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Our understanding of calcium's role in cerebral 
ischemia continues to  evolve from the initial recog- 
nition that it may be harmful t o  the ischemic cell. 
A multitude of experiments have supported the 
hypothesis that excessive influx of calcium into the 
cell under ischemic conditions is a major mecha- 
nism of cell injury and death. Pharmacological inter- 
vention t o  restore cellular calcium homeostasis is 
protective in many models of cell anoxia. Principle 
routes of calcium entry are the voltage-sensitive 
(VSCC) and N-methyl-D-aspartate linked receptor 
operated (ROCC) calcium channels. Regional varia- 
tions in channel densities have been described and 
it is now known that these classes of channels are 
located in different regions of the neurons. Acti- 
vation of both channel types has been identified in 
in vivo models of cerebral ischemia. Although the 
ROCC is predominant in number, the VSCC appears 
t o  activate at higher cerebral blood f low values 
suggesting that it is an earlier conduit for calcium 
than the glutamate-driven ROCC. lntracellular cal- 
cium is well  recognized as a second messenger 
system and there is increasing appreciation that it 
induces immediate early genes (IEG). Since IEGs 
function as transcriptional regulating factors, the 
differential expression of specific target genes may 
be of importance for determining death or survival 
of the ischemic tissue. 

Stroke remains a major source of mortality and dis- 
ability in society, but our understanding of the 
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metabolic processes that render neurons vulnerable 
to ischemic cell death have much improved. In this 
context, Ca2+ has assumed major importance as the 
ion that brings about death of the ischemic cell and 
various efforts have been made to control its intra- 
cellular concentration. More recently the role of Ca2+ 
in signalling molecular responses in the ischemic 
cell and their potential neuroprotective role has 
become clearer. This review will emphasize our pre- 
sent understanding of Ca2+ homeostatic mecha- 
nisms, the role the voltage-sensitive and recep- 
tor operated Ca2+ channels (VSCC and ROCC) play 
in vivo and the gene responses that can be induced 
by moderate activation of these channels. Regarding 
the genomic responses, see the review by Kiessling 
and Gass in this symposium. 

Loss of Calcium Homeostasis in Ischemia 

Neurons, like other cells, maintain their resting 
intracellular free calcium concentration ( [Ca2+] i )  at 
extremely low levels (approximately 100 nM) despite 
being bathed in an extracellular fluid containing 
1 mM Ca2+. The electrochemical gradient across 
the neuronal membrane which tends to drive Ca2+ 
into the cells is maintained by the relative imperme- 
ability of the membrane to  Can+ and by energy- 
dependent extrusion processes (Fig. 1). The [Ca2+] i 
is the result of several opposing forces: ( i )  influx 
through Ca2+ channels, (ii) sequestration by internal 
storage vesicles and (iii) expulsion by Ca2+ pumps 
and exchangers (1). 
A number of physiological stimuli use small and 
transient increases in [Ca*+]i as signals for an array 
of metabolic, structural and functional processes 

