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Abstract. We propose a method for solving one of the significant open issues in computer vision: material rec-
ognition. A time-of-flight range camera has been employed to analyze the characteristics of different materials.
Starting from the information returned by the depth sensor, different features of interest have been extracted
using transforms such as Fourier, discrete cosine, Hilbert, chirp-z, and Karhunen–Loève. Such features have
been used to build a training and a validation set useful to feed a classifier (J48) able to accomplish the material
recognition step. The effectiveness of the proposed methodology has been experimentally tested. Good pre-
dictive accuracies of materials have been obtained. Moreover, experiments have shown that the combination of
multiple transforms increases the robustness and reliability of the computed features, although the shutter value
can heavily affect the prediction rates. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.JEI.25.6.061412]
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1 Introduction
The material of an object can be considered significant data
for understanding one or more scenes. We usually interact
with a wide variety of materials, and we continually assess
their properties such as weight, size, and texture. Knowledge
of such properties could be useful for a robot manipulator
that has to handle an extensive assortment of objects. As
an example, the physical property can be advantageous to
discern breakable objects from the robust ones. In this
way, a manipulator gripper force can be tuned to avoid item
damage.

The material information can also be useful in other appli-
cative contexts such as robot localization and environmental
mapping where three-dimensional (3-D) data are employed.
In this regard, a better 3-D point cloud registration could be
achieved by exploiting knowledge of the material type. As an
example, a complex environment made of glass and highly
reflective surfaces could be more challenging for registration
algorithms. Therefore, a preliminary analysis aimed to iden-
tify the material type would be helpful for discarding some
3-D points from the registration method. In this way, only
the stable points referring to nonchallenging materials are
considered in the computation, implying an enhancement
of registration accuracy.

Nevertheless, material recognition is currently a difficult
challenge. Over the years, many works have been proposed
to achieve material classification.1–6 Most of the common
approaches are based on color analysis or textural appear-
ance. In this regard, a method based on 3-D textons1 was
introduced to recognize surfaces on the basis of their textural
appearance. A vocabulary of tiny surface patches together
with their local and photometric properties was built to
characterize the local irradiant distribution.

Other textural representations2 based on fast Markovian
statistics were proposed for recognizing natural materials.
The proposed features are fast to compute and robust to illu-
mination direction as well as invariant to brightness changes.
A good predictive accuracy was achieved from the analysis
of several natural materials acquired under varying view-
points, illumination colors, and directions.

A rich set of local features3 exploiting the Kernel descrip-
tor framework combined with large-margin nearest neighbor
learning was empirically studied to accomplish the material
recognition of real-world objects as well.

A method that exploits several features covering various
aspects of material appearance was also proposed for
material classification.4 The support vector machine (SVM)
framework was employed for obtaining a recognition rate of
53.1%, much better than the predictive rate obtained by using
the Bayesian inference framework.7

High predictive accuracies were also achieved by using
the algorithm proposed in Ref. 5. Specifically, the material
appearance is modeled as the joint probability distribution
of responses extracted from filter bank and color values
(in the hue-saturation-value space). SVMwas then employed
as a classifier. By considering image patches of resolution
30 × 30 pixels, a very high accuracy was found.

A framework called reflectance hashing6 was introduced
to model the reflectance disk of a material surface acquired
from a unique optical camera measuring technique. The
high-dimensional reflectance is encoded with a compact
binary code that efficiently reveals the material class.

Liu et al.7 and Sharan et al.8 computed different low- and
middle-level features to assess the appearance of materials.
Then an augmented latent Dirichlet allocation (aLDA)
method based on a Bayesian framework was applied to com-
bine such features.

Large-scale datasets combined with deep learning were
also proposed for scene classification and object recognition.9,10*Address all correspondence to: Fabio Martino, E-mail: martino@ba.issia.cnr.it
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In detail, a convolutional neural network (CNN) was
employed to classify the materials. A mean recognition
rate of about 80% was obtained.

An alternative statistical approach was presented in
Ref. 11, where the joint distribution of intensity values of
single images was employed together with filter banks pro-
viding state-of-the-art classification rates.

Most of the techniques presented in the literature for
material recognition exploit passive 2-D cameras. How-
ever, the reflectance properties of material, the kind of
surface (smooth or rough), the illumination, and the view
angle conditions could compromise material identification.
These cameras always need illumination in dark environ-
ments, and lighting variations could significantly complicate
a real-scene analysis.

Nevertheless, the recent design of 3-D range sensors
has gained significant interest for a wide number of
applications.12,13 In fact, most issues related to 2-D cameras
in material recognition tasks can be overcome by using time-
of-flight (ToF) cameras. As an example, it is not necessary to
use an external light source because such acquisition systems
are able to sense the neighboring environment by employing
infrared (IR) light. Hence, useful information can be col-
lected even when the objects to be examined are poorly
lit. Moreover, the 3-D data returned by ToF sensors provide
significant information about the geometry and the shape of
objects located in a scene. Therefore, problems tied to both
view angle conditions and roughness of surfaces are consid-
erably reduced when a 3-D sensor is used instead of 2-D
ones.

Although ToF cameras can be employed only in indoor
environments where the sunlight cannot interfere, the other
benefits gained by employing these sensors enable better
investigation of the material properties to accomplish
material classification. This paper will deal with methodol-
ogy for material recognition by exploiting a ToF range
camera.

Similar works that exploit 3-D sensors and noncontact
active techniques14–16 were presented to evaluate the object
material. Specifically, the geometric properties of a material
were investigated through the analysis of the reflected pattern
of IR light. Microstructural details of materials and other
associated information, i.e., shape and color, were computed
by utilizing a ToF camera. The patterns related to materials
were then classified by a random forest (RF) classifier.

This paper presents an alternative technique for achieving
material recognition exploiting the data given from a ToF
camera. The basic idea is to analyze whether a correlation
can be established between the type of material of an object
and the alterations affecting measurements taken with a ToF
sensor. For every tested material, a patch from the 3-D point
cloud dataset is extracted. At this stage, features based on
different domains of transform (e.g., discrete cosine trans-
form, Fourier transform, Hilbert transform, and so on) are
computed to characterize the material.

Several working conditions have been taken into account,
such as the pose of the material with respect to the depth
sensor and the shutter value of the photoreceivers. A decision
tree (J48) has then been employed to classify the materials.

This paper is organized as follows: some important
aspects regarding ToF sensors are discussed in Sec. 2, and
the methodology employed for material recognition is

presented in Sec. 3. Experimental results and related discus-
sion are reported in Sec. 4. Final conclusions and remarks are
in Sec. 5.

