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(is paper presents the fundamental static and dynamic characteristics of a suspension system consisting of four linear springs
arranged in an X-shaped configuration to achieve geometric nonlinearity. (e particular interest is towards the design of a
softening spring geometry realizing a quasi-zero stiffness behaviour at large deflections, and the influence of the system pa-
rameters is investigated. (e static performance is studied in terms of the force-deflection curve and the dynamic performance in
terms of the frequency response curve. (e softening-hardening behaviour of the suspension leads to a frequency response which
bends to the lower frequencies reaching a well-defined minimum. It is found that both the static and dynamic behaviours may be
described in terms of a single parameter, and a simple closed-form expression is determined which links the damping in the
system to the excitation amplitude to achieve the lowest possible resonance frequency.

1. Introduction

(e ever growing demand to enhance the performance of
mechanical systems and structures has recently pushed
research efforts towards the exploitation of nonlinear effects
rather than to their avoidance [1, 2]. New solutions and
innovative designs have been investigated recently to this
purpose, especially in the field of nonlinear dynamics and
vibration control [3, 4]. Mathematical approaches have been
adopted to investigate the dynamic behaviour of nonlinear
oscillators, with specific emphasis to prescribed nonlinear
functions of stiffness [5, 6] and damping [7, 8].

Practical applications of the benefits that nonlinearity
can introduce into a mechanical system are reported in the
field of energy harvesting from vibrations [9], vibration
absorbers [10], shock isolators [11], vibration isolators [12],
and elastic systems for potential energy increase [13]. In
some cases, a nonlinear stiffness element with a quasi-zero
stiffness (QZS) characteristic [2, 6, 8, 12, 13] has been
proposed to cope with the competing requirements of
achieving a high-static stiffness to limit the static deflection
and a low-dynamic stiffness to improve the dynamic per-
formance. A cubic stiffness characteristic with hardening

behaviour has been commonly reported, and a practical
mechanical realization consists of a pair of linear springs
located perpendicularly to the direction of motion, which
incline as the oscillator moves [2]. A global nonlinear be-
haviour of hardening type assures stability at the equilibrium
configuration, where the QZS effect is often required, and
this characteristic is obtained by combining elastic elements
with positive and negative stiffness in parallel. (e exclusive
use of a dominant softening stiffness effect, which can be also
practically obtained by using magnets arranged in an at-
tractive configuration [14], has the potential disadvantage to
eventually lead to a bistable or snap-through behaviour
[2, 15] for large displacements or even instabilities, which
could be undesired or detrimental in some cases.

In this paper, a softening-hardening behaviour is
achieved by simply arranging linear springs in an X-shaped
mechanical configuration, realizing a quasi-zero stiffness
effect for large deflections. Following the preliminary idea
presented in [16], a series of research works have recently
addressed its exploitation to develop innovative vibration
isolators [17–19], and it is believed that such characteristic
may be of interest to other applications, so that it is further
studied in this paper.
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Respect to the short communication presented in [16],
where the system was excited by a force on the oscillating
mass and no effect of gravity was considered, this paper
presents a more attractive engineering configuration where
the system is base-excited and the effect of the gravity on the
static equilibrium is taken into account.(is in turn involves
the introduction of more design parameters which may be
exploited for a better tuning to the desired application. (e
contribution of the present paper is thus a step forward
towards the practical design of the system. A deeper theo-
retical insight is undertaken which shed new light on the key
parameters of the system. A simple and interesting relation
between the excitation amplitude and the system damping is
uncovered from the study of the frequency response. (e
analytical and numerical analysis presented in this paper
allows a fundamental understanding of the nonlinear
characteristics of the system, underpinning prospective
pioneering applications which can be potentially attractive
to the engineering community for vibration control issues at
large [20].