I Glossary for Abbreviations 

4-VO 4-vessel occlusion: AMPA Alpha-amino-3-hydroxy- 
5-methyl-4-isoxazolepropionate; [Ca*+li lntracellular calcium 
ion concentration; CBF Cerebral blood flow; CCA Common 
carotid artery; DHP 1 ,Cdihydropyridine; IEG Immediate 
early gene; IPS Inositol-l,4,5-trisphosphate; KA Kainate; 
MCA Middle cerebral artery; NMDA Nmethyl-D-aspartate; 
ROCC Receptor operated calcium channels; PLC Phospho- 
lipase C; VSCC Voltage sensitive calcium channels 
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such as growth, learning, memory and neurotrans- 
mitter release (1). However, large, sustained increases 
in neuronal (Ca2+I1 initiate a cascade of destructive 
metabolic processes which culminate in the death 
of the neuron (2) .  It is widely believed that such a 
disruption of Ca2+ homeostasis and the resulting 
lethal Can+ overload is the major cause of damage 
in the ischemic brain (3-5). The initial effects of 
ischemia are the loss of cellular energy production 
resulting from the reduction in oxygen supply and 
a massive extracellular buildup of the excitatory 
neurotransmitter glutamate (3,644). 
Membrane Ca2+ influx pathways. Energy depletion 
in ischemic neurons rapidly leads to a loss of sodium 
gradients which are normally maintained by the 
adenosine triphosphate (ATP)-dependent membrane 
N a + - K +  pump (6). The resulting depolarization trig- 
gers Ca2+ influx through voltage sensitive calcium 
channels (VSCCs) in the plasma membrane. Four 
types of neuronal VSCCs, designated as T, L, N and P, 
have been described based on their electrophysiologi- 
cal, pharmacological and physical characteristics 
(9,lO). Temporary protection may be provided by 
the increased [Ca*+] I activating Ca’+-dependent K +  
channels which hyper-polarize the cell (1 l),  but if 
the [Can+], remains elevated the destructive process 
progresses. 
The oxygen-deprived, electrically impaired neurons 
release large amounts of glutamate in response to the 
depolarization of the plasma membrane. Glutamate 
is the major excitatory neurotransmitter in the cen- 
tral nervou5 system. Normally, excess extracellular 
glutamate is actively returned to presynaptic termi- 
nals and glial cells (12). In ischemia however, the 
mechanism for glutamate re-uptake is impaired due 
to the lack of energy and therefore, there is a pro- 
longed and excessive activation of post-synaptic 
glutamate receptors. Glutamate activates several sub- 
types of ligand-gated cation channels which allow 
further Ca2+ influx into the neurons (3,13-16). These 
subtypes, the ionotropic glutamate receptors, are 
defined by their pharmacological profiles as the 
N-methyl-D-aspartate (NMDA) and alpha-amino- 
3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), 
kainate (KA) receptors (1 7). Glutamate also activates 
a metabotropic receptor, linked to phospholipase C 
(PLC) and G-proteins, which triggers the mobili- 
zation of Ca2+ from intracellular stores (18,19). 
Glutamate also induces further Can+ influx through 
the activation of VSCCs secondary to the transmitter- 
evoked depolarization of the membrane (20). 
It was originally thought that glutamate over-stimu- 
lation of NMDA receptors during ischemia was the 
major pathway for the lethal influx of Can+, but 
other routes may play secondary roles or amplify 
the NMDA-triggered influx and resulting injury. 
The relative contributions and significance of Can+ 
influx through VSCCs and NMDA-operated ion 
channels is not  fully understood, however, it has 