2 ToF Range Camera: Depth Measurement Errors
As mentioned, the aim of this work is to identify the material
category of an item (e.g., wood, metal, plastic, glass, fabric,
and so on) by analyzing the information given from a range
camera. This sensor exploits the well-known principle of
ToF to profile the surrounding environment. Therefore, our
main idea is to investigate the materials by analyzing the
alterations affecting the measurements over time. In this
regard, some physical material properties such as reflectance,
scattering, and absorption might affect the IR light source of
the ToF sensor that strikes the surface by involving fluctua-
tions of returned information.

Since we take advantage of depth measurement altera-
tions to accomplish material recognition, it is worth having
a discussion about the unavoidable errors17,18 that might
affect ToF sensors. In this regard, two main categories can
be identified: systematic and nonsystematic depth errors.
Typical systematic errors can be due to depth distortions
(i.e., when an incorrect sinusoid is generated), lens distor-
tions, integration time, operating temperature, overexposed
reflected amplitudes, ambient light conditions, and so on.
In contrast, the most common nonsystematic errors are
due to multiple light reception, motion blurring, light scat-
tering, signal-to-noise ratio (SNR) distortion, and so on.

Essentially, it is important to reduce the effect of these
errors to ensure reliable material recognition. In fact, some
precautions and compensation methods could be adopted to
achieve our purpose.

Systematic depth measurement errors are mainly due to
IR sinusoidal generators, which have limits in their modula-
tion process. Such irregularities involve a phase perturbation
caused by erroneous wrapping due to the presence of odd
harmonics. Consequently, a change of depth value occurs,
compromising the actual computation of distance. In the
same way, other errors due to integration time and operating
temperature can consistently affect the actual computation
of the depth map as well. It is important to define a
model of error to get more accurate and reliable depth
measurements.19–21 In this regard, some details will be pro-
vided in Sec. 4, where the counter-measures adopted to limit
these errors have been explained.

Another important aspect that has to be faced is the effect
of lens distortion. Such effects are mainly due to the curva-
ture of lenses mounted by ToF cameras. Therefore, precau-
tionary steps have to be performed to decrease the distortions
that affect the depth image. More details concerning the
rectification step will be provided in Sec. 3.1.

The proper functioning of ToF cameras is strictly linked
to ambient light conditions as well. In this regard, external
waves having a comparable wavelength to the light source
employed by the sensors for scanning the environment
can compromise the reliability of measurements. There-
fore, such sensors could be used only in indoor environ-
ments, as stated. Further details about the ambient light
conditions of our tests will be reported in Sec. 4.

Other nonsystematic errors that might negatively affect
measurements are mainly due to multiple paths of the light
source, low SNR ratio, light scattering, and so on. Usually,
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these errors can be managed by employing filtering methods
or suitable models. Specifically, many works have been pre-
sented to investigate the effect of scattering of surfaces. Most
of them have presented models based on the bidirectional
reflectance distribution function.22 A more accurate model
of light scattering was introduced in Ref. 23, where the bidi-
rectional scattering-surface reflectance distribution function
was described. Nevertheless, this model can be employed
only to measure the scattering properties of translucent
materials.

In this regard, some experiments will be conducted to
examine in depth how scattering, reflectance, and absorption
affect our methodology in material recognition. In other
words, this paper will mainly focus on the description of
our approach along with related results. Therefore, all physi-
cal aspects behind our idea will be addressed in future work.

3 System Overview
In this work, we have taken advantage of the reflectance and
absorption of the material surfaces considering several work-
ing conditions. A ToF range camera has been employed to
create the datasets for our experiments. Therefore, exploiting
the 3-D information given by the sensor together with the
related intensity values, a variety of materials has been inves-
tigated. Specifically, different features have been extracted
and then evaluated by a decision tree to accomplish the
material classification.

3.1 Mathematical Framework
Several mathematical methods have been compared to obtain
a reliable classification of material type, such as:

• fast Fourier transform (FOURIER);
• discrete Hilbert transform (HILBERT);
• discrete cosine transform (DCT);
• Karhunen–Loève transform (KLT);
• chirp-z transform (CHIRP).

These transforms are commonly employed in signal
processing tasks. Each of them has particular properties or
characteristics that can aid the material analysis process.
Since the material to be recognized is examined by analyzing
several sequences of frames over time, it is important to use
transforms that are able to extract significant features from
signals.

In our tests, we have taken advantage of the fast Fourier
transform (FFT), i.e., a faster alternative to discrete Fourier
transform (DFT). In general, the FFT is a powerful tool for
pattern recognition. It is commonly employed to extract
invariant features24 because of its important properties; for
example, a shift in the time domain does not involve any
change in the amplitude spectrum of the image. Good pre-
dictive accuracies in material recognition are expected since
the frequency domain representation might provide more
useful information than the time domain one. Moreover,
a low processing time should be required for computing
this transform.

The Hilbert transform extends a differentiable real signal
into the Gauss plane. This transform adds information to
the Fourier analysis because it introduces the conjugate
harmonic of a given signal. Usually, it is used to handle

nonstationary processes or signals for which the Fourier
spectral analysis is not often suited. In our algorithm, the
discrete version is exploited.

The DCT is similar to the DFT since they both decompose
a discrete-time signal into a sum of scaled and shifted basis
functions. However, the DCT uses only cosine functions
as its kernel. The DCT is widely used in signal processing
and data compression applications because of its high-
compression degree of spectrum. One of the most relevant
properties25,26 is the noise high-frequency isolation in a
small number of coefficients compared to other transforms
such as the DFT. Average recognition rates are expected
since the high-compression level of this transform might
negatively affect the informative content of input signals.

The KLT is a representation of orthogonal functions. It
has different expansion bases that depend on the stochastic
process, and their coefficients are random variables. The ker-
nels employed in this representation are defined by the
covariance function of the process. Although the KLT has
a high computational complexity, it is suitable to obtain
the best bases for linear decorrelation of signals and energy
compression. Hence, good predictive rates should be
achieved by employing this mathematical tool.

Finally, the last employed transform is the chirp-z-trans-
form (CZT), which can be considered a generalized case of
DFT. In fact, the CZT samples the Z-plane along spiral arcs,
which correspond to straight lines in the Laplace-plane. The
kernel of this transform is a complex number.