2. Force-Deflection Characteristic

(emodel of the system considered in this work is illustrated
in Figure 1(a), and it consists of a mass m suspended by two

pairs of linear springs arranged in an oblique geometric
configuration inside a casing. (e pair of springs at the top
(bottom) have stiffness k1(k2), and the geometry of the
spring arrangement is defined by the dimension a and b, as
indicated in the figure. (e system is excited at its base (the
casing) by an imposed displacement y, as illustrated in
Figure 1(b), so that the suspended mass can oscillate inside
its casing. A viscous damper c is introduced as a generic
dissipative term, which is a practical assumption validated by
some recent experimental works on similar suspension
configurations [17–19]. (e relative displacement between
the mass and the casing is indicated by z, so that when z= 0
the mass is located at the centre of the casing. (e system is
subject to the acceleration of gravity g, pointing downwards,
as indicated in the figure. Due to symmetry, the mass os-
cillation is assumed to be constrained to the vertical di-
rection, and when the mass moves, the springs rotate
changing their length. It is considered that z0 is the initial
displacement achieved upon assembly, as highlighted in
Figure 1(a).

2.1. General Characteristic. (e relationships between the
mass displacement z and the applied static elastic restoring
force fs is given by

fs(z) � − 2k1(a − z) 1 − σ1
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where σ1(σ2) is a natural length factor, which accounts for
the top (bottom) springs to be assembled in tension or
compression respect to their corresponding natural length.
(is latter is obtained as the geometric distance between
each spring attachments at z� z0. (e spring natural length

factor is less (greater) than 1 when the springs are assembled
in tension (compression), and it is equal to 1 when the
springs are not deformed upon assembly.

Equation (1) may be conveniently rewritten in nondi-
mensional form as

fs(z) � − 2k(1 − z) 1 − σ1
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where fs(z) � (fs(z)/ak2), k � (k1/k2), b � (b/a),
z0 � (z0/a), z � (z/a), and p � (mg/ak2).

Equation (2) is a highly nonlinear function of the
nondimensional displacement z, and its parameters greatly
affect the shape of the force-displacement characteristic. As a
qualitative indication of the different shapes that the force-
deflection curve may assume, equation (2) is plotted for
different values of the system parameters in Figures 2(a)–
2(f), for displacements values in the range − 1.2< z< 1.2. In
all subfigures, the solid lines correspond to the case with
k � σ1 � σ2 � b � z0 � p � 1, i.e., the case where the top
springs are horizontal in absence of gravity, all springs have
equal stiffness, and the casing is as wide as high. Dashed and

dotted lines denote variations on one of the parameters, as
indicated in each subfigure.

From Figure 2(a), it can be noted that as the stiffness
ratio k increases, i.e., the springs at the top become stiffer
compared with those at the bottom, this generates a more
symmetric behaviour for displacement values around zero.
A similar qualitative trend is observed in Figure 2(b)
(Figure 2(c)) when the natural length factor σ1(σ2) increases
(decreases), as these factors have a strengthening effect re-
spect to a change in the corresponding stiffness. As shown in
Figure 2(d), the effect of decreasing the aspect ratio b de-
termines an increase of the nonlinear effect as the springs
tend to rotate towards the vertical configuration. (e effect

2 Shock and Vibration



of the initial deflection z0 is to fundamentally shift the force-
deflection curve mainly along the horizontal axis in a
nonlinear manner, as shown in Figure 2(e), while the effect
of the nondimensional weight p is to shift the force-de-
flection curve vertically, as illustrated in Figure 2(f ).

Although the analysis performed above, based on a
simple observation of Figure 2, is not exhaustive and a more
advanced sensitivity study would be required for a deeper
investigation, Figure 2 basically illustrates the qualitative
change in the shape of the force-deflection curve, as each
parameter is varied respect to a given reference
configuration.