recently been demonstrated in hippocampal neurons 
that L-type Ca2+ channels and NMDA receptors 
transmit signals to  the nucleus and regulate gene 
transcription through two distinct Ca2+ signalling 
pathways (21). 
Although the functional role of Ca2+-permeable non- 
NMDA-operated ion channels is still unclear, they 
also appear to be involved in glutamate-mediated 
toxicity. AMPA receptor channels may conduct Ca2+, 
especially upon reperfusion. This is reflected by a 
post-ischemic decrease in the proportion of the nor- 
mally dominant non-Ca 2+ conducting AMPA recep- 
tor subunit Glu R2 compared to  the Ca2+-conduct- 
ing GluRl and GluR3 subunits in ischemia-sensitive 
CA1 neurons, whereas little change in AMPA recep- 
tor subunits are seen in the less vulnerable CA3 neu- 
rons (22).  The importance of these receptors is 
demonstrated by the ability of the AMPA antago- 
nist 2,3-dihydro-6-nitro-7-sulfamoylbenzoquinoxa- 
line (NBQX) to  reduce damage of CA1 neurons after 
transient ischemia of rat brains (23). 
Membrane ion pumps and exchangers normally 
maintain the electrochemical ion gradients and 
membrane potential of neurons. The Na +-Ca2+ 
exchanger returns the [Can+] i t o  the resting level 
following its elevation. It pumps Can+ ions out and 
Na+ ions into the cell using the inwardly directed 
electrochemical gradient for Na + which is main- 
tained by the Na+-K+ pump. In ischemia, the loss 
of neuronal ATP inhibits the Na+-K+ pump (6) and 
the resulting accumulation of Na+ reverses the opera- 
tion of the Na+-Can+ exchanger (24-26). Inhibiting 
the Na+-Caz+ pump or removing Na+ or Can+ ions 
from the extracellular milieu is neuroprotective, 
suggesting that a reversal of this exchanger during 
ischemia pumps Ca2+ into, instead of out  of, the 
neuron and this contributes to the lethal elevation 
of [Caz+], (27). 
Intracellular Ca2+ stores. The metabotropic gluta- 
mate receptor is a G-protein coupled receptor which 
activates phospholipase C (PLC) and generates ino- 
sitol 1,4,5-trisphosphate (IP3) and diacylglycerols, 
leading to  the release of Can+ from intracellular 
stores and activation of protein kinase C, respec- 
tively (18,19). Like other cells, neurons have a vari- 
ety of internal Can+ stores. One is sensitive to I P 3  
and others are sensitive to caffeine and ryanodine 
which may be involved in phenomena such as Cap+- 
induced Can+ release (28). Many physiological agents 
trigger the release of Ca*+ from intracellular stores 
in neurons, but the physiological function of the 
metabotropic glutamate receptor is not known. It 
is also not known if the biological effects of ele- 
vated [Ca*+], depend on whether the Can+ comes 
from inside or outside of the cell. Dubinsky and 
Rothman (29) have suggested that processes caus- 
ing cell death may be linked t o  the cell mem- 
brane and be activated only by the translocation 
of Ca2+ across the plasma membrane. 
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Figure 1 Under physiological conditions Ca2+ influx occurs mainly via voltage-sensitive (VSCC) and NMethyl-D-aspartate (NMDA)- 
gated Ca *+ channels. After ischemia calcium currents may be gated additionally via the aIpha-amino-3-hydroxy-5-methyI-4-iso- 
xazolepropionate (AMPA) / kainate-operated cation channel (broken arrows). Activation of the metabotropic glutamate receptor 
causes the release of Ca2+ from intracellular stores. lntracellular free Ca2+ is buffered by CaZ+-binding proteins and is returned 
to resting levels by extrusion via the energy-dependent Na+-Ca2+ exchanger. The Na+ gradients which run the exchanger are 
maintained by the membrane Na+- K+ adenosine triphosphate (ATPase). The elevated [Ca2+1 i can activate many CaZ+-mediated 
mechanisms, including activation of CaZ+-sensitive K+ channels and immediate early genes. Abbreviation: G, G-proteins; 
PLC, Phospholipase C; DAG, Diacylglycerols; IP3, lnositol 1,4,5-trisphosphate; PKC, Protein kinase C; PIP2, Phosphatidylinositol 4, 
5-bisphosphate; IEG, Immediate early genes. 

Recent studies have shown that in gerbil hippo- 
campal neurons, two-thirds of the ischemia-induced 
Ca2+ surge is due to release from internal stores while 
only one-third is due to influx (30). Dantrolene, 
which blocks Ca2+ release from the ryanodine-sen- 
sitive stores, halved the ischemia-induced release of 
Ca2+ from the intracellular stores of hippocampal 
neurons, and significantly protected them follow- 
ing transient forebrain ischemia (31). Similar neuro- 
protective effects of dantrolene on glutamate-medi- 
ated toxicity in cultured neurons have been reported 
(32,33). In addition, the metabotropic receptor antag- 
onist L-AP3 protects neurons from hypoxic injury 
in vitro (34) and the PLC inhibitor phenylmethyl- 
sulfonyl fluoride protects CA1 hippocampal neurons 

