

A long procedure has been followed to derive Eq. (15), but this will be useful for the 
understanding of the less intuitive result that is obtained in Section 3.2. 
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3.2 Indirect measurement of a vector quantity 

Now we consider the most general case of m indirect measurements of a vector quantity x 
made of n components. We represent the m observations with a vector y characterized by the 
CM Sy and the relationship between x and y is expressed by a function F(x) from R

n
 to R

m
 

(including all the vectors made of ordered n-tuples and m-tuples of real numbers, 
respectively): 

 ( ).=y F x  (16) 

The measurement of x is given by the value x̂  which minimizes the chi-square function: 

 ( ) ( )( ) ( )( )2 1
.

T

yχ −= − −x y F x S y F x  (17) 

Imposing that the derivatives of ( )2χ x  with respect to the components of x are equal to 

zero we find that the value x̂  must satisfy the following equation: 

 ( )( )1 ˆ ,
T

y

− − =K S y F x 0  (18) 

where K is the Jacobian matrix of F(x) (including the partial derivatives of F(x) with respect 

to the elements of x) calculated in x̂ . 
Equation (18) is a vector equation that corresponds to a system of n equations in n 

unknown. If the n equations are independent, Eq. (18) determines x̂  as a function of the 

observations y and we can calculate the error σ  on x̂ by propagating the errors ε  on y: 

 ,=σ Gε  (19) 

where G is the gain matrix 
ˆ∂

=
∂

x
G

y
 (the matrix whose ij-th element is 

ˆ
i

ij

j

x
G

y

∂
=
∂

). The CM Sx 

of x̂  is then given by: 

 ,
T T

x y= =S σσ GS G  (20) 

where ... denotes the mean value. 

Performing the derivatives of Eq. (18) with respect to the components of y (neglecting the 

dependence of K on x̂ , that is assuming the linear approximation of F(x) around the 

minimum of ( )2χ x ), we obtain the expression of G: 

 ( ) 1
1 1

.
T T

y y

−− −=G K S K K S  (21) 

Substituting Eq. (21) in Eq. (20) we obtain the expression for Sx: 

 ( ) 1
1

.
T

x y

−−=S K S K  (22) 

Now, differently from the case discussed in Section 2.2, the matrix Sx is not diagonal, that 

is the errors in the elements of x̂  are correlated with each other. However, since Sx is a 
positive-definite symmetric matrix, it is possible to make it diagonal by an orthogonal 

transformation that identifies linear combinations of the elements of x̂  that are independent 
of each other. This means that it is possible to find an orthogonal matrix U for which the 

matrix T

x
=Λ U S U  is a diagonal matrix with positive diagonal elements λ1

2
, λ2

2
,… λn

2
 that are 

the eigenvalues of Sx. Λ is the CM of the vector U
T x̂

, whose components represent the n 
uncorrelated quantities that have been determined by the observations, and the eigenvalues 
measure the square errors with which these components have been measured. Analogously to 
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what we did for direct measurements, on the basis of the additivity property, we define the 
MQQ as the sum of the MQQs of the n uncorrelated components: 

 
1

2
1

1
( )

n

i i

Q tr
λ

−

=

= =∑ Λ  (23) 

and notice that Q is equal to the summation of the eigenvalues of Λ
−1

. 

Since 1 1T

x

− −=Λ U S U  and considering that the trace of a matrix is invariant by orthogonal 

transformations, we obtain: 

 1 1 1( ) ( ) ( ).T

x x
Q tr tr tr− − −= = =Λ U S U S  (24) 

Analogously to the case of direct measurements we can define the MQQ of indirect 
measurements as the trace of the inverse of the CM Sx. 

Substituting Eq. (22) in Eq. (24) we obtain the following expression for the MQQ of a 
vector determined with indirect observations y: 

 ( )1
.

T

yQ tr
−= K S K  (25) 

Equation (25) has been derived supposing that the n equations of Eq. (18) are independent 
of each other. If this assumption does not apply, it is not possible to calculate the inverse of 

1T

y

−
K S K  that appears in Eqs. (21) and (22) and the retrieval is an ill-posed problem. 