2.2. Symmetric Characteristic. In fact, the actual objective of
this paper is to consider a particular shape of such static
force-deflection curve, which motivates the qualitative
analysis performed in the previous section. In particular, the
interest is towards the case where the system has a symmetric
behaviour around the static equilibrium configuration, and
the static equilibrium configuration is achieved at z= 0. Such
a behaviour is achieved when the force-deflection curve is an
odd function of the nondimensional displacement. To im-
pose this condition, equation (2) is expanded in Taylor series
around z= 0, and the zero- and second-order coefficients are
set to zero yielding

− 2k 1 − σ1

������������

b
2

+ 1 − z0( 
2

b
2

+ 1




⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 2 1 − σ2

������������

b
2

+ 1 + z0( 
2

b
2

+ 1




⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + p � 0, (3)

3b
2 kσ1

������������
b
2

+ 1 − z0( 
2



− σ2
������������
b
2

+ 1 + z0( 
2



 

1 + b
2

 
5/2 � 0. (4)

Equations (3) and (4) are solved in terms of the
stiffness ratio k and the natural length factor σ2 yielding
the following simple relations among the system
parameters:

k �
2 + p

2
, (5)

σ2 � σ1
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Figure 1: Schematic of theX-shaped suspension: (a) configuration upon assembly with no gravity effect; (b) generic deformed configuration
subject to gravity.
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Figure 2: Nondimensional spring restoring force as a function of the nondimensional displacement for different values of the system
parameters (a–f), as indicated in the figure legends.(e solid line is a common reference to all subfigures and corresponds to the case where
k � σ1 � σ2 � b � z0 � p � 1.

4 Shock and Vibration



which can be substituted back into equation (2) resulting in
the following expression of the static force:

% fs(z) � − (2 + p)(1 − z) 1 − σ1
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Equation (7) only depends on the aspect ratio b, the
nondimensional weight p, the natural length factor σ1, and
the initial deflection z0, and it is plotted in Figures 3(a)–3(d)
for different combinations of those four system parameters.
In particular, the solid lines in all subfigures represent the
case where σ1 � b � z0 � 1.

From Figure 3, it is seen that the force-deflection curve is
symmetric, with a general softening effect for large deflections.
As the natural length factor σ1increases, as in Figure 3(a), the
force-deflection curve exhibits a quasi-zero stiffness charac-
teristic for large deflections, eventually leading to potential
instability (negative stiffness). (e effect of the aspect ratio b is
seen in Figure 3(b) and is similar to that in Figure 3(a). (e
effect of z0 is illustrated in Figure 3(c), where it is seen that
the curves are symmetric with respect to z0 � 1. (e effect of
increasing p is seen in Figure 3(d) and has an opposite effect
respect to an increase in the parameters σ1 and b in
Figures 3(a) and 3(b), respectively.

2.3. Symmetric Characteristic with QZS Behaviour. With the
objective to further reduce the system complexity and the
number of independent parameters, it is decided to inves-
tigate the specific conditions which yields to a QZS be-
haviour at large deflections (around z ≈ ± 1), followed by a
increase in stiffness. Such a situation would guarantee that
the mass oscillation will have a global positive stiffness
characteristic.

From a mathematical point of view, the condition above
is assured when both the first and second derivative of
equation (7) are zero, which are the conditions for the
appearance of an inflection point with horizontal tangent.
Closed-form relationships among the system parameters to
attain such a condition were not possible to be achieved;
hence, numerical solutions were sought for some combi-
nations of the system parameters. From a first insight, it can
be demonstrated that the second derivative of equation (7),
respect to the nondimensional displacement, is only de-
pendent on the aspect ratio b, so that a curve is plotted in
Figure 4, to show the relation between b and z for
(z2/zz2)fs � 0.

(is curve is symmetric with respect to the vertical axis,
so that only the values for z> 0 are plotted. It may be seen
that for b< 1, the inflection point in the force-deflection
curve is around z � 1 and dramatically decreases for b> 1.
(e system of equations (z2/zz2)fs � (z/zz)fs � 0 is then
numerically solved in terms of z and b, for fixed values of
σ1and different combinations of z0 and p, varying in the
range 0.1< z0 < 0.9 and 0< p< 2. Results are presented in

terms of contour plots in Figure 5, which may be used for
design purposes.