from forebrain ischemia in vivo (35), suggesting that 
metabotropic receptor activation and mobilization 
of Can+ from intracellular stores are important in 
ischemic injury. 
Changes in [Caz+]i in ischemia. Direct in vitro and 
in vivo measurements of [Ca2+], have shown that 
either ischemia (36-38) or glutamate raise [Ca2+], 
(29,39-41). In many systems, glutamate triggers a 
two-phase response. There is an initial transient 
[Ca2+], surge which is followed by a sustained rise 
which requires extracellular Ca2+, but not the con- 
tinued presence of the agonist (42). Neurons can 
maintain an elevated [Ca2+], long after the removal 
of glutamate (43). This secondary overload may 
indicate the irreversible loss of Ca2+ homeostasis 
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and is closely correlated with cell death (43,44). 
Basic fibroblast growth factor and nerve growth 
factor can protect neurons from ischemic insults by 
preventing this late rise in [Ca2+I1 (45,46). However, 
neurotoxicity does not depend solely on the size of 
the [Ca2+], response because large [Ca2+] I surges 
induced by inhibiting oxidative metabolism are not 
toxic (29). Thus, it is likely that cell death, while 
responsive to alterations of [Ca2+],, is not solely 
determined by it. According to the Caz+ setpoint 
hypothesis, the survival of some neurons can be 
enhanced by small sustained elevations (i.e., less 
than 100 nM above resting level) of [Ca2+], that 
result from Ca2+ influx through VSCCs (47,48). 
Larger increases of [Can+] I over resting levels are 
toxic. The mechanism by which Ca2+ promotes 
survival is unknown, but may be related to  the 
induction of immediate early genes (IEG) as discus- 
sed below. 
Neurons are complex cells, with specialized functions 
restricted to various parts of the cell and which 
require different local Ca2+ signals, Therefore, spatial 
as well as temporal variations of [Ca2+], are crucial 
for neuronal function. Although the [Ca2+], can 
rapidly rise and fall by an order of magnitude, the 
spatial localization of Ca2+ entry, release from inter- 
nal stores, reuptake into stores and buffering by 
Ca*+-binding proteins are all of potential impor- 
tance. The spatial distribution of [Can+], responses is 
governed by the restriction of Ca2+ influx to certain 
parts of neurons due to the clustering of VSCCs 
and the non-uniform distribution of ligand-gated 
ion channels on the cell surface (49,50). For example, 
in response to depolarization the [Ca2+] I of sympa- 
thetic neurons rises in the soma and growth cones, 
while the release of Ca2+ from internal stores by 
caffeine occurs only in the cell body (49). Selective 
localization of Ca2+ pumps and exchangers and Ca2+- 
binding proteins could also play important roles in 
the regulation of [Ca2+],. The relative importance of 
the restriction of the Can+ signal to specific regions 
of the neuron is not known, but it provides a means 
whereby CaZ+-dependent processes can be switched 
on or off. 
Intracellular Ca2+-binding proteins are important 
regulators of [Ca2+], and their ability to buffer Ca2+ 
may be an important determinant of neuronal vul- 
nerability in ischemia. Different populations of neu- 
rons contain variable concentrations of the Ca2+- 
binding proteins calmodulin, parvalbumin, calbin- 
din, calretinin, S l O O a  and calcineurin (51,52). How- 
ever, the data from studies postulating a protective 
role for Ca2+-binding proteins in ischemia are incon- 
sistent. Some authors report that hippocampal neu- 
rons immunoreactive to parvalbumin and calbin- 
din are protected from ischemic damage, but others 
report the loss of neurons showing positive immuno- 
reactivity for the Ca2+-binding proteins (52,53). 
Although the protective role of Caz+-binding pro- 

teins in ischemia is controversial, it clearly requires 
additional investigation. 
The role of Ca2+ in selective vulnerability. Why 
some regions of the brain are more vulnerable to 
ischemia and Ca2+ overload than other regions is 
not known, but finding out why should enable the 
development of effective neuroprotective treatments. 
In the hippocampus, CA1 neurons are exquisitely 
sensitive to ischemia, whereas the neighbouring CA3 
neurons and dentate gyrus neurons are relatively 
resistant to ischemic damage (54). Although vulner- 
ability is associated with the differences in the num- 
ber, type and localization of glutamate receptors in 
different brain regions ( S S ) ,  selective vulnerability 
to ischemia may also be related to the neurons' abil- 
ity to manage the ischemia-triggered Ca2+ influx. 
Neurons of the CA3 region may survive ischemia 
because of their ability to conserve energy to deal 
with the Ca2+ load, whereas in the CA1 region 
metabolic failure renders the neurons incapable of 
dealing with the Ca2+ load and the cells die (56). 
Neurotoxicity may be related to many factors includ- 
ing the kinds of receptors activated, the source of 
the surging Ca2+, the severity and duration of the 
ischemic event or application of the agonist, the 
duration and persistence of the [Ca2+]i surge after 
agonist withdrawal, the availability of nutrients and 
the intrinsic susceptibility of the neurons. Although 
Ca2+ is thought to  trigger a cascade of destructive 
processes within minutes, the subsequent neuronal 
degeneration can begin within minutes or it can be 
delayed for many hours. The mechanism by which 
an elevated [Ca2+]i kills the cell is not known and 
a link between increased [Can+] I and neurotoxicity 
has not been proven conclusively. 
In many experimental models of neurodegeneration, 
pharmacological intervention to  block glutamate 
receptor activation prevents a lethal influx of Ca2+. 
Similarly, removing extracellular Ca2+, chelating 
intracellular Ca2+ or applying VSCC or ligand-gated 
ion channel antagonists can protect neurons from 
ischemic injury (57-66). Neuroprotection is propor- 
tional to the intervention's ability to restore normal 
Ca2+ homeostasis. 