However, we can still calculate the eigenvalues of 
1T

y

−
K S K  and still define the MQQ as 

equal to the summation of these eigenvalues. Indeed when the retrieval is ill-posed some 
eigenvalues are equal to zero and this implies that the corresponding components of the vector 

U
T x̂

 have not been measured and do not contribute to the MQQ. Nevertheless the MQQ can 
still be determined accounting for the measured components. Therefore, the quantity defined 
in Eq. (25) provides the MQQ of indirect measurements regardless of whether the inverse 
problem is well-posed or not. 

3.3 General considerations 

Having defined the MQQ as the trace of the inverse of the CM it has been possible to 
generalize the MQQ to ill-posed problems. Other definitions of quality quantifiers, as for 
example the Shannon information content [1], also use the inverse of the CM, but calculate 
instead the determinant of this matrix. In this case the generalization to ill-posed problems 
cannot be done because if some eigenvalues of the inverse of the CM are zero also the 
determinant is zero independently of the values of the others. Therefore, for ill-posed 
problems, the determinant of the inverse of the CM is not able to quantify the measurement 
quality on the basis of the errors of the measured components. 

This conclusion can also be reached looking at the geometrical interpretation of the 
determinant and of the trace of a positive-semidefinite symmetric matrix. The determinant of 
the matrix represents the volume of the hypercuboid with lengths of the edges equal to the 
eigenvalues of the matrix. The trace of the matrix is the square diagonal of the hypercuboid 
with edges equal to the square root of the eigenvalues of the matrix. If one of the edges of the 
hypercuboid is zero then the hypercuboid becomes a hypercuboid of n-1 dimensions and the 
n-dimensional volume is zero. On the other hand, the diagonal of the (n-1)-hypercuboid is 
different from zero and its value depends on the lengths of the edges different from zero. 

As a consequence of its definition the MQQ does not provide any information on how 
many components of the unknown vector have been measured. Indeed the same value of the 
MQQ can be obtained either measuring many components with large errors or measuring a 
few components with small errors. If for some reason it is preferable to measure more 
components giving less importance to the errors with which the components are measured it is 
useful to consider together with the MQQ also a quantifier of the number of measured 
components that can be identified in the degrees of freedom for signal [1]. Indeed, the MQQ 
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cannot replace the existing quantifiers, it rather complements them with new and useful 
properties. 

We notice that the matrix 
1T

y

−
K S K that we have used to define the MQQ is the Fisher 

information matrix [8] of the likelihood function L(x) = P(y|x) (that is the conditional 
probability distribution to obtain y given x, considering P(y|x) as a function of x) when we 
assume a Gaussian distribution for P(y|x): 

 ( )
( )

( )( ) ( )( )1

1/2/2

1 1
| exp ,

22

T

ym

y

P
π

− = − − − 
 

y x y F x S y F x
S

 (26) 

that is generally appropriate for describing the noise associated with experimental data. 
Indeed, the Fisher information matrix F relative to L(x) is defined as: 

 ( ) ( ) ( )ln | ln |
|

T

P P
P d

∂ ∂  
=   

∂ ∂  
∫

y x y x
F y x y

x x
 (27) 

and substituting 
( ) ( )( )1

ln |
T

y

P −∂
= −

∂

y x
K S y F x

x
 (derived from Eq. (26)) we obtain: 

 ( ) ( )( ) ( )( )1 1 1
| ,

TT T

y y y
P d

− − − = − − =
 ∫F K S y x y F x y F x y S K K S K  (28) 

where we have exploited the fact that the expected value of ( )( ) ( )( )T

− −y F x y F x  is the CM 

Sy. 
Therefore, Eq. (25) can also be written as: 

 ( )
1

.
n

ii

i

Q tr F
=

= =∑F  (29) 

Furthermore, since Sy is a positive-definite matrix, we have that: 

 ( ) ( ) ( ) 2
1 1/ 2 1/2 1/ 2

1

0,
m

T T

ii y y y yii ii ji
j

F
− − − −

=

= = = ≥∑K S K K S S K S K  (30) 

that is Fii are not-negative quantities given by the sum of the square elements of the i-th 
column of the matrix Sy

-1/2
K and consequently from Eq. (29) it follows that the MQQ is the 

sum of all the square elements of the matrix Sy
-1/2

K. Equations (29-30) show that the MQQ is 
written as the sum of n quantities greater than or equal to zero that we can interpret as the 
contributions to the total MQQ related to the measurements of the single elements of x. We 
refer to the contributions Fii as the MQQ components. 