Figure 5 consists of a table of six panels organized in
three rows and two columns, and it should be read as fol-
lows: the plots in each of the three rows refer to a different
value of σ1, while the first and second column show the
solution for the inflection point in the force-displacement
curve in terms of z and b, respectively, as a function of z0
and p. It is noted that the inflection point is achieved for
displacement values very close to 1 in all cases, while the
aspect ratio generally decreases for increasing values of z0.

Figure 6 shows the corresponding values of the natural
length factor σ2 and the force fs at the inflection point,
obtained from Equations (6) and (7), respectively. For σ1 < 1,
it can be seen how σ2 increases for increasing values of p and
decreasing values of z0, while fs at the inflection point
fundamentally increases for increasing values of z0. (e
change in fs for changing values of z0 is opposite for the
case when σ1 > 1than for the case when σ1 < 1.

As application examples, two different spring configu-
rations are designed using the aid of Figures 5 and 6. In a first
case, it is assumed that σ1 � 1, z0 � 0.4, and p � 1.5, which
corresponds to the circle () in Figures 5 and 6. In particular,
from Figure 5(c) it is noted that the inflection point occurs at
about 1; from Figure 5(d), it can be noted that the aspect
ratio is about b � 0.5, while from Figure 6(c) and Figure 6(d),
respectively, it is noted that to achieve such configuration it
should be set σ2 � 0.9 approximately, and the expected value
of the force fsat the inflection point is about 2.8. (e force-
displacement curve corresponding to this case is plotted
from equation (7) in Figure 7(a) as a thick solid curve (other
curves will be described further below).

In a second case, it is assumed that it is of interest to
suspend a mass with nondimensional weight p � 1 and to set
the nondimensional force fs at the inflection point at about 2.
We have different design configurations to achieve such re-
quirements. However, if we want the springs at the bottom to
be as unloaded as possible upon initial assembly, we can note
that the solution indicated by the square () in Figures 5 and 6
would fit the case and corresponds to about σ1 � 1.2, z0 � 0.4,
b � 0.65, and σ2 � 1. (e corresponding force-deflection
curve is plotted in Figure 7(b) as a thick solid line (other
curves will be described further below). Animation S1in the
Supplementary Material illustrates the corresponding phys-
ical assembly subject to a quasi-static test.

(e force-deflection curve corresponding to the dia-
mond () and star () in Figures 5 and 6 is shown in
Figures 7(c) and 7(d), respectively, as a thick solid curve
(other curves will be described further below).

Shock and Vibration 5



3. Dynamic Analysis

With the aim of incorporating the static force-deflection
curve with QZS characteristic at large displacements into the
dynamic equation of motion of the system and performing
an analytical insight, equation (7) is approximated by a
polynomial expression. Unfortunately, the classical Taylor
series expansion around the static equilibrium configuration
would have the limitation that a high order solution would
be needed to fit the QZS behaviour at large deflections [16],
i.e., far away from the expansion point of the series. To
illustrate this, the results of a 7th order Taylor series ex-
pansion are illustrated in Figures 7(a)–7(d) as thin dotted
lines and compared with the corresponding curve from
equation (7), as thick solid lines. It can be observed that a

negative stiffness is predicted for values of displacements
greater (smaller) than 1 (− 1).