All listed mathematical domains have been used and com-
pared to extract features suitable for the material recognition
method. Different materials having different physical charac-
teristics have been examined. Particularly, the material target
under investigation has been fastened on a panel and then
placed in front of the acquisition system. Several working
conditions have been taken into account. For instance, the
shutter value (or exposure time), the position (or distance),
and the angle (or heading) of panels with respect to the sen-
sor have been varied.

It is necessary to emphasize that only a portion of the
scene has been considered. Specifically, a region of interest
(RoI) of the panel has been extracted, as reported in Fig. 1.
The target has been centered in the middle of field-of-
view (FoV) of the ToF sensor. In this way, the distortion
effects due to the curvature of lenses have been consistently
reduced. Nevertheless, a preliminary step aimed to rectify the
depth images has been performed to compensate the distor-
tion effects. In this regard, the camera calibration toolbox for
MATLAB,27 along with the well-known notation introduced

Fig. 1 Example of the extracted RoI of 20 × 25 pixels (see cyan
rectangle) of a wooden panel during an experiment. The 3-D point
clouds mapped according to both (a) distances and (b) IR reflectivity
are shown.
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by Heikkilä,28 has been exploited to get a faithful reconstruc-
tion of scenes without distortions.

At this stage, a punctual analysis of the panel is per-
formed. In other words, every pixel of the extracted RoI
is evaluated over time. A sequence of n frames is acquired
for every material. Thus, each pixel has n values of 3-D coor-
dinates together with the related intensity levels
EQ-TARGET;temp:intralink-;e001;63;675

pðu;vÞ ¼ fs1; s2; : : : ; sk; : : : ; sn; i1; i2; : : : ; ik; : : : ; ing
k ¼ 1; : : : ; n; (1)

EQ-TARGET;temp:intralink-;e002;63;626sk ¼ dk − d̄; (2)

EQ-TARGET;temp:intralink-;e003;63;600dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
k þ Y2

k þ Z2
k

q
: (3)

Eq. (1) represents exactly how the data linked to a pixel of
2-D coordinates ðu; vÞ is arranged. In this regard, the vector
pðu; vÞ contains both the distance variations sk of the pixel
and the associated intensity values ik. Distance fluctuations
are computed using Eq. (2). Specifically, the value of dis-
tance dk is evaluated by means of Eq. (3), whereas d̄ repre-
sents the average value of all n distances related to the pixel
under investigation. The terms Xk, Yk, and Zk represent the
3-D coordinates of the pixel ðu; vÞ at the time k.

Subtracting the average distance from the set of measures
fulfills a precautionary step aimed at reducing the possibility
that material recognition might be achieved by the classifier
by considering the evaluated distance instead of its fluctua-
tions. Artificial biases introduced by the experiment itself in
the material recognition process are therefore drastically
decreased.

Once the input vector has been collected, the different
transformation domains listed before have been computed.
In this way, one or more features are associated to each
pixel of the RoI.

3.2 Description of Decision Tree
As stated before, the aim of this paper is to provide a method
able to discern the category of materials by analyzing the
data returned from a ToF camera.

Material recognition is achieved by exploiting a decision
tree as a model of classification. In brief, a decision tree is a
predictive machine-learning model able to provide an output
value by evaluating numerous attribute values of the avail-
able data. It can be considered a treelike graph that has
nodes and branches. Specifically, the internal nodes denote
the different attributes, whereas the branches between nodes
specify the possible values these attributes can have. Finally,

the terminal nodes identify the final value or the classifica-
tion output of the dependent variable.

Regarding this specific case, the attributes of the decision
tree are the coefficients of the various computed features
together with other parameters that characterize the per-
formed experiment. Further information will be provided
in Sec. 4.

In our tests, we employed the open source software
Weka,29 a collection of machine-learning algorithms, for ful-
filling material recognition. Specifically, we chose the J48
classifier, a high-performance algorithm suitable for large
datasets, which is a popular open-source implementation
of the C4.5 decision tree (Ref. 30) classifier that is available
in Weka. The employed classifier supplies an easy interpre-
tation model and it is suitable for datasets, which are heavily
affected by noise. Although other classifiers (e.g., RF) pro-
vide comparable predictive accuracies with respect to J48,
they require higher computational processing. Moreover,
preference was given to deterministic algorithms for repeat-
ability reasons.

3.3 Data Arrangement
Section 3.1 reports the main domains of analysis for associ-
ating features to a single pixel under examination. However,
material recognition is achieved by considering the evalu-
ation of a set of pixels, i.e., those pixels belonging to the
considered RoI.

As previously stated, a decision tree is designed to pro-
vide the category of material under examination. Therefore,
the data of interest have to be properly arranged to be man-
aged by the decision graph for material classification. In
other words, starting from the computed features for a set
of materials and considering other parameters tied to the
typology of experiments, a suitable representation has been
obtained and stored for processing using Weka. Specifically,
the file has been organized according to the attribute-relation
file format (ARFF).

The header of an ARFF file is reported in Table 1. The
coefficients of the features are arranged along the columns,
then other parameters such as position, angle, active bright-
ness, and shutter are organized in the same way. The position
and the angle values represent the pose of the panel to be
examined with respect to the ToF sensor. Further details will
be provided in the following section. The active brightness is
a boolean parameter of the camera that enables improvement
of the quality of acquisition. In fact, when this parameter is
disabled, all measurements returned by the photoreceivers
are considered good, even if some reflected light is captured
by the photosensors. Therefore, it is preferable to enable this
modality to obtain more accurate measurements. The shutter

Table 1 ARFF file organization. The coefficients of features along with the other parameters are arranged along the columns. In contrast, each
pixel of the selected RoI is arranged along the rows.

Transform 1 c1; : : : ; cn Transform N(optional) c1; : : : ; cn Position Angle Active brightness Shutter Output

ðu; vÞ1
..
.

ðu; vÞk
..
.

ðu; vÞN

* * * * * * *

* * * * * * *

* * * * * * *
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value is the time duration in which the camera chip is exposed
to IR light. This value is expressed in milliseconds (ms).

The last column represents the expected output value,
which is identified by a cardinal number. In this regard,
a specific number is assigned to represent each material to
be classified (see Fig. 2 for more clarity).

Finally, it is worth noting that each row of the file refers to
the single pixel belonging to the extracted RoI. Furthermore,
as shown in Table 1, more than one feature transform can be
employed. In this regard, some tests will show how the clas-
sification is affected.

It is important to underline that the data given from the
acquisitions have been split into two categories: the training
and the validation set. Specifically, 20% of the entire dataset
has been reserved to represent the validation set. In this way,
the validity of the method has been tested by analyzing the
predictive accuracies of recognition.