We notice that the square root of the MQQ components Fii is closely linked with the 
information load (defined as the square root of the diagonal elements of K

T
K) introduced in 

[5] and therewith used to evaluate the amount and the spatial distribution of the information 
that is carried by MIPAS [7] observations about the target atmospheric parameters. Both the 
information load and the MQQ components quantify the quality of the measurement of the 
different unknowns of the retrieval, however, in this paper we prefer to use the latter because 
it takes into account the effect of Sy and has the additivity property. 

Indeed the additivity property of the MQQ also applies to its components. This statement 
can be demonstrated in the following way. We consider two independent indirect 
measurements y1 (of m1 elements) and y2 (of m2 elements) of the set of parameters represented 
by the vector x. The measurements are characterized, respectively, by the Jacobian matrices 
K1 and K2 and by the CMs Sy1 and Sy2. In order to calculate the MQQ components Fii of the 
data fusion of the two measurements we consider the two measurements as a single 

#158642 - $15.00 USD Received 23 Nov 2011; revised 19 Jan 2012; accepted 31 Jan 2012; published 16 Feb 2012
(C) 2012 OSA 27 February 2012 / Vol. 20,  No. 5 / OPTICS EXPRESS  5158



  

measurement 
1

2

 
=  
 

y
y

y
 (including m1 + m2 observations) with Jacobian matrix 

1

2

 
=  
 

K
K

K
 

and CM 
1

2

y

y

y

 
=  
 

S 0
S

0 S
, where the notation 

 
 
 

L

M
means the matrix (vector) obtained 

arranging the rows of the matrix (vector) M below the rows of the matrix (vector) L. 

Consequently 

1/ 2

1 11/ 2

1/ 2

2 2

y

y

y

−
−

−

 
=   
 

S K
S K

S K
and, using Eq. (30), we obtain: 

 ( ) ( ) ( )
1 2 1 22 2 2

1/2 1/2 1/2

1 1 2 2

1 1 1

.
m m m m

ii y y yji ji ji
j j j

F
+

− − −

= = =

= = +∑ ∑ ∑S K S K S K  (31) 

Equation (31) shows that the MQQ components Fii of the data fusion are the sum of the 
MQQ components (F1)ii and (F2)ii of the two original measurements. This result can be 
extended to the data fusion of any number of measurements. 

4. Relative quality quantifier 

In order to understand the meaning of the MQQ components Fii we explicitly write the 
expression of these terms: 

 ( ) ( )
( )

( )1 1 1

2
, 1 , 1 , 1

1
.

m m m
jl

ii li y ji y l y jlj lj lj
l j l j l ji i i

yy
F K S K S y S y

x x x

− − −

= = =

∆∆
= ≈ = ∆ ∆

∆ ∆ ∆
∑ ∑ ∑  (32) 

From Eq. (32) we see that Fii represents the sum of the quadratic variations of the 
observations, weighted with the CM Sy, that correspond to a variation ∆xi divided by the 
square of ∆xi. 

Since from the experimental point of view in some cases the quantity that is relevant is 

i

i

x

x

∆
 rather then ∆xi, it can be useful to use a relative MQQ instead of the absolute MQQ 

defined in subsection 3.2. The definition of a relative quality quantifier can be deduced from 
Eq. (32) substituting the square absolute variation (∆xi)

2
 with the square relative variation 

2

i

i

x

x

 ∆
 
 

. We obtain the following expression for the dimensionless relative MQQ 

components: 

 ( )2 1

2
, 1

1
.

m

ii i l y jlj
l j

i

i

F x y S y
x

x

−

=

= ∆ ∆
 ∆
 
 

∑  (33) 

Summing the relative MQQ components Fiixi
2
 we can define a relative MQQ as equal to: 

 
2

1

.
n

r ii i

i

Q F x
=

=∑  (34) 

5. The invariant of the retrieval problem 

In the case of either an ill-posed or an ill-conditioned indirect measurement a constraint is 
used for the retrieval of the unknown and the CM of the retrieved estimate of x is no longer 
equal to the inverse of the Fisher matrix of the observations. Therefore, the Fisher matrix and 
the MQQ, which are defined by quantities (K and Sy) characterizing the observations, can no 
longer be simply derived from the quantities characterizing the retrieval. In order to verify 
how the Fisher matrix can be calculated from the diagnostics that are generally distributed to 

#158642 - $15.00 USD Received 23 Nov 2011; revised 19 Jan 2012; accepted 31 Jan 2012; published 16 Feb 2012
(C) 2012 OSA 27 February 2012 / Vol. 20,  No. 5 / OPTICS EXPRESS  5159



  

the data user together with the retrieval products the mathematics of the constrained retrieval 
is briefly recalled. 