To overcome such limitation, the force-deflection curve
in equation (7) is approximated by a polynomial expression
with the following conditions: (i) the stiffness for z � 0 is set
equal to that from Taylor series; (ii) the stiffness at z � 1 (the
approximate location of the inflection point) is set to zero;
(iii) the derivative of the stiffness at z � 1 is set to zero; and
(iv) the force at z � 1 is set equal to that from equation (7).
To satisfy these conditions, the following 7th order poly-
nomial expression is obtained:

fs,approx(z) � k1z + k3z
3

+ k5z
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+ k7z
7
, (8)
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Figure 3: Symmetric force-deflection curve for different values of the system parameters (a–d), as indicated in the figure legends. (e solid
line is the common reference to all subfigures and corresponds to the case where σ1 � b � z0 � 1 and p � 10.
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Equation (8) is plotted in Figures 7(a)–7(d) as a dashed
line, and it can be noted that such approximate expression
fits the exact force-deflection curve (solid line) better than
that from the Taylor series approximation (dotted line).
Furthermore, the presence of a negative stiffness behaviour
is avoided for nondimensional displacement values around
± 1. (e lower panels in each subfigure show the residual
errors of the Taylor series and polynomial fitting
approximation.

However, from Figures 7(a)–7(d), it can be seen that
when |z| becomes greater than 1, the polynomial fitting error
rapidly increases. In the following analysis, it is thus assumed
that the approximate working condition of the suspension is
such that |z|≤ 1.3, where it is seen that the residual error of
the polynomial fitting approximation is below 10%.

3.1.Amplitude-Frequency Equation. (e equation of motion
of the system depicted in Figure 1is given by

m€z + c _z + fs(z) � − m €y , (10)

where the static spring restoring force fs(z) is given by
equation (1), and the overdots denote differentiation re-
spect to time t. (e oscillator is excited at the base by a
harmonic displacement y � Y cos(ωt + φ) where Y is the
displacement amplitude, ω is the angular frequency, and φ
is the phase.

By using the approximate expression for the spring
restoring force given in equation (8), equation (10) may be
conveniently written in nondimensional form as

z″ + 2ζz′ + z + cz
3

+ δz
5

+ εz7
� Ω2 Y cos(Ωτ + φ),

(11)

where τ � ω0tand Ω � (ω/ω0) are the nondimensional time
and frequency, respectively, ω0 �
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, ζ � (c/2mω0) is
the damping ratio, Y � (Y/a) is the nondimensional dis-
placement amplitude, primes denote differentiation respect
to τ, and
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(e expressions given in equation (12) show that the
fifth- and seventh-order coefficients are dependent on the
cubic one. Both the statics and dynamics of the system
exhibiting QZS behaviour for large deflections (at |z| up to
approximately 1.3) may be then described in terms of one
key parameter only.

(e values of care calculated based on equation (12) and
shown in the contour plots of Figure 8, in the same way as
for Figures 5 and 6.

To solve equation (11) in closed form in terms of the
amplitude-frequency equation, it is assumed that the system
response is predominately harmonic at the excitation fre-
quency, i.e., z � Z cos(Ωτ), and this is substituted back into
equation (11), where a first-order harmonic balance ap-
proximation is applied to yield

Ω4 Z
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  + 2Ω2 Z
2 2ζ2 − G  + Z

2
G
2

� 0, (13)

with G � 1 + (3/4)cZ
2

+ (5/8)δZ
4

+ (35/64)εZ
6.

3.2. Backbone Curve and Effect of Damping. (e analytical
amplitude-frequency equation reported in equation (13) can
be used to investigate the backbone curve and the effect of
damping on the system response.

First, the relation between the resonance peak and the
corresponding frequency is obtained by setting the dis-
criminant of equation (13) to zero yielding
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Figure 4: Relation between the aspect ratio b and the displacement
z at the inflection point in case of a force-deflection curve
exhibiting QZS behaviour.
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Figure 5: Contour plots for the design of an X-shaped suspension with QZS behaviour at large deflections: values of z at the inflection
point and b for different combinations of σ1, z0, and p (markers will be described later).
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By combining equation (15) and equation (13), the ex-
pression for the backbone curve, i.e., the unforced and
undamped response of the nonlinear oscillator is obtained as

Ωbackbone �
��
G

√
�
1
8

����������������������������������

64 + 48Z
2
c − 24Z

4
(1 + 2c) + 5Z

6
(2 + 3c)



.