4 Experimental Results
This section will explain the obtained outcomes by consid-
ering the analysis of 10 different materials (refer to Fig. 2).
Three sets of acquisitions have been separately performed:

• analysis of eight materials by considering fixed panel
poses (see Sec. 4.1);

• analysis of four materials by changing both the orien-
tation and the displacement of the panel with respect to
the ToF sensor (see Sec. 4.2);

• analysis of eight materials by introducing another
wooden panel in the dataset (see Sec. 4.3).

All data belonging to one class have been collected from
one panel. Specifically, only the test described in Sec. 4.3
employs a dataset where two different types of wood are
used to represent such a category.

Moreover, only planar surfaces have been analyzed to
prove the validity of method. Nonsolid materials, such as
the dark and white fabric, have been fastened onto flat pan-
els. Therefore, all reported outcomes refer only to planar
materials. However, the presented methodology could be
extended to the analysis of nonregular surfaces as well. In
this regard, different patches having planar surface geometry
can be detected from an object under investigation. Exploit-
ing the definition of the shape index (SI) as in Ref. 15, it is

possible to measure the surface shape of any point belong-
ing to a patch of interest. In detail, convex surfaces are
identified by large SI values, concave surfaces have small
SI values, and planar surfaces have medium SI values.
Consequently, the patches having a medium SI value can
be employed by our method to classify the material of items.

For the sake of completeness, some relevant optical prop-
erties related to examining materials are reported in Table 2.
In this regard, the more common materials having different
reflectance and refractive indices has been investigated to
evaluate our approach.

The experimental setup is reported in Fig. 3. At this stage,
a brief discussion about ambient light conditions is due. In
general, ToF sensors suffer from issues linked to background

Fig. 2 The materials employed in our tests are in the order: iron, fir wood, plywood, plastic, polystyrene,
reflective surface, white fabric, dark fabric, aluminum, and glass.

Table 2 Main optical characteristics of employed materials obtained
by considering the wavelength of our ToF sensor (Fotonic E70 having
λ ¼ 850 nm). The database available online31 has been used to
derive such parameters.

Material
Refractive

index
Extinction
coefficient Reflectance

Iron 2.9541 3.4658 0.5712

Wooda 1.4680 — 0.0359

Plastic 1.5248 0.0018 0.0432

Polystyrene 1.5867 — 0.0514

Reflective surface 1.5162 — 0.6277

Fabric (cotton)b 1.5346 — 0.4501

Aluminum 2.5112 8.0136 0.8015

Glass 1.5162 3.1 × 10−6 0.0350

aIn the following experiments, there are two kinds of wood, i.e., fir
wood and plywood, which have different properties due to different
fabrication methodologies and thicknesses. Here, the properties of fir
wood are reported.

bTwo different-colored fabrics have been considered: dark and white.
The optical properties will change since the absorption will depend
on the material pigments. The physical properties reported in the
table ignore the material color.
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light. In fact, external light sources, such as sunlight or arti-
ficial lighting, could produce significant degradation of mea-
surements. Therefore, outer optical band-pass filters could
be adopted to selectively transmit only the rays having the
expected wavelength, which will be input to the range cam-
era. Hence, meaningless light is physically filtered out of
the computation. In this regard, the employed ToF camera
already mounts an internal optical filter. Nevertheless, to
consistently reduce errors due to ambient light conditions,
the experiments have been run in a completely controlled
environment (without external and artificial lights).

The ToF camera used in our tests is the Fotonic E70,32

with a resolution of 160 × 120 pixels and a maximum meas-
urement range of 7 m. The illumination unit emits modulated
waves of near-infrared light (NIR), which are triggered by an
internal reference signal, i.e., a sinusoid having a modulation
frequency of 15 MHz and a wavelength of 850 nm. The
phase of the incoming wave-front is estimated by means
of the four-buckets algorithm, and the related distance is
computed once the phase measurement is known.

It is worth highlighting that a bounded operating range of
the ToF sensor has been employed to obtain more accurate
measurements. In this regard, preliminary experiments not
reported in this paper have shown that an average absolute
distance error of 0.012 m is obtained by considering the

distance range of 0.5 to 3.5 m. Conversely, the error increases
significantly when higher distances are considered. Hence,
the presented tests have been performed taking into account
only distances in this range.

The range sensor has been fastened onto a translational
stage and then linked to a laptop. The target panel, i.e.,
the material under investigation, has been placed in front of
the camera. Moreover, a rotational stage mounted under the
panel is responsible for measuring the tilts as well as provid-
ing the rotational movements. The actual distance between
the camera and the material is given by means of a dot
laser range finder (LRF)33 having an operating range of
0.1 to 10 m and a precision of 1 mm.

4.1 Eight Materials with Fixed Panel Poses
In this experiment, all materials except glass and fir wood
have been considered. The position and the orientation of
the panel on which the materials are fastened have been held
fixed to 1 m and 0 deg, respectively. Furthermore, a sequence
of 300 frames has been acquired.

Figure 4 shows the predictive accuracies given from the
analysis of the eight materials. These accuracy rates have
been obtained by considering the confusion matrices
returned by Weka. Three different shutters have been tested.
As shown by the bar graph, the shutter value heavily affects
the likelihood of correctly recognizing the material type. In
this regard, the DCT and HILBERT transforms seem less
stable than the others. In contrast, the remaining transforms
ensure higher recognition rates for all the reported shutter
speeds.

The FOURIER, CHIRP, and KL transforms provide
more reliable classification of the presented materials.
Although the related recognition rates are comparable, the
FOURIER transform requires less time to be computed
with respect to the others. This aspect should be taken into
account when real-time requirements for material recogni-
tion need to be addressed for specific applications.

As the bar graph shows, the KLT ensures high recognition
rates. Such a transform was commonly employed in previous
works34,35 for its effectiveness in feature extraction. As
already stated, this transform is a representation of a linear
combination of orthogonal functions such as the Fourier
series, but the number of coefficients is variable. The
Karhunen–Loève expansion is better suited, even though
it requires more time to be computed with respect to the

Fig. 3 Experimental setup used in our tests. The acquisitions
have been performed without external and artificial lights. (a) Side
view and (b) rear view of acquisition system. (c) Enlargement of
translational stage along with ToF camera and laser range finder.
(d) Enlargement of rotational stage used to provide rotational
movements.
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Fig. 4 Three different integration times have been evaluated for each employed feature. Note how the
predictive accuracy consistently decreases for DCT and HILBERT transforms when an increase of
shutter value occurs.
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chirp and Fourier transforms. Therefore, the Fourier-based
feature represents a good compromise between classification
accuracy and computational time required.