In a constrained retrieval the estimation of the unknown is obtained minimizing a cost 
function c(x) that is the sum of the chi-square function plus a constraint function R(x): 

 ( ) ( )( ) ( )( ) ( )1
.

T

yc R
−= − − +x y F x S y F x x  (35) 

The constraint function is used whenever the information contained in the observations is 
not sufficient to retrieve the unknown with acceptable errors. 

Imposing the derivatives of c(x) with respect to the components of x equal to zero we find 

that the value x̂  of x that minimizes c(x) satisfies the following equation: 

 ( )( ) ( )1

ˆ

ˆ2 .T

y

R−

=

∂
− − + =

∂
x x

x
K S y F x 0

x
 (36) 

The vector x̂  is determined from Eq. (36) as a function of the observations y and is 
characterized by the CM Sx and by the averaging kernel matrix (AKM) that is defined as 

ˆ∂
=
∂
x

A
x

 [1,9,10]. We can calculate the CM following the same procedure as in Subsection 

3.2. We perform the derivatives of Eq. (36) with respect to the elements of y and solve the 
obtained equation with respect to the gain matrix G, which turns out to be equal to: 

 ( ) 1
1 1

,
T T

y y

−− −= +G K S K R K S  (37) 

where we have defined the matrix 
( )2

2

ˆ

1

2

R

=

∂
=

∂
x x

x
R

x
. 

Substituting Eq. (37) in Eq. (20) we obtain the expression for the CM of x̂ : 

 ( ) ( )1 1
1 1 1

.
T T T

x y y y

− −− − −= + +S K S K R K S K K S K R  (38) 

We can see that in this case, because of the use of the constraint, the expression of Sx does 
not coincide with that given in Eq. (22). Therefore, now it is not correct to estimate the MQQ 
of the measurement calculating the trace of the inverse of Sx because this quantity contains the 
information that we have added with the constraint. In order to obtain the correct expression 
for the MQQ we need to consider also the AKM. 

Using Eq. (37) we obtain the following expression for the AKM: 

 ( ) 1
1 1ˆ ˆ

.
T T

y y

−− −∂ ∂ ∂
= = = = +
∂ ∂ ∂
x x y

A GK K S K R K S K
x y x

 (39) 

In the case of a well-posed problem the matrix 
1T

y

−
K S K  is invertible and consequently 

also the CM Sx expressed by Eq. (38) is invertible. In this case it is easy to verify that, 

because of Eqs. (38) and (39), the matrix 1T

x

−A S A  is equal to the Fisher information matrix: 

 
1 1

.
T T

x y

− −= =A S A K S K F  (40) 

In the case of an ill-posed problem the matrix 
1T

y

−
K S K  is not invertible, therefore, also 

the CM Sx is not invertible. However, we can consider the generalized inverse [11] of Sx that 
we indicate with Sx

#
 and that can be calculated using the singular value decomposition. It is 

possible to demonstrate (see Appendix) that: 

 
1

.
T T

x y

−= =A S A K S K F
#

 (41) 

#158642 - $15.00 USD Received 23 Nov 2011; revised 19 Jan 2012; accepted 31 Jan 2012; published 16 Feb 2012
(C) 2012 OSA 27 February 2012 / Vol. 20,  No. 5 / OPTICS EXPRESS  5160



  

Equation (41) shows that, even if different constraints provide different solutions that have 

different CMs (Eq. (38)) and AKMs (Eq. (39)), the combination T

x
A S A#  is an invariant 

independent from the constraint R(x) and it provides the quantity from which we can calculate 
the MQQ: 

 ( ) ( )1
.