(16)
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To qualitatively illustrate the shape of the backbone
curve for the system considered in this work, equation (16) is
plotted in Figure 9(a) as a thick line, for the different values
of c.

It can be noted that the frequency of the backbone curve
may exhibit a relative minimum and maximum for certain
values of c. (ese are due to the transition among the
softening and hardening stiffness characteristic in the spring
force-deflection curve, and such effect is better investigated
below. Of particular interest is the occurrence of a relative
minimum in the backbone curve, as this leads to a minimum
stable value for the resonance frequency.

An approximate expression for the displacement am-
plitude at the relative extremes of the resonance frequency in
the backbone curve is obtained by differentiating equation
(16) with respect to Z, equating to zero, and solving to give

ZC,D � 2

���������
2 + 4c ± η
5(2 + 3c)



, (17)

where η �
���������
4 + 6c + c2


and C (D) indicates the point where

a relative minimum (maximum) occurs. (e corresponding
frequency is determined by substituting equation (17) back
into equation (16) to yield

ΩC,D �
1
5

�����������������������������������

84 + 264c + 243c
2

+ 52c
3∓ 8 + 12c + 2c

2
 η

(2 + 3c)
2




.

(18)
(e loci of points C (relative minimum) and D (relative

maximum) are indicated in Figure 9(a) as a thin solid and
dash-dotted line, respectively, while their frequency and
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Figure 7: Force-displacement curve corresponding to different combinations of the system parameters as indicated by the (a) circle, (b)
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amplitude are plotted in Figures 9(b) and 9(c), respectively,
as a function of c.

Form Figure 9, it can be noted that for c> 0, the
backbone curve presents a relative maximum frequency at a
lower displacement amplitude and a relative minimum
frequency at a larger displacement amplitude, so that a
hardening behaviour manifests at larger amplitudes. In the
range − (2/3)< c< 0, the backbone curve presents only a
relative minimum frequency, with hardening behaviour at
high frequency. In the range − 3 +

�
5

√
< c≤ − (2/3), the

backbone curve presents both a relative maximum and a
relative minimum frequency, but now the relative maximum
appears at a larger amplitude, so that a softening behaviour
manifests at larger displacements, potentially leading to
instability. For c � − 3 +

�
5

√
, the relative maximum and

minimum frequencies coincide and an inflection point is
formed. For c< − 3 +

�
5

√
, no relative maximum or mini-

mum frequency occurs, and an overall softening behaviour
manifests, potentially leading to instability for large motion.

(e minimum frequency and corresponding displacement
amplitude, which are indicated by the circle in Figures 9(b)
and 9(c), are given, respectively, by 5− (1/4) ≈ 0.69 and����������
2 + (2/

�
5

√
)


≈ 1.7.

(e values ofΩC and ZC are calculated and shown in the
contour plots of Figure 10, in the same way as for Figures 5
and 6. It can be noted that for a reasonable range of pa-
rameter values, the peak amplitude of the nondimensional
displacement does not exceed the approximate value of 1.3,
which validates the polynomial fitting approximation of the
force-deflection curve presented above.

It is now possible to investigate the effect of damping on
the system response. Of particular interest is the value of
damping which leads to the minimum resonance frequency,
corresponding to point C, discussed above. To this purpose,
the ratio (ζC/Y) is calculated from equations (15) and (17),
for different values of excitation amplitude, and is plotted in
the contour plots of Figure 11. In Figure 11, dashed lines
correspond to Y � 0.01, solid lines correspond to Y � 0.3,
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and dash-dotted lines correspond to Y � 0.5. As can be
noted, despite the large variation in the amplitude of ex-
citation, the ratio (ζC/Y) does not change much and stays in
the range between about 0.28 and 0.38.