In contrast, the DCT-based feature does not provide stable
predictive accuracies for the considered shutter speeds. In
this regard, the high-frequency noise that affects a signal
is often isolated in a small number of coefficients. Since
in our approach we take advantage of both the distance fluc-
tuations and the intensity information for extracting a feature,
it is fairly probable that such informative content is not pre-
served when the DCT transform is computed. Therefore, loss
of information might occur when this transform is used.

Nevertheless, the classification rates obtained employing
a unique feature do not compare favorably against previous
methods. Therefore, experiments have been performed by
providing the J48-based classifier with features extracted
simultaneously by several transforms.

Hence, all the possible pair combinations of the presented
transforms have been considered to enhance the predictive
accuracies. Similar to the case of unique transform previ-
ously discussed, the features employing the DCT transform
appear to be more affected by shutter value variations. As a
matter of fact, a consistent decrease of predictive rates is
observable from Fig. 5.

Conversely, the features extracted by using combinations
of the FOURIER, CHIRP, and KL transforms ensure good
predictive accuracies. Such results are still coherent with
the ones obtained by employing a unique transform for
extracting a feature of interest. In this regard, such features
are less affected by the analyzed different shutter values.

Table 3 reports some important metrics useful in measur-
ing the performance of the predictor. Among the computed
features, only the most relevant has been proposed in this
table. Moreover, a shutter of only 20 ms has been taken
into account since that seems to ensure higher recognition
rates.

As shown by the F-measure (i.e., the harmonic mean
between precision and recall), the materials made of plastic
and reflective surfaces can be predicted with good perfor-
mance by means of KL-based features and CHIRP–KL-
based features. In contrast, the dark fabric sample presents
the worst case of this classification task due to its high
absorption property. Other materials such as aluminum

and iron show average F-measure values since the consid-
ered shutter causes sensor saturation. Moreover, considering
the average rank of the F-measure, the FOURIER–KLT
combination and CHIRP–KLT show the best results. In gen-
eral, if the KL score is low, most of the descriptors perform
weakly.

Some of presented features enable recognition of the
material type with good accuracy. However, the computa-
tional time required to calculate them has to be taken into
account when dealing with real-time applications. For the
sake of completeness, Table 4 reports the computational
times needed to compute the features of interest.

The values in bold benchmark the elapsed time for com-
puting the features that have shown the best results in terms
of predictive accuracy. As observable, the FOURIER-based
feature requires the least time to be computed with respect to
the others. In fact, the FFT has been employed to obtain such
features. In contrast, the features based on the KLT need
more time to be extracted. In this regard, one order of mag-
nitude higher than the FOURIER- and CHIRP-based fea-
tures is evident from this table.

4.2 Four Materials with Different Panel Poses
In this case, a subset of considered materials has been exam-
ined since several panel poses have been taken into account,
as shown in Table 5. This has been necessary for limiting
the number of material/distance/orientation combinations
to be acquired. Specifically, the plywood, the plastic panel,
the reflective surface, and the glass surface have been ana-
lyzed since these materials are commonly present in indoor
environments.

It is worth highlighting that the glass surface has been
introduced in this experiment because it is more challenging
for it to be acquired by the ToF camera, like the reflective
surface. Therefore, its analysis could be of more interest
than those of other material types.

Table 5 reports the different attribute values used during
the experiment. In other words, several acquisitions have
been performed considering the combinations of values
listed in the table.

It is worth noting that the position and shutter values are
related. In other words, when the panel is placed close to the
ToF sensor, small shutter values are needed to get reliable
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Fig. 5 The bar graph shows how the combination of transforms allows an increase of recognition rates of
materials despite shutter changes.
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Table 3 The true positive (TP), true negative (TN), false positive (FP), false negative (FN), precision, recall, and F -measures are reported for each
material and extracted feature combination.

Material Feature TP TN FP FN Precision (%) Recall (%) F -measure (%) Rank F -measure

Aluminum FOURIER 110 2521 124 124 47.01 47.01 47.01 3

CHIRP 111 2514 131 123 45.87 47.43 46.62 4

KL 107 2499 146 127 42.29 45.72 43.93 5

FOURIER–CHIRP 146 2515 130 124 52.89 54.07 53.44 2

FOURIER–KL 169 2487 158 101 51.68 62.59 56.65 0

CHIRP–KL 169 2482 163 101 59.00 62.59 56.14 1

Iron FOURIER 114 2403 203 159 35.96 41.75 38.64 4

CHIRP 120 2400 206 153 36.81 43.95 40.07 3

KL 100 2412 194 173 34.01 36.63 35.27 5

FOURIER–CHIRP 156 2396 210 153 42.62 50.48 46.22 0

FOURIER–KL 126 2440 166 183 43.15 40.77 41.93 2

CHIRP–KL 127 2437 169 182 42.91 41.12 41.98 1

Wood FOURIER 147 2374 197 161 42.73 47.72 45.09 4

CHIRP 132 2384 187 176 41.38 42.86 42.10 5

KL 153 2400 171 155 47.22 49.67 48.42 2

FOURIER–CHIRP 168 2384 187 176 47.34 48.83 48.07 3

FOURIER–KL 190 2378 193 154 49.60 55.23 52.27 0

CHIRP–KL 185 2376 195 159 48.68 53.77 51.17 1

Plastic FOURIER 268 2465 54 92 83.22 74.44 78.59 4

CHIRP 268 2465 54 92 83.22 74.40 78.59 4

KL 297 2482 37 63 88.92 82.51 85.59 0

FOURIER–CHIRP 304 2465 54 92 84.92 76.77 80.64 3

FOURIER–KL 330 2466 53 66 86.16 83.33 84.72 1

CHIRP–KL 330 2466 53 66 86.16 83.33 84.72 1

Polystyrene FOURIER 241 2081 273 284 46.88 45.79 46.39 4

CHIRP 246 2081 273 279 47.39 46.85 47.13 3

KL 233 2056 298 292 43.88 44.38 44.13 5

FOURIER–CHIRP 283 2079 275 278 57.20 50.45 50.59 1

FOURIER–KL 288 2081 273 273 51.34 51.34 51.37 0

CHIRP–KL 278 2078 276 283 51.80 49.55 49.87 2
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Table 3 (Continued).