T T

y xQ tr tr
−= =K S K A S A

#
 (42) 

The result of Eq. (42) is rather general, but it does not apply when the constraint is seen as 

another measurement characterized by the CM R
−1

 and the solution is interpreted as the 
weighted mean of the two measurements (the actual measurement and the constraint). This is 

for instance the case of the “optimal estimation method”. In this case the CM of x̂  is not 
given by Eq. (38) but by [1]: 

 ( ) 1
1

,
T

x y

−−= +S K S K R  (43) 

that is always a not singular matrix. 

Therefore, in the case of the optimal estimation method the invariant 
1T

y

−=F K S K  from 

which we can calculate the MQQ is not given by Eq. (40) but, using Eqs. (39) and (43), is 
equal to: 

 ( )1 1 1
.

T T

y y x

− − −= = + =F K S K K S K R A S A  (44) 

The Fisher matrix is an invariant of the retrieval process that, given the set of unknowns, 
characterizes the observations (through K and Sy) and that, independently of the adopted 
constraint, can also be determined from the quantities that characterize the measurements 
(through A and Sx). The existence of this invariant proves that the retrieval, if properly made 
and fully characterized, is a process that does not destroy any information. 

6. Information distribution 

In the case of indirect measurements of a continuous distribution, such as the vertical profiles 
of atmospheric constituents, since the MQQ defined by Eq. (42) depends on the set of 
unknowns that are retrieved, a different value of MQQ is obtained when the vertical profile is 
represented on a different vertical grid. Indeed, since to each element xi of x is associated an 
altitude interval ∆zi, a variation of the parameter xi determines a variation of the observations 
y proportional to the altitude interval ∆zi, and the element Kij of K is proportional to ∆zj. 
Consequently the diagonal elements Fii are proportional to ∆zi

2
 and, as stated above, their 

values depend on the grid on which the vertical profile is represented. Also the MQQ (the sum 
of the Fii) depends on the grid and in particular it approaches zero for very fine grids when ∆zi 
tend to zero. 

We want to define a quality quantifier that tends to a finite value different from zero when 
∆zi tend to zero, and, therefore, this value represents the measurement quality referred to the 
vertical profile represented as a continuous function of altitude. Since Fii are proportional to 
∆zi

2
 we define the grid normalized MQQ components as: 

 
2

ii

i

i

F
f

z
=
∆

 (45) 

and call this quantity the information distribution. 
If the vertical grid is fine enough to capture the vertical variation of the MQQ 

components, the fi values in the neighborhood of each altitude are independent of the grid. 
Accordingly we can define the grid normalized MQQ as: 

 
1

,
n

i i

i

q f z
=

= ∆∑  (46) 
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that in the limit of 0
i

z∆ → tends to the integral of the information distribution f(z) and 

provides an overall assessment of the quality of a distribution measurement (independently of 
the selected retrieval grid). 

Following the argumentations described in Section 4 we can define the relative 
information distribution as fixi

2
 and the grid normalized relative MQQ as: 

 
2

1

,
n

r i i i

i

q f x z
=

= ∆∑  (47) 

Examples about the use of these quantifiers will be given in the next Section. 

7. Some applications 

7.1 Quality of IASI and MIPAS ozone measurements and of their data fusion 

In this Subsection we use the quality quantifiers introduced in the previous sections to 
compare the quality of two co-located ozone measurements performed by IASI and MIPAS 
instruments and of their data fusion. The analysis of these two measurements as well as their 
data fusion is described in detail in [4]. We recall here the basic information needed to 
understand the quality comparison and refer to [4] for further details. 

The IASI instrument [6], launched onboard the sun-synchronous polar orbiting satellite 
Metop-A (Metereological Operational) on 19 October 2006, is a nadir-viewing Fourier 
transform spectrometer for passive atmospheric sounding in the thermal infrared region from 

645 to 2760 cm
−1

. The retrieval of the ozone vertical profile was performed using a version of 
the MARC (Millimetre-wave Atmospheric-Retrieval Code) retrieval code [12] recently 
upgraded for the analysis of the REFIR (Radiation Explorer in the Far InfraRed) 
measurements [13,14] and subsequently optimized, in the frame of a project of the European 
Spatial Agency (ESA), for IASI measurements. 