Voltage Sensitive Calcium Channel (VSCC) 
Activation in Cerebral Ischemia 
Calcium channels play a central role in the changes 
in [Ca2+], noted during ischemia but there are few 
reports that directly observe the activation, or open- 
ing, of these channels in vivo. L-type VSCCs are 
ubiquitously distributed throughout the brain (67) 
and are present on neurons (68). The channels are 
located primarily in the proximal portion of the den- 
dritic tree, adjacent to the cell body (69) and may 
normally serve to convert membrane electrical acti- 
vity into cellular metabolic response (70). The L-type 
VSCC produces an inward calcium current with 
depolarization of the cell membrane (71) and may 
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be expected to open during ischemic cell membrane 
depolarization. 
Pharmacology of L-type VSCCs. The L-type VSCC 
exists in at least three states (72); a resting state with 
a high probability of occurrence in polarized cell 
membrane, open and inactivated states with high 
probabilities of occurrence in depolarized cell mem- 
branes (73). These channels are antagonized by three 
main classes of Ca2+ channel antagonists; the phenyl- 
alkylamines, the benzothiazepines, and the 1,4 dihy- 
dropyridines (DHP) (74). The DHP class of channel 
ligands may act as either agonists or antagonists 
depending on structural and isomeric forms (72,75). 
The L-type VSCC exhibits state dependent binding 
having a much higher affinity for DHP antagonists 
in depolarized cell membranes (73,76). Thus, DHP 
binding may be expected to increase in ischemically 
depolarized tissue and this has been shown in vivo 
(77,78). Although this increased binding is to the 
inactive channel state in the depolarized membrane 
(73), it may be used to infer that activation, or open- 
ing of the L-type VSCC has occurred. 
In vivo binding of [3H]nimodipine, a DHP Ca2+ 
channel antagonist to ischemic brain, has been used 
to identify activation of L-type VSCC in several mod- 
els of cerebral ischemia in rats (77,79,80). Nimo- 
dipine is lipid soluble and readily crosses the blood- 
brain barrier (81). Following intravenous infusion, 
[3H] nimodipine reaches an equilibrium of distribu- 
tion between plasma and brain within 30 minutes 
in all but the most severely ischemic brain regions 
(CBF< 5 ml/  100 g /min)  (78). Under equilibrium 
conditions and using autoradiographic methods 
increased in vivo binding of [3H]nimodipine to acute- 
ly ischemic brain is observed and determined to be 
saturable and specific to the L-type VSCC (78). Thus, 
in vivo nimodipine binding may be used to identify 
ischemic regions in which activation of the L-type 
VSCC has occurred. 
Response of the VSCC to irreversible ischemia. Bind- 
ing of pH1nimodipine in vivo was used to determine 
L-type VSCC activation at several times (5 minutes, 
4, 24 and 48 hours, respectively) after the onset of 
irreversible focal cerebral ischemia in male Sprague 
Dawley rats (77). In this work, middle cerebral artery 
(MCA) territory ischemia was produced by simul- 
taneous MCA and ipsilateral common carotid artery 
(CCA) occlusion. VSCC activation was observed in 
the most severely ischemic striatum five minutes 
after occlusion. The affected cortical regions (cerebral 
blood flow (CBF) 10 to 20 m1/100 glmin) did not 
show a marked increase in binding at five minutes 
of occlusion but a significant increase was reported 
in this less severely ischemic region at four hours 
of ischemia. At this time, the striatum was showing 
histological evidence of infarction and was losing 
its ability to show increased nimodipine binding. 
A t  24 hours, all tissue in the territory of the MCA 
territory had infarcted and increased [3H] nimodi- 