Material Feature TP TN FP FN Precision (%) Recall (%) F -measure (%) Rank F -measure

Reflective surface FOURIER 278 2558 21 22 92.98 92.67 92.82 3

CHIRP 278 2558 21 22 92.98 92.67 92.82 3

KL 281 2550 29 19 96.50 93.67 92.13 4

FOURIER–CHIRP 314 2558 21 22 93.73 93.45 93.59 2

FOURIER–KL 313 2567 12 23 96.30 93.15 94.71 1

CHIRP–KL 313 2567 12 23 96.31 93.15 94.72 0

White fabric FOURIER 233 2066 333 247 41.16 48.54 44.55 3

CHIRP 217 2069 330 263 39.67 45.20 42.26 4

KL 209 2050 349 271 37.46 43.54 40.27 5

FOURIER–CHIRP 252 2070 329 264 43.37 48.84 45.94 1

FOURIER–KL 254 2079 320 262 44.25 49.22 46.60 0

CHIRP–KL 246 2064 335 270 42.34 47.67 44.85 2

Dark fabric FOURIER 81 2278 202 318 28.62 20.31 23.75 5

CHIRP 84 2259 221 315 27.54 21.05 23.86 4

KL 87 2292 188 312 31.62 21.80 25.82 3

FOURIER–CHIRP 120 2262 218 315 35.51 27.59 31.05 0

FOURIER–KL 113 2271 209 322 35.09 25.98 29.85 1

CHIRP–KL 112 2276 204 323 35.44 25.75 29.83 2

Table 4 Computational times obtained to compute the features of
interest. All the transforms have been obtained using the software
MATLAB. These outcomes refer to the analysis of one pixel belonging
to plywood over time.

Feature name Elapsed time (ms)

FOURIER 0.0382

DCT 0.2928

CHIRP 1.2265

HILBERT 0.2229

KL 10.5698

FOURIER–DCT 0.3224

FOURIER–CHIRP 1.2604

Table 4 (Continued).

Feature name Elapsed time (ms)

FOURIER–HILBERT 0.2526

FOURIER–KL 10.5486

DCT–CHIRP 1.5175

DCT–HILBERT 0.4786

DCT–KL 10.7900

CHIRP–HILBERT 1.4746

CHIRP–KL 11.7152

HILBERT–KL 10.7169
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depth measures. In contrast, the more the position increases
its value, the more the shutter can be increased. Therefore, by
considering a short distance between the panel and the
acquisition system, small values of the shutter have to be
chosen, thus enabling the avoidance of unwanted saturations
of photosensors.

As shown in Fig. 6, an average increase of 10% in pre-
diction accuracy has been obtained with respect to results
reported in Fig. 4, since there are fewer material types
that need to be considered. In this case, all features appear
to be stable against shutter variations. The features based on
FOURIER, CHIRP, and KL transforms show better predic-
tive rates, although of a small margin.

By combining the transforms, an increase of predictive
rates has been achieved, as shown in Fig. 7. Such outcomes
prove once more that features extracted from multiple
domains are better suited to be interpreted by the classifier.

This is consistent with the results obtained in the previous
experiment. Moreover, a shutter value of 20 ms provides
the highest predictive rates among those considered. In fact,
this value seems to be the most suitable for the considered
distance range and the materials used during the tests.

Table 6 reports the main metrics obtained by limiting the
experiment to four material types only using a shutter value
of 20 ms. As highlighted, very high F-measure values have
been achieved by using the FOURIER–CHIRP-based fea-
tures and FOURIER–KL-based features. Conversely, lower
predictive rates have been obtained when features based on
unique transforms have been used. In fact, as already stated,
the combination of features enables enhancement of the pre-
dictive rates for material classification.

Table 5 List of parameter values employed during our experiments.

Position values (m) Rotation values (deg) Shutter values (ms)

0.50 −45 3

0.75 −30 5

1.00 −10 10

1.25 0 15

1.50 10 20

1.75 30 40

2.00 45 —
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Fig. 6 The bar graph reports the predictive accuracies by considering several poses of panel and differ-
ent integration times. The highest recognition percentages are achieved with a shutter value of 20 ms.
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Fig. 7 The combination of transforms involves an increase of predictive accuracies of about 10% with
respect to those computed by considering a unique domain of transform.
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The results of the second experiment, therefore, confirm
that the descriptors based on FOURIER–KL and CHIRP–KL
provide the most effective material classification.

Table 6 shows that the predictive accuracies of materi-
als made of plastic are considerably lower than others.
Specifically, the reported data refer to a shutter value of
20 ms. In this regard, saturations of photosensitive receivers
occur when the plastic panel has been acquired by consid-
ering this exposure time. Therefore, meaningless measure-
ments have been returned by the ToF camera. In contrast,
the other materials have not involved any photosensor

saturations, thus providing more reliable measurements.
Additionally, the measurement fluctuations obtained by
analyzing these materials appear to be more distinctive and
meaningful by the classifier. As a consequence, they have
been better classified, as shown in the table. Further experi-
ments will be conducted to better investigate these material
categories.

In Fig. 8, the recognition rates are shown, taking into
account the position changes. As already highlighted, the
features that ensure the highest scores are those based on
a combination of FOURIER, CHIRP, and KL transforms.

Table 6 Themain metrics for evaluating the classifier have been reported for the case of analysis. A shutter value of 20 ms has been considered to
collect the data presented here.

Material Feature TP TN FP FN Precision (%) Recall (%) F -measure (%) Rank F -measure