The MIPAS instrument [7], launched onboard the sun-synchronous polar orbiting satellite 
Envisat (ENVIronmental SATellite) on 1st March 2002 is a limb-viewing Fourier-transform 

spectrometer operating in the middle infrared between 685 and 2410 cm
−1

. The retrieval of the 
ozone profile was performed using the ORM (Optimized Retrieval Model) [15–18] that is the 
scientific prototype of the ESA operational level 2 code. 

Two co-located IASI and MIPAS measurements acquired on 4 July 2008 at the following 
geolocations: time (UTC) 9:57:00, latitude 21.83 N, longitude 5.88 W for the IASI 
measurement and time (UTC) 10:40:55, latitude 21.93 N, longitude 6.22 W for the MIPAS 
measurement have been used to perform a data fusion. 

In Fig. 1 we report the components Fiixi
2
 of the relative MQQ as a function of altitude for 

the IASI measurement, the MIPAS measurement and their data fusion. Since the two 
retrievals have been performed using the same retrieval grid (from 1 to 80 km of altitude at 1 
km steps), the MQQ components provide an adequate parameter for the comparison. Figure 1 
shows clearly that the MIPAS measurement contains information on the ozone profile 
between 15 and 60 km, while the IASI measurement contains information below 30 km with a 
minimum at 15 km. The data fusion contains information on the ozone profile between 1 and 
60 km with a minimum around to 15 km where both instruments have a contribution to the 
relative MQQ that is very small. The oscillations in the line of the MIPAS measurement 
correspond to maxima of the information for tangent altitudes of the observations. The 
analysis of the MQQ components highlights the relative merits of the two measurements as 
well as the strength and the weakness of the product of their fusion. 

The relative MQQ Qr is 50156 for the IASI measurement, 125225 for the MIPAS 
measurement and 175381 for the data fusion, confirming again the additivity property of the 
MQQ parameter. 
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Fig. 1. Components Fiixi
2 of the relative MQQ as a function of altitude for the IASI 

measurement (blue line), the MIPAS measurement (red line) and their data fusion (black line). 

A comparison of the quality of the measurements of IASI and MIPAS analyzed in this 
Subsection using the conventional quantifiers such as retrieval errors, Shannon information 
content and degrees of freedom for signal is reported in [4]. The results obtained in [4] depend 
on the CM of the a priori profile used in the analysis (in that case a climatological profile), on 
the other hand the results reported here quantify in absolute way the quality of the 
observations with respect to the retrieved parameters independently of any constraint that can 
be used in the retrieval. 

7.2 Comparison of quality of MIPAS full and optimized resolution measurements 

The MIPAS instrument onboard of Envisat from July 2002 to March 2004 has acquired 
measurements with an interferometer maximum path difference (MPD) equal to 20 cm, 

corresponding to a spectral resolution of 0.025 cm
−1

. A limb sequence in the nominal 
observation mode was composed of 17 spectra that looked at different tangent altitudes from 
6 to 68 km, with a step of 3 km in the troposphere and lower stratosphere and of up to 8 km in 
the high stratosphere. The measurements acquired between July 2002 and March 2004 are 
referred to as full resolution (FR) measurements. 

After January 2005 the measurements were acquired with a reduced MPD equal to 8.2 cm. 
The interferograms acquired with reduced MPD are Fourier-transformed in spectra and re-

sampled with a spectral resolution of 0.0625 cm
−1

. In the nominal observation mode adopted 
after January 2005, a MIPAS limb scan consists of 27 spectra that look at different tangent 
altitudes from 7 to 72 km with a step of 1.5 km in the troposphere and lower stratosphere and 
of up to 4.5 km in the high stratosphere. The measurements acquired since January 2005 are 
referred to as optimized resolution (OR) measurements. 

The ORM code performs the retrieval of the ozone profile fitting the simulated radiance to 
the observations in a selected set of spectral intervals (called “microwindows”) [19] that 
contain the maximum information on ozone. Two different sets of microwindows have been 
selected for the ozone retrieval from FR and OR measurements, each set being optimized for 
the specific measurement scenario. The details about the measurement scenarios and the 
microwindow selection for FR and OR measurements can be found in [20]. 
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Fig. 2. Relative information distribution of an OR MIPAS measurement of ozone calculated for 
the original retrieval grid (black line and squares) and degrading the retrieval grid of a factor 
two (red line and squares) and of a factor four (green line and squares). The information 
distribution provides an assessment of the acquired information and weakly depends on the 
retrieval grid. 
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Fig. 3. Relative information distribution for orbit #8271 (a), acquired at FR, and for orbit 
#29184 (b), acquired at OR, as a function of altitude and orbital coordinate. Notice the factor 
five between the color scales for the two orbits. 
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In this Subsection we compare the quality of MIPAS ozone FR and OR measurements. 
Since the retrieval grid adopted by ORM coincides with the observation tangent altitudes 
which are different for FR and OR measurements, we cannot directly compare the MQQ 
components, but we can compare the information distributions introduced in Section 6. 
Indeed, for enough fine grids, this quantifier is independent of the grid. 