pine binding started to slowly decline by 48 hours. 
It was concluded that: (i) VSCC activation, as deter- 
mined by increased in vivo nimodipine binding, was 
a sensitive and early indicator of impending ischemic 
injury, and (ii) the rate of appearance of VSCC acti- 
vation was dependent on the severity of the cere- 
bral ischemia. All tissue that eventually infarcted in 
this model passed through a period of Caz+ channel 
activation. 
Response of the VSCC to reversible ischemia. Nimo- 
dipine binding in vivo has been used to investigate 
the response of L-type VSCC to a short period of 
reversible focal cerebral ischemia (79). In this study, 
MCA+ CCA occlusion in the rat was performed 
using micro-aneurysm clips. Following 15 minutes 
of ischemia, the clips were removed and reperfusion 
for 45 minutes obtained. During occlusion, VSCC 
activation was observed in the ischemic MCA terri- 
tory. With restoration of blood flow this increased 
activation returned to basal levels by 45 minutes of 
reperfusion in those regions in which CBF was re- 
established. All regions showing persistent elevation 
of nimodipine binding in this model infarcted. The 
authors concluded that VSCC ischemic activation 
was initially reversible and could be used to iden- 
tify potentially salvageable tissue in the setting of 
acute cerebral ischemia. The response of L-type VSCC 
activation has also been studied in forebrain ische- 
mia (80). Nimodipine binding in vivo was deter- 
mined 30 minutes, 2, 24 and 48 hours, respectively, 
following restoration of CBF after 30 minutes of 
four vessel occlusion (4-VO) in rats. At 30 minutes 
of reperfusion a general activation of cerebral VSCC 
was observed, presumably due to  intense depolari- 
zation during ischemia. By two hours of reperfusion 
[3H] nimodipine binding had returned to control 
levels indicating that repolarization of cell mem- 
branes had occurred. A second peak of VSCC activa- 
tion was subsequently observed in vulnerable brain 
regions undergoing delayed neuronal death. How- 
ever, it was not possible to determine if this second 
peak in channel activation contributed to, or was a 
cause of, delayed neuronal death. 
VSCC activation in spreading depression. Spread- 
ing depression is characterized by a slowly moving 
wave of depressed electrical activity and cell mem- 
brane depolarization (82). I t  is easily produced and 
observed in rat brain and under normal physiologic 
conditions pathological changes are not observed, 
although induction of IEG products will occur in 
response to spreading depression (83). Its importance 
in ischemia is due to  the recent recognition that 
spreading depression may occur in focal cerebral 
ischemia and worsen ischemic damage. Control of 
this phenomenon is observed to lessen ischemically 
induced dysfunction following three hours of focal 
ischemia in the rat (84). Injury may be due to 
worsening of Caz+ influx into ischemic neurons, 
potentially through calcium channel activation 
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secondary to  membrane depolarization. In the face 
of inadequate energy stores the neuron cannot 
correct the  resulting elevation of [Ca2+], and cell 
death results (85). A recent study of in vivo nimo- 
dipine binding in recurrent spreading depression in 
the rat has shown increased binding consistent with 
the occurrence of VSCC activation (86). 

Receptor Operated Calcium Channel (ROCC) 
Activation in Cerebral Ischemia 
The NMDA receptor-operated Ca*+ channels (ROCC) 
are also widely distributed throughout the brain but 
in particularly high numbers in CAI, hippocampus, 
striatum and to  a lesser extent in the cortex (87). 
They open in response to glutamate binding to the 
NMDA receptor and may be the primary route of 
entry of Ca2+ during acute cerebral ischemia (85). 
Pharmacology ofrhe  ROCC. Glutamate is a major 
excitatory neurotransmitter acting on both NMDA 
and non-NMDA receptors (88). Activation of the 
NMDA receptor produces increased neuronal intra- 
cellular calcium ion concentrations due to  influx of 
extracellular calcium through NMDA receptor acti- 
vated ion channels (89). Calcium current through 
the ROCC is blocked by Mg2+ ions within the chan- 
nel at resting membrane potentials but this block 
is removed with cell membrane depolarization (90). 
The action of glutamate at the NMDA receptor may 
be antagonized both competitively and non-com- 
petitively by ligands binding to the NMDA-ROCC 
structure (88). MK-801 is a non-competitive NMDA 
receptor antagonist and binds to the activated, or 
open, NMDA linked ROCC in a saturable and specific 
manner (91,92). Agonists acting at the NMDA recep- 
tor site regulate binding of this class of non-competi- 
tive NMDA antagonists to  the ROCC by changing 
the apparent association and dissociation rate con- 
stants (93). Enhancement of MK-801 binding by 
glutamate to the ROCC has been reported to  be pre- 
served at 12 hours following onset of focal cerebral 
ischemia (94). 
ROCC activation in irreversible focal cerebral 
ischemia. Wallace et al. (95) have used the state 
dependent binding of MK-801 to the NMDA linked 
ROCC to identify activation of these calcium chan- 
nels during focal cerebral ischemia. In vivo binding 
of [3H] MK-801 was measured autoradiographically 
75 minutes after MCA occlusion. Following 60 min- 
utes of circulation, increased in vivo [3H]MK-801 
binding was observed in ischemic cortex and stria- 
turn. The authors conclude that the increased [3H] 
MK-801 uptake in ischemic brain had occurred due 
to glutamate activation of the NMDA receptors. 
Comparison of VSCC and ROCC fimction in 
ischemia. As expected from observations of cell 
membrane depolarization and increased glutamate 
release during acute cerebral ischemia, radioligand 
binding studies performed in vivo have measured 
activation of both the L-type VSCC and the NMDA 

linked ROCC early in the course of ischemia. How- 
ever, the magnitude of Ca2+ influx through these 
ion channels may differ considerably. Using auto- 
radiography and in vitro binding of [3H) nimodipine 
and [3H] CGS-19755 (a competitive NMDA receptor 
antagonist) we have determined regional VSCC and 
NMDA receptor densities after four hours of irre- 
versible focal ischemia (96). The number of NMDA 
receptor sites in general was five to ten times greater 
than L-type VSCC binding sites supporting earlier 
suggestions that Caz+ entry through the ROCC is 
the main route of influx in ischemia (85). Further- 
more, the magnitude of Ca2+ influx may not be the 
only determinant of the cellular response. Neuronal 
cell culture studies have demonstrated that equal 
amounts of Ca2+ entering through either class of 
channel will have unequal effects with CaZ+ entry 
through the ROCC being much more detrimental 
(97). 
The ability of the cell to regulate Ca2+ channel func- 
tion in the setting of acute ischemia is not fully 
understood. We have observed no change in density 
of either L-type VSCCs or NMDA receptors following 
four hours of irreversible focal cerebral ischemia 
(96) but a decline in ROCC numbers may occur after 
12 hours of MCA occlusion (94). However, channel 
function may not  correlate with the  quantity of 
channel protein. Prolonged depolarization of rat 
pituitary cells will result in rapid internalization of 
L-type VSCC (98) and a similar mechanism might 
occur in ischemic neurons, thus, preventing the 
channel from contributing further to calcium influx. 
Finally, the ischemic threshold for Ca2+ channel 
activation is also not fully defined. In a cat model 
of global ischemia, extracellular glutamate was 
observed to  increase in cortex with blood flows 
below 20 ml/  100 g/min, but above the flow levels 
for ion pump failure (99). Recent observations by 
Osuga and Hakim (100) suggest that VSCC activa- 
tion may start prior to the initial rise in glutamate. 
In view of the potential for VSCC activation to 
induce a genetic response in neurons this early 
activation may offer a mechanism for the brain to  
respond to an impending ischemic insult. 

The Role of Calcium in Inducing Immediate 
Early Genes (IEG) 
While it is likely that excessive Caz+ accumulation 
can kill a neuron, the possibility that moderate 
reversible fluxes of Ca2+ may induce protective 
molecular responses is a challenging new proposi- 
tion that receives a lot of interest. Cerebral ischemia 
rapidly and transiently increases the expression of 
a class of inducible genes known as IEGs because of 
their fast induction kinetics. Both c-fos and c-jun 
are members of the IEG group and their protein 
products, Fos and Jun, are thought t o  function as 
transcriptional regulating factors that couple extra- 
cellular signals to alterations in phenotype by regu- 
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lating the expression of specific target genes (101, 
102). A large number of studies have demonstrated 
that ischemia, both focal and global, increases c-fos 
expression in the brain (103-107). This suggests that 
Fos may participate in those intracellular events 
which confer either protection or susceptibility to 
ischemic cell death. 
Experimentation with the pheochromocytoma PC-12 
cell line and primary cortical cell cultures have 
established that c-fos expression can be triggered by 
Ca2+ influx through VSCCs (108,109). The Ca2+ 
channel agonist BAY K 8644 increases c-fos expres- 
sion in PC12 cells while c-fos, c-jun, NGFI-A and 
fos-B are induced by this compound in cortical cell 
cultures (109). Furthermore, stimulation of c-fos 
expression in PC12 cells by depolarization with 
either veratridine or high K +  is blocked by the 
VSCC antagonist nisoldipine (108). Birnberg et al. 
(1 lo), using a different cell system, have shown that 
nimodipine inhibits induction of c-fos and AP-1 
by membrane depolarization. Activation of VSCCs 
also appears to be responsible for c-fos induction 
by excitatory amino acids. For example, kainate- 
induced c-fos expression in cultured cortical neu- 
rons is blocked by both the AMPA 1 kainate receptor 
antagonist NBQX and by VSCC antagonists (109) 
whereas VSCC antagonists fail to reduce c-fos expres- 
sion evoked by stimulation of NMDA receptors (111). 
Thus, induction of c-fos expression by AMPA recep- 
tors is dependent on Ca++ influx through VSCC 
while NMDA-induced c-fos is considered to be 
mediated by the movement of Ca++ ions through 
the NMDA channel. 
Ischemia and IEG induction. Focal and global 
ischemia produce brief increases in the expression 
of c-fos, c-jun, jun-B, NGFI-A and Krox-20 mRNAs, 
as well as their respective protein products, provided 
blood flow does not decline below the threshold of 
metabolic inhibition (103-107,112-116). In view of 
the wide array of IEGs induced by ischemia, it is 
difficult to establish whether the induction of a spe- 
cific combination of IEGs is indicative of survival 
or cell death (for a detailed discussion see Kiessling 
and Gass' review, this symposium). 
In a 4-VO model of global ischemia, two waves of 
c-fos induction have been observed prior to delayed 
cell death suggesting that c-fos may participate in 
this process (104). Because c-fos cannot act alone and 
it must first bind to the protein product of another 
IEG, usually a member of the jun family, to form an 
active complex (AP-l), Wessel et al. (115) examined 
the effects of ischemia on both c-fos and c-jun mRNA 
in the same 4-VO model. Like Jorgensen et al. (104), 
they reported two peaks in c-fos induction in CA1 
neurons, the second peak occurring 24 to 48 hours 
after ischemia. Moreover, this pattern of c-fos induc- 
tion was paralleled by two peaks in the expression 
of c-jun mRNA. Thus, jun may be the other com- 
ponent of AP-1 which participates in those intra- 

cellular events culminating in either death or sur- 
vival. 
Enhancing the brain's resistance to ischemia. A 
brief ischemic insult can increase the brain's toler- 
ance to the damaging effects of a subsequent longer 
episode of global ischemia. Initially, Kitagawa et al. 
(119) reported that two times two minute episodes 
of ischemia, spaced one day apart, offered complete 
protection against CA1 neuron damage produced 
by five minutes of ischemia occurring two days later. 
However, if the time between these two times two 
minute ischemic episodes was reduced to 12 hours, 
the protective effect was lost. These investigators 
concluded that a one day interval between the two 
short episodes of anoxia was necessary to allow for 
alterations in gene expression necessary for the 
production of protective protein(s). These results 
were confirmed and extended by Kato and colla- 
borators (120) who showed that a single two minute 
period of ischemia protected CA1 neurons against 
necrosis produced by three minutes of ischemia if 
it occurred one to seven days previously. However, 
this protective effect was lost if the interval was 
reduced to six hours or increased to 14 days. Lastly, 
Kirino et al. (121) demonstrated that two minutes 
of ischemia prevented the delayed death of CA1 
neurons produced by five minutes of ischemia if 
it was imposed one, two or four days earlier. These 
results indicate that not only can brief periods of 
anoxia be protective against the necrotic effects of 
a longer episode of ischemia, but that the time inter- 
val between the protective and noxious events is 
critical to the eventual outcome. 
It is usually held that this complex relationship is 
related to the expression of heat stress proteins. 
However, since the time intervals studied are com- 
patible with those needed for induction of IEG's, it 
is possible that alterations in IEG expression may 
also be involved in the development of "ischemic 
tolerance" in CA1 neurons. 

Conclusion 
Increased [Can+] i is recognized as a principle mecha- 
nism of neuronal injury and death in cerebral ische- 
mia. Extracellular calcium enters ischemic neurons 
through both VSCC and NMDA linked ROCC. 
Initially, channel activation is reversible and recent 
evidence would indicate that brief exposures to ele- 
vated [Ca2+]i may be beneficial in the setting of 
impending ischemia. Calcium entry through acti- 
vated ion channels results in a wide array of IEG 
production which may be of importance for the out- 
come of the ischemic insult. 
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