Wood FOURIER 7297 4703 2136 2139 77.35 77.33 77.34 5

CHIRP 7297 4705 2134 2139 77.37 77.33 77.35 4

KL 7399 4858 1981 2037 78.88 78.41 78.64 3

FOURIER–CHIRP 8211 5394 1445 1225 85.03 87.01 86.01 0

FOURIER–KL 8176 5386 1453 1260 84.91 86.64 85.76 1

CHIRP–KL 8173 5387 1452 1263 84.91 86.61 85.75 2

Plastic FOURIER 1797 10,630 1930 1918 48.21 48.37 48.29 4

CHIRP 1797 10,630 1930 1918 48.21 48.37 48.29 4

KL 1957 10,778 1782 1758 52.34 52.67 52.50 3

FOURIER–CHIRP 2432 11,533 1027 1283 70.30 65.46 67.80 0

FOURIER–KL 2428 11,498 1062 1287 69.57 65.35 67.39 1

CHIRP–KL 2429 11,495 1065 1286 69.51 65.38 67.38 2

Reflective surface FOURIER 977 14,199 540 559 64.40 63.60 64.00 4

CHIRP 976 14,195 544 560 64.21 63.54 63.87 5

KL 1068 14,214 525 468 67.04 69.53 68.26 3

FOURIER–CHIRP 1314 14,484 255 222 83.74 85.54 84.63 1

FOURIER–KL 1317 14,486 253 219 83.88 85.74 84.80 0

CHIRP–KL 1315 14,481 258 221 83.59 85.61 84.59 2

Glass FOURIER 1451 14,540 147 137 90.80 91.37 91.08 4

CHIRP 1449 14,539 148 139 90.73 91.24 90.98 5

KL 1485 14,609 78 103 95.00 93.51 94.25 3

FOURIER–CHIRP 1545 14,641 46 43 97.10 97.29 97.20 1

FOURIER–KL 1545 14,646 41 43 97.41 97.29 97.35 0

CHIRP–KL 1540 14,644 43 48 97.28 96.97 97.13 2
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The predictive accuracies related to short distances are
slightly lower with respect to other positions, although by
a small margin. This is probably due to the shutter values
employed for these positions. Specifically, only integration
times of 3, 5, 10, and 15 ms have been considered for
such positions. However, it has been demonstrated that a
shutter value of 20 ms ensures the highest recognition scores
among those remaining. As a consequence, the scores of
Fig. 8 are indirectly affected by the shutter value.

Similar to cases of analysis of shutter and position
changes, the correlation between the angle variation and
the predictive accuracy has been investigated. In this regard,
Fig. 9 shows the obtained recognition rates by varying the
angle value. It is important to underline that only the positive
angles have been reported since the negative ones present
very similar scores.

The most stable features against angle variations are
still those obtained in previous experiments, namely the
FOURIER–CHIRP, FOURIER–KL, and CHIRP–KL. High
predictive accuracies have been achieved in this case as well.

In summary, it is possible to state that the combination
of features enables enhancement of the prediction rates.

Moreover, three of these features can be considered more
stable than others in material classification, even when differ-
ent shutter values and panel poses are taken into account.

4.3 Eight Materials by Introducing Another Wooden
Panel in the Dataset

The presented experiments have shown the efficiency of the
proposed methodology for recognizing the material type. In
this paper, the most common material categories have been
considered. However, several objects belonging to the same
category can be found when an environment is explored. For
example, there are several surface typologies made of iron,
wood, plastic, or fabric having different surface smoothness
or reflective properties.

Nevertheless, it is unthinkable to classify all the existing
materials. In this regard, a large dataset should be used to
enhance the recognition rate of material. In fact, a wide
set of objects made of the same material has to be considered
during the training stage for each category.

In this experiment, another wooden panel made of fir,
having different characteristics from the others (plywood),
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Fig. 8 The recognition rates of variations of distance from the ToF sensor and the examined panels
are reported. The features that ensure the highest and most reliable scores are still those based on
the combination of FOURIER, CHIRP, and KL transforms.
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Fig. 9 Here, the predictive accuracies are shown by considering different orientations between the panel
and the acquisition system.
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has been analyzed. In this regard, the fir panel has a lighter
color with respect to plywood and is also less smooth.

At first, data related to the fir panel have not been
included in the training step. Therefore, the material category
should be identified by the built classifier using only the data
related to the other eight panels (similar to tests reported in
Sec. 4.1). However, a low-predictive accuracy (∼20%) has
been reached. As a consequence, the fir panel has not always
been identified as wood. This likely happens because the
diverse roughness of the two wooden panels could affect cat-
egory recognition. Conversely, by considering the data of
the fir panel in the training stage and classifying the panel
as wood, a significant increase of the recognition rate is
achieved.

Figure 10 reports the predictive accuracies by considering
the fir panel in the computation as well. As observable,
a slight increase of scores has been obtained in comparison
with the outcomes reported in Fig. 4. The improvement of
rates is probably due to a better representation of the
class “wood.” In other words, the more data used in the train-
ing step, the more the classifier is able to represent the real
world.

The combination of features enables higher recognition
rates (see Fig. 11). The features based on the combination

of FOURIER, CHIRP, and KL show more stable scores
with respect to those that significantly decrease the predic-
tive accuracies when the shutter changes its value. Hence,
such outcomes prove once more that these features are
sufficiently distinctive and reliable for achieving category
classification.

The metrics related to this experiment are reported in
Table 7. As observable from the table, the features computed
from a combination of transforms ensure the highest classi-
fication rates. By comparing these results with those of
Table 3, it is possible to note that similar prediction scores
have been achieved. Nevertheless, the scores referring to the
category of wood are considerably improved. Specifically,
the F-measure of wood is increased by about 30% for all
the considered features. This enhancement is due to a better
representation of the class under investigation.

4.4 Discussion
Many works have been proposed in recent years for solving
the problem of material recognition. Many of the proposed
methodologies are essentially based on color and texture
analysis of 2-D images. Very few works tackle this topic by
exploiting 3-D information. In this regard, our method is
able to classify the material typology by exploiting both
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Fig. 10 Here, the recognition rates for each feature are reported by considering eight materials.
Specifically, two typologies of wood (fir wood and plywood) have been taken into account to evaluate
the accuracy of the classifier. The features based on FOURIER, CHIRP, and KL showmore stable results
against shutter value changes.
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Fig. 11 The features based on FOURIER, CHIRP, and KL ensure the highest predictive accuracies.
Moreover, these features are more reliable against shutter variations with respect to the remaining ones.
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Table 7 Here, the main metrics related to this test are shown. Very high recognition scores for materials made of wood have been achieved in
comparison with Table 3. Other predictive accuracies related to other categories are still comparable with those of that table.