A closed-form expression can be obtained by expanding
equation (15) in Taylor series for small excitation amplitudes
and rearranging to give

ζC

Y
≈

��
G

√

2ZC

�
ΩC

2ZC

, (19)

which can be further expressed for small values of c as

ζC

Y
≈
1
4

��
17
10



+
13
64

��
5
34



c. (20)

(is is a very simple closed-form expression and shows
that the damping to achieve the minimum resonance

frequency is proportional to the amplitude of excitation,
through a coefficient which is a linear function of the pa-
rameter c.

To validate the approximate expression in equation (20),
this is plotted in Figure 12 as a dashed line and compared
with the results from equation (15) for a relatively high and
low value of excitation amplitude. It can be seen that despite
the large variation of the excitation amplitude (10% and 50%
of the displacement at the QZS point), the approximate
expression captures the main trend for values of c greater
that approximately − 0.5.

3.3. Frequency Response Curve. To better illustrate and
validate the results presented above, the frequency response
curves (FRCs) are plotted in Figures 13(a)–13(d) for two
different values of the excitation amplitude and for the
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line) and points D, i.e., relative maxima, (thin dash-dotted line). (b) Frequency corresponding to the relative minima (solid line) and
maxima (dash-dotted line) as a function of c. (c) Displacement amplitude corresponding to the relative minima (solid line)
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�
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√
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system parameters indicated by the markers in Figures 5 and
6.(e FRCs of the system are solved in closed form from the
amplitude-frequency equation reported in equation (13),
which is quadratic in Ω2, and with damping ratio deter-
mined according to equation (20).(e stability of the steady-
state solutions is calculated by applying Floquet theory as
detailed in [21] so that stable solutions are represented by
solid lines and unstable solutions are represented by dashed

lines in the FRCs of Figure 13. For validation purposes,
numerical solutions are indicated by circles, and they are
obtained by direct integration of the equation of motion of
the system, where the exact expression for the static spring
restoring force from equation (2) is used. In the case where a
multistable solution is expected, different initial conditions
were selected to validate the response on both the lower and
higher amplitude branches of the frequency response curve.
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It can be noted that the approximate FRCs capture the
dynamic behaviour of the system reasonably well. Also, it
can be seen that the effect of increasing the amplitude of
excitation is to widen the bandwidth around the resonance
frequency, but this frequency (and its corresponding dis-
placement amplitude) is held constant through the proper
selection of the damping according to equation (20). Ani-
mation S2 in the Supplementary Material illustrates the
physical assembly of the suspension system corresponding
to the case in Figure 13(b), when a sinusoidal base excitation
at Ω � 1 is provided.

4. Conclusions

(is paper has investigated the static and dynamic char-
acteristics of a nonlinear suspension consisting of four linear
springs arranged in an X-shaped configuration to achieve
softening characteristics and a QZS behaviour at large

deflections. (e analytical insight on the behaviour of the
system has allowed to highlight the fundamental design
strategy to achieve the desired performance. (e global
force-deflection curve is approximated by a seventh-order
polynomial expression, and it is found that the nondi-
mensional force-deflection characteristic with desired QZS
behaviour is only dependent on the cubic stiffness coeffi-
cient, i.e., the fifth and seventh stiffness coefficients are
expressed in terms of the third one. (e approximate force-
deflection curve is incorporated into the equation of motion
for dynamic analysis. (is is performed analytically in terms
of the frequency response of the system, and the effect of the
parameters is studied. (e investigation into the backbone
curve of the harmonic response has highlighted the inter-
esting possibility to tune the damping in the system to
achieve the lowest possible resonance frequency. In par-
ticular, it is found that such damping is proportional to the
excitation frequency and linearly related to the cubic
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different values of the system parameters as indicated by the circle (a), square (b), diamond (c), and star (d) in Figures 5 and 6.(e damping
is set according to equation (20). Stable analytical solutions are represented as solid lines; unstable analytical solutions are represented as
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stiffness coefficient. Numerical results have confirmed the
validity of the approximate analytical formulation.
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