In order to verify this statement we report in Fig. 2 the relative information distribution for 
an OR MIPAS measurement of ozone calculated at the original retrieval grid as well as at the 
retrieval grids degraded by a factor two and by a factor four. We can see that degrading the 
retrieval grid by a factor two we lose some details of the distribution structure, but there is not 
a significant change in the values. A larger, but still contained, change is observed for a 
degradation by a factor four. 

Since the FR retrieval grid is degraded with respect to the OR retrieval grid less than a 
factor two, the comparison of the information distributions provides a correct quality 
comparison of the measurements in the two scenarios. 

We have calculated the relative information distributions for the two following Envisat 
orbits: orbit #8271 acquired on 29 September 2003 at FR and orbit #29184 acquired on 29 
September 2007 at OR. In Fig. 3 we report the relative information distribution as a function 
of altitude and orbital coordinate for the two analyzed orbits. The orbital coordinate is defined 
as the value of the latitude in the hemisphere where the longitude is between 90° W and 90° E 

and 180° minus the latitude in the other hemisphere. Therefore, orbital coordinates of −90°, 
0°, +90°, +180° and +270° correspond to the South pole, the equator, the North pole, the 
equator and the South pole, respectively. Figure 3 shows that the relative information 
distribution has a maximum between 15 and 35 km of altitude, depending on the orbital 
coordinate, with larger values between 225° and 270° for both FR and OR measurements. The 
FR orbit shows large values also close to the North pole. Figure 3a and Fig. 3b have color 
scales that differ by a factor five and, despite the overall similar appearance of the color 
distributions of the two figures, the quality of OR measurements is significantly better than 
that of FR measurements. 
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Fig. 4. Relative information distribution fixi
2 as a function of altitude averaged along the orbit 

for FR measurements (orbit #8271 red line) and for OR measurements (orbit #29184 black 
line). 

In order to visualize more clearly the quality difference of the two measurement scenarios 
in Fig. 4 we report the average along the orbit of the relative information distributions as a 
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function of altitude. Figure 4 has been obtained interpolating the values reported in Fig. 3 on a 
common grid of 1 km steps and averaging the interpolated values along the orbits. The 
average grid normalized relative MQQs obtained integrating the curves reported in Fig. 4 are 

13622 km
−1

 for the FR orbit and 75845 km
−1

 for the OR orbit, proving the improvement 
attained with the new measurement scenario. 

Finally we remark the importance of having a grid independent quality quantifier which 
has made possible to quantify in absolute way the quality increase occurred passing from FR 
to OR MIPAS measurements. It is not possible to obtain this result with the conventional 
quantifiers such as retrieval errors, Shannon information content and degrees of freedom for 
signal, that only allow the comparison between retrievals represented on the same vertical 
grid. 

8. Conclusion 

We have identified a quality quantifier, referred to as MQQ, that can consistently be defined 
for both direct and indirect measurements of both scalar and vector quantities and that 
satisfies the additivity property. This means that the MQQ of the data fusion of two or more 
independent measurements is the sum of the MQQs of the individual measurements. 

The MQQ is the only quality quantifier, defined for the characterization of the retrieval 
products, that has the additivity property. This makes the MQQ particularly useful in the 
context of data fusion activities and an important complement to the characterizations 
provided by other quality quantifiers. 

For indirect measurements the quantifier is equal (see Eq. (25)) to the trace of the matrix 
1T

y

−
K S K , which is the Fisher information matrix of the likelihood function, and can, 

differently from other information quantifiers such as the Shannon information content, be 
also defined in absolute terms for ill-posed inversion problems. 

The Fisher matrix is calculated from quantities, such as the covariance and Jacobian 
matrices, that characterize the observations. However, in the case of an unconstrained 
retrieval the Fisher matrix is equal to the inverse of the CM of the retrieved measurements. 

Furthermore, we have demonstrated that for a constrained retrieval, in which the 
constraint does not contain additional information, a combination of the CM and of the AKM 
of the retrieval is invariant to the constraint and is equal to the Fisher matrix. This invariant 
only depends on the CM of the observations and on the forward model and describes the 
information that the observations have about the unknown parameters. The MQQ is a function 
of this invariant and, therefore, has the property of being independent of the constraint that is 
used in the retrieval. 

In the case of a constrained retrieval, in which the constraint contains additional 
information, a different combination of the products of the constrained retrieval must be used 
for the calculation of the Fisher matrix, the MQQ still being equal to the trace of the Fisher 
matrix. 

The value of the MQQ depends on the set of unknowns, but a new set of unknowns that is 
obtained with an orthogonal transformation has the same MQQ as the original one. Given a 
set of unknowns each contributes to the total MQQ with its MQQ component (see Eq. (29)). 
The MQQ components quantify the quality of the measurement of the different unknowns of 
the retrieval and the MQQ is equal to the summation of the MQQ components. 

The additivity property also applies to the MQQ components because the MQQ 
components of the data fusion of two measurements are equal to the sum of the MQQ 
components of the original measurements. This result can be extended to the data fusion of 
any number of measurements. 

When the measured quantity is a continuous distribution, the MQQ components and the 
MQQ depend on the sampling grid of the distribution and the need arises of characterizing the 
observations independently of the selected grid. To this purposes a grid normalized MQQ and 
the grid normalized MQQ components have been defined. For the step of the sampling grid 
tending to zero the grid normalized MQQ components tend to the values of a finite function, 
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which well characterizes the information distribution of the observations. The shape, and also 
the intensity, of the information distribution can also be reasonably captured with calculations 
made with relatively coarse values of the sampling grid (see Fig. 2). 

As examples of the possible applications we have used the proposed quantifiers to 
evaluate the quality of the measurements of the ozone vertical profiles performed by the IASI 
and MIPAS instruments and of their data fusion. This analysis has identified the vertical 
ranges where IASI and MIPAS contain information about the ozone profile, assessing their 
complementarities, redundancies and common weaknesses, and has quantified the quality 
increase occurred when the measurement scenario of MIPAS was changed. 

Appendix 

We give the demonstration that in ill-posed retrievals, where the CM Sx is not invertible, we 
have: 

 
1

,
T T

x y

−=A S A K S K
#

 (A1) 

where Sx
#
 is the generalized inverse of Sx [11]. The generalized inverse of Sx can be 

calculated in the following way. Since Sx is a symmetric matrix we can find an orthogonal 

matrix U for which T

x
=S UΛU  where Λ is a diagonal matrix with some diagonal values 

equal to zero. The generalized inverse of Sx is the matrix T

x
=S UΛ U# #  where Λ

#
 is the 

diagonal matrix whose diagonal elements are given by Λ
#

ii=1/Λ ii if Λ ii is different from zero 
and by Λ

#
ii=0 if Λ ii is equal to zero. 

Multiplying the matrix T

x
A S A#  times the identity matrix 

( )( ) 1
1 1T T

y y

−− −= + +I K S K R K S K R  on the left and on the right, we get: 

 ( )( ) ( ) ( )1 1
1 1 1 1

.
T T T T T T

x y y x y y

− −− − − −= + + + +A S A K S K R K S K R A S A K S K R K S K R
# #  (A2) 

From Eqs. (38-39) we have the following relation between A and Sx: 

 ( ) 1
1

.
T

y x

−− + =A K S K R S  (A3) 

Substituting Eq. (A3) and its transposed in Eq. (A2) and recalling that Sx is a symmetric 
matrix, we obtain: 

 
( ) ( )
( ) ( )

1 1

1 1 ,

T T T

x y x x x y

T T

y x y

− −

− −

= + + =

= + +

A S A K S K R S S S K S K R

K S K R S K S K R

# #

 (A4) 

where we have used the property of the generalized inverse 
x x x x

=S S S S#  [11]. 

Substituting Eq. (38) in Eq. (A4) we obtain Eq. (A1). 
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