Material Feature TP TN FP FN Precision (%) Recall (%) F -measure (%) Rank F -measure

Aluminum FOURIER 101 3178 127 120 44.30 45.70 44.99 4

CHIRP 99 3180 125 122 44.20 44.80 44.49 5

KL 113 3166 139 108 44.84 51.13 47.78 2

FOURIER–CHIRP 112 3180 125 122 47.26 47.86 47.56 3

FOURIER–KL 129 3168 137 105 48.50 55.13 51.60 0

CHIRP–KL 129 3164 141 105 47.78 55.13 51.19 1

Iron FOURIER 102 3052 214 158 32.28 39.23 35.42 5

CHIRP 107 3056 210 153 33.75 41.15 37.09 3

KL 96 3083 183 164 34.41 36.92 35.62 4

FOURIER–CHIRP 120 3056 210 153 36.36 43.96 39.80 2

FOURIER–KL 117 3100 166 156 41.34 42.86 42.09 1

CHIRP–KL 119 3097 169 154 41.32 43.59 42.42 0

Wood FOURIER 789 2384 187 166 80.84 82.62 81.72 1

CHIRP 778 2377 194 177 80.04 81.47 80.75 5

KL 804 2347 224 151 78.21 84.19 81.09 3

FOURIER–CHIRP 791 2377 194 177 80.30 81.71 81.00 4

FOURIER–KL 826 2347 224 142 78.67 85.33 81.86 0

CHIRP–KL 808 2355 216 160 78.91 83.47 81.12 2

Plastic FOURIER 255 3125 54 92 82.52 73.49 77.74 4

CHIRP 255 3125 54 92 82.52 73.49 77.74 4

KL 275 3138 41 72 87.03 79.25 82.96 2

FOURIER–CHIRP 268 3125 54 92 83.23 74.44 78.59 3

FOURIER–KL 295 3140 39 65 88.32 81.94 85.01 1

CHIRP–KL 297 3140 39 63 88.39 82.50 85.34 0

Polystyrene FOURIER 228 2723 291 284 43.93 44.53 44.23 5

CHIRP 232 2729 285 280 44.87 45.31 45.09 3

KL 227 2727 287 285 44.16 44.34 44.25 4

FOURIER–CHIRP 245 2729 285 280 46.23 46.67 46.45 2

FOURIER–KL 245 2782 232 280 51.36 46.67 48.90 1

CHIRP–KL 251 2802 212 274 54.21 47.81 50.81 0
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the 3-D information and the intensity levels returned by
the ToF camera.

Although the method proposed in this paper is directly
comparable with just a few works, and, even then, it
works on different datasets, a comparison table is show in
Table 8, with papers grouped according to the employed
processing method.

Works in Refs. 1, 5, and 6 employed high-resolution 2-D
cameras to acquire images with respect to the low resolution
of our 3-D ToF sensor. In Ref. 6, an acquisition system based
on a concave parabolic mirror and a beam splitter have been
used to obtain the reflectance disks of materials. Different
material typologies have been analyzed. In this regard, only
Ref. 6 investigated similar materials. In contrast, Refs. 1 and
5 employed natural and building materials, respectively.

The work in Ref. 2 presents average scores even though
several materials are examined. However, its methodology is
applied to recognize natural materials, while this work is
more concerned with structured indoor environments.

Finally, Refs. 14, 15, and 16 refer to the analysis of
3-D information for achieving material recognition. Among
the discussed works, these are the closest to our approach

since they handled 3-D data to extract features. Further-
more, analogous material categories (wood, plastic, fabric,
and paper) have been investigated. It is observable that a
slightly lower accuracy rate has been achieved since in
our case, challenging materials such as a reflective surface
and glass have been considered.

Part of this advantage might also be dependent on the sen-
sor’s performance difference. In fact, the absolute accuracy
(or the maximum systematic error on the distance measure-
ments) and the repeatability (1σ) of SR400036 are equal to
�10 and 4 mm, respectively. Conversely, the absolute accu-
racy and the repeatability (1σ) of Fotonic E70 are �20 and
7 mm. Hence, our acquisition system used to collect the
data is less accurate than the other one.

5 Conclusions
In this paper, exploiting the information given by a ToF
depth camera, a group of features has been computed to
accomplish the task of material classification. For each
material, a suitable RoI is considered. Specifically, all pixels
belonging to this RoI are separately examined over time. A
sequence of 300 frames is acquired for each material placed

Table 7 (Continued).

Material Feature TP TN FP FN Precision (%) Recall (%) F -measure (%) Rank F -measure

Reflective surface FOURIER 266 3219 20 21 93.01 92.68 92.84 4

CHIRP 266 3219 20 21 93.01 92.68 92.84 4

KL 270 3220 19 17 93.43 94.08 93.75 2

FOURIER–CHIRP 279 3219 20 21 93.31 93.00 93.16 3

FOURIER–KL 282 3232 7 18 97.58 94.00 95.76 0

CHIRP–KL 282 3232 8 18 97.24 94.00 95.59 1

White fabric FOURIER 195 2737 322 272 37.72 41.76 39.63 4

CHIRP 208 2744 315 259 39.77 44.54 42.02 3

KL 169 2730 329 298 33.94 36.19 35.03 5

FOURIER–CHIRP 221 2744 315 259 41.23 46.04 43.50 2

FOURIER–KL 240 2721 338 240 41.52 50.00 45.37 0

CHIRP–KL 241 2707 352 239 40.64 50.21 44.92 1

Dark fabric FOURIER 73 2929 211 313 25.70 18.91 21.79 1

CHIRP 72 2925 215 314 25.09 18.65 21.40 2

KL 63 2944 196 323 24.32 16.32 19.53 4

FOURIER–CHIRP 85 2925 215 314 28.33 21.30 24.32 0

FOURIER–KL 63 2941 199 336 24.05 15.79 19.06 5

CHIRP–KL 71 2935 205 328 25.72 17.79 21.04 3
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in front of the ToF sensor. At this stage, exploiting different
transforms such as Fourier, Karhunen–Loève, chirp-z, and so
on, different features have been extracted. Both a training
and a validation dataset have been created in order to train
and test a decision tree (J48) for classifying the materials.

Results have shown how the integration time (i.e., shutter
value) affects the predictive accuracies of recognition in the
event that only a unique transform domain is employed to
classify materials. In this regard, the features based on the
Fourier, chirp, and KL transforms seem more stable with
respect to the shutter variations. By considering the combi-
nations of transforms, a significant increase of recognition
rates has been achieved as well. At the same time, by reduc-
ing the number of materials and introducing other informa-
tion tied to the pose of the panel, predictive accuracies have
slightly increased.

The efficiency of the presented methodology has been
also proven by evaluating features with changes of the posi-
tion and angle of panels. Good predictive rates have been
achieved, confirming the stability of computed features
against parameter variations.

Moreover, by enhancing the training dataset by introduc-
ing a new typology of panel in the category of wood (fir
wood), significant recognition rates have been obtained,
proving once more the effectiveness of our approach.

Since these results look promising, further work will be
done to prove the robustness of the proposed methodology,
e.g., by considering a wider set of materials and reducing the
amount of frames acquired during an experiment. Moreover,
other depth sensors such as Kinect v1∕v2 and Swiss Ranger
4000∕4500 might be investigated in order to evaluate accu-
racy improvements. Finally, a method for patch extraction
from objects will be considered for accomplishing material
recognition in less controlled environments as well